中文版 | English
题名

On the Use of Deep Learning for Three-Dimensional Computational Imaging

作者
通讯作者Kang,Iksung
DOI
发表日期
2023
ISSN
0277-786X
EISSN
1996-756X
会议录名称
卷号
12445
摘要
Deep learning has proven to be an efficient and robust method for many computational imaging systems. The advantages of machine learning, as a rule, are that it is fast-at least in its supervised form after training is complete-and seems exceedingly effective in capturing regularizing priors. Here, we focus the discussion on non-invasive three-dimensional (3D) object reconstruction. One then faces the additional dilemma of choosing the appropriate model of light-matter interaction inside the specimen, i.e. the forward operator. We describe the three stages of approximation that are applicable: weak scattering with weak diffraction (also known as the Radon transform), weak scattering with strong diffraction, and strong scattering. We then overview machine learning approaches for the various models, and glance at the consequences of oversimplifying the forward operator choice.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Israeli Centers for Research Excellence[NRF2019-THE002-0006];
EI入藏号
20232114124371
EI主题词
Computational Imaging ; Deep learning ; Imaging systems ; Learning systems
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85159716292
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536753
专题南方科技大学
作者单位
1.Department of Mechanical Engineering,Massachusetts Institute of Technology,United States
2.Department of Electrical Engineering and Computer Science,Massachusetts Institute of Technology,United States
3.Singapore-MIT Alliance for Research & Technology Centre,Massachusetts Institute of Technology,United States
4.Department of Molecular and Cell Biology,University of California,Berkeley,United States
5.Department of Electrical Engineering,Southern University of Science and Technology,China
推荐引用方式
GB/T 7714
Barbastathis,George,Pang,Subeen,Kang,Iksung,et al. On the Use of Deep Learning for Three-Dimensional Computational Imaging[C],2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Barbastathis,George]的文章
[Pang,Subeen]的文章
[Kang,Iksung]的文章
百度学术
百度学术中相似的文章
[Barbastathis,George]的文章
[Pang,Subeen]的文章
[Kang,Iksung]的文章
必应学术
必应学术中相似的文章
[Barbastathis,George]的文章
[Pang,Subeen]的文章
[Kang,Iksung]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。