中文版 | English
题名

Research on the human-following method, fall gesture recognition, and protection method for the walking-aid cane robot

作者
通讯作者Fu,Chenglong
DOI
发表日期
2023
会议名称
IEEE International Conference on Cyborg and Bionic Systems
ISBN
978-1-6654-9029-0
会议录名称
页码
286-291
会议日期
24-26 March 2023
会议地点
Wuhan, China
摘要

Walking-cane robot is a hotspot in the field of human augmentation robots. Among them, the walking-aid cane robot has the way of use according to the patient's habits because it does not interfere with the patient's gait directly. The walking-aid cane robot is compact and flexible in movement, which is convenient for patients to walk and veer in daily life. This paper will design a walking-aid cane robot and propose methods of autonomous following and fall protection. The main work in this paper is as follows: 1. Robot's control method of the autonomous following. The autonomous following of the robot is realized through the lidar. According to the point cloud data collected by the lidar, the human legs are separated from noise points and obstacles through a clustering algorithm, and the human point cloud is extracted through the HOG (Histogram of Oriented Gradients) and SVM (Support Vector Machine) methods. Then it uses PID (Proportion Integration Differentiation) control to the robot's speed and smooth processing to the position. 2. Research on fall gesture recognition and protection methods. Through the OpenPose human gesture recognition repository, the key node information of the body in the camera image is analyzed in real-time to judge the falling trend of the body. The position that the robot needs to reach is calculated by the inclination of the body so that the robot can provide reverse support before the human body falls.

关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000995252700049
EI入藏号
20232114139500
EI主题词
Clustering algorithms ; Gesture recognition ; Machine design ; Optical radar ; Robots ; Walking aids
EI分类号
Rehabilitation Engineering and Assistive Technology:461.5 ; Biomedical Equipment, General:462.1 ; Mechanical Design:601 ; Radar Systems and Equipment:716.2 ; Computer Software, Data Handling and Applications:723 ; Robotics:731.5 ; Optical Devices and Systems:741.3 ; Information Sources and Analysis:903.1
Scopus记录号
2-s2.0-85159787201
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10115357
出版状态
正式出版
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536741
专题南方科技大学
作者单位
1.Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Shenzhen,518055,China
2.Guangdong Prov. Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Chen,Nuo,Chen,Xinxing,Chen,Chuheng,et al. Research on the human-following method, fall gesture recognition, and protection method for the walking-aid cane robot[C],2023:286-291.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Nuo]的文章
[Chen,Xinxing]的文章
[Chen,Chuheng]的文章
百度学术
百度学术中相似的文章
[Chen,Nuo]的文章
[Chen,Xinxing]的文章
[Chen,Chuheng]的文章
必应学术
必应学术中相似的文章
[Chen,Nuo]的文章
[Chen,Xinxing]的文章
[Chen,Chuheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。