中文版 | English
题名

Rapid Adaptation for Active Pantograph Control in High-Speed Railway via Deep Meta Reinforcement Learning

作者
发表日期
2023
DOI
发表期刊
ISSN
2168-2267
EISSN
2168-2275
卷号PP期号:99页码:1-13
摘要
Active pantograph control is the most promising technique for reducing contact force (CF) fluctuation and improving the train’s current collection quality. Existing solutions, however, suffer from two significant limitations: 1) they are incapable of dealing with the various pantograph types, catenary line operating conditions, changing operating speeds, and contingencies well and 2) it is challenging to implement in practical systems due to the lack of rapid adaptability to a new pantograph-catenary system (PCS) operating conditions and environmental disturbances. In this work, we alleviate these problems by developing a revolutionary context-based deep meta-reinforcement learning (CB-DMRL) algorithm. The proposed CB-DMRL algorithm combines Bayesian optimization (BO) with deep reinforcement learning (DRL), allowing the general agent to adapt to new tasks quickly and efficiently. We evaluated the CB-DMRL algorithm’s performance on a proven PCS model. The experimental results demonstrate that meta-training DRL policies with latent space swiftly adapt to new operating conditions and unknown perturbations. The meta-agent adapts quickly after two iterations with a high reward, which require only ten spans, approximately equal to 0.5 km of PCS interaction data. Compared with state-of-the-art DRL algorithms and traditional solutions, the proposed method can promptly traverse scenario changes and reduce CF fluctuations, resulting in an excellent performance.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:001005070000001
EI入藏号
20232114133145
EI主题词
Deep learning ; Electric current collection ; Heuristic algorithms ; Learning algorithms ; Pantographs ; Quality control ; Railroads
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Computer Programming:723.1 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Quality Assurance and Control:913.3
Scopus记录号
2-s2.0-85159826550
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10124089
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536730
专题工学院_系统设计与智能制造学院
作者单位
1.School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China
2.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Wang,Hui,Liu,Zhigang,Han,Zhiwei,et al. Rapid Adaptation for Active Pantograph Control in High-Speed Railway via Deep Meta Reinforcement Learning[J]. IEEE Transactions on Cybernetics,2023,PP(99):1-13.
APA
Wang,Hui,Liu,Zhigang,Han,Zhiwei,Wu,Yanbo,&Liu,Derong.(2023).Rapid Adaptation for Active Pantograph Control in High-Speed Railway via Deep Meta Reinforcement Learning.IEEE Transactions on Cybernetics,PP(99),1-13.
MLA
Wang,Hui,et al."Rapid Adaptation for Active Pantograph Control in High-Speed Railway via Deep Meta Reinforcement Learning".IEEE Transactions on Cybernetics PP.99(2023):1-13.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Hui]的文章
[Liu,Zhigang]的文章
[Han,Zhiwei]的文章
百度学术
百度学术中相似的文章
[Wang,Hui]的文章
[Liu,Zhigang]的文章
[Han,Zhiwei]的文章
必应学术
必应学术中相似的文章
[Wang,Hui]的文章
[Liu,Zhigang]的文章
[Han,Zhiwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。