中文版 | English
题名

Pose-Aided Video-based Person Re-Identification via Recurrent Graph Convolutional Network

作者
发表日期
2023
DOI
发表期刊
ISSN
1051-8215
EISSN
1558-2205
卷号PP期号:99页码:1-1
摘要
Existing methods for video-based person re-identification (ReID) mainly learn the appearance feature of a given pedestrian via a feature extractor and a feature aggregator. However, the appearance models would fail to learn a large inter-class variance when different pedestrians have similar appearances. Considering that different pedestrians have different walking postures and body proportions, we propose to learn the discriminative pose feature beyond the appearance feature for video retrieval. Specifically, we implement a two-branch architecture to separately learn the appearance feature and pose feature, and then concatenate them together for inference. To learn the pose feature, we first detect the pedestrian pose in each frame through an off-the-shelf pose detector, and construct a temporal graph using the pose sequence. We then exploit a recurrent graph convolutional network (RGCN) to learn the node embeddings of the temporal pose graph, which devises a global information propagation mechanism to simultaneously achieve the neighborhood aggregation of intra-frame nodes and message passing among inter-frame graphs. Finally, we propose a dual-attention method (DAM) consisting of node-attention and time-attention to obtain the temporal graph representation from the node embeddings, where the self-attention mechanism is employed to learn the importance of each node and each frame. We verify the proposed method on three video-based ReID datasets, i.e., Mars, DukeMTMC and iLIDS-VID, whose experimental results demonstrate that the learned pose feature can effectively improve the performance of existing appearance models.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
EI入藏号
20232214159910
EI主题词
Bandpass filters ; Computer vision ; Embeddings ; Feature extraction ; Graph neural networks ; Graph theory ; Information dissemination ; Message passing
EI分类号
Electric Filters:703.2 ; Information Theory and Signal Processing:716.1 ; Computer Programming:723.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Vision:741.2 ; Information Dissemination:903.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85160259017
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10128165
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536701
专题南方科技大学
作者单位
1.School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Shenzhen, China
2.National Center for Applied Mathematics in Chongqing, Chongqing Normal University, Chongqing, China
3.College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
4.School of Computer Science, Inner Mongolia University, Huhehot, China
5.Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Pan,Honghu,Liu,Qiao,Chen,Yongyong,et al. Pose-Aided Video-based Person Re-Identification via Recurrent Graph Convolutional Network[J]. IEEE Transactions on Circuits and Systems for Video Technology,2023,PP(99):1-1.
APA
Pan,Honghu.,Liu,Qiao.,Chen,Yongyong.,He,Yunqi.,Zheng,Yuan.,...&He,Zhenyu.(2023).Pose-Aided Video-based Person Re-Identification via Recurrent Graph Convolutional Network.IEEE Transactions on Circuits and Systems for Video Technology,PP(99),1-1.
MLA
Pan,Honghu,et al."Pose-Aided Video-based Person Re-Identification via Recurrent Graph Convolutional Network".IEEE Transactions on Circuits and Systems for Video Technology PP.99(2023):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pan,Honghu]的文章
[Liu,Qiao]的文章
[Chen,Yongyong]的文章
百度学术
百度学术中相似的文章
[Pan,Honghu]的文章
[Liu,Qiao]的文章
[Chen,Yongyong]的文章
必应学术
必应学术中相似的文章
[Pan,Honghu]的文章
[Liu,Qiao]的文章
[Chen,Yongyong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。