题名 | Spontaneous Threshold Lowering Neuron using Second-Order Diffusive Memristor for Self-Adaptive Spatial Attention |
作者 | |
通讯作者 | Shang,Dashan; Wang,Qing; Yu,Hongyu; Wang,Zhongrui |
发表日期 | 2023
|
DOI | |
发表期刊 | |
EISSN | 2198-3844
|
卷号 | 10期号:22 |
摘要 | Intrinsic plasticity of neurons, such as spontaneous threshold lowering (STL) to modulate neuronal excitability, is key to spatial attention of biological neural systems. In-memory computing with emerging memristors is expected to solve the memory bottleneck of the von Neumann architecture commonly used in conventional digital computers and is deemed a promising solution to this bioinspired computing paradigm. Nonetheless, conventional memristors are incapable of implementing the STL plasticity of neurons due to their first-order dynamics. Here, a second-order memristor is experimentally demonstrated using yttria-stabilized zirconia with Ag doping (YSZ:Ag) that exhibits STL functionality. The physical origin of the second-order dynamics, i.e., the size evolution of Ag nanoclusters, is uncovered through transmission electron microscopy (TEM), which is leveraged to model the STL neuron. STL-based spatial attention in a spiking convolutional neural network (SCNN) is demonstrated, improving the accuracy of a multiobject detection task from 70% (20%) to 90% (80%) for the object within (outside) the area receiving attention. This second-order memristor with intrinsic STL dynamics paves the way for future machine intelligence, enabling high-efficiency, compact footprint, and hardware-encoded plasticity. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Key R&D Program of China[2018YFA0701500]
; Hong Kong Research Grant Council[
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
|
WOS类目 | Chemistry, Multidisciplinary
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
|
WOS记录号 | WOS:000993875000001
|
出版者 | |
EI入藏号 | 20232114137441
|
EI主题词 | High Resolution Transmission Electron Microscopy
; Memristors
; Neural Networks
; Neurons
; Object Detection
; Yttria Stabilized Zirconia
|
EI分类号 | Biology:461.9
; Semiconductor Devices And Integrated Circuits:714.2
; Data Processing And Image Processing:723.2
; Optical Devices And Systems:741.3
; Inorganic Compounds:804.2
|
Scopus记录号 | 2-s2.0-85159926569
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536713 |
专题 | 工学院_深港微电子学院 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering,The University of Hong Kong,Pokfulam Road,Hong Kong 2.ACCESS – AI Chip Center for Emerging Smart Systems,InnoHK Centers,Hong Kong 3.School of Microelectronics,Southern University of Science and Technology,Shenzhen,518055,China 4.Institute of Microelectronics,Chinese Academy of Sciences,Beijing,100029,China |
第一作者单位 | 深港微电子学院 |
通讯作者单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Jiang,Yang,Wang,Dingchen,Lin,Ning,et al. Spontaneous Threshold Lowering Neuron using Second-Order Diffusive Memristor for Self-Adaptive Spatial Attention[J]. Advanced Science,2023,10(22).
|
APA |
Jiang,Yang.,Wang,Dingchen.,Lin,Ning.,Shi,Shuhui.,Zhang,Yi.,...&Wang,Zhongrui.(2023).Spontaneous Threshold Lowering Neuron using Second-Order Diffusive Memristor for Self-Adaptive Spatial Attention.Advanced Science,10(22).
|
MLA |
Jiang,Yang,et al."Spontaneous Threshold Lowering Neuron using Second-Order Diffusive Memristor for Self-Adaptive Spatial Attention".Advanced Science 10.22(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论