中文版 | English
题名

Flat lesion detection of white light cystoscopy with deep learning

作者
通讯作者Liao,Joseph C.; Xing,Lei
DOI
发表日期
2023
会议名称
Conference on Advanced Photonics in Urology
ISSN
1605-7422
会议录名称
卷号
12353
会议日期
JAN 28-29, 2023
会议地点
null,San Francisco,CA
出版地
1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
出版者
摘要
Adequate lesion detection is critical in cystoscopy to improve bladder cancer resection and decrease recurrence. In particular, flat-appearing cancer such as carcinoma in situ is difficult to discern by standard white-light cystoscopy (WLC). The adoption of blue-light cystoscopy (BLC), an adjunct imaging technique, remains modest due to the expensive equipment required. We developed a deep-learning algorithm, CystoNet-F, for augmented detection of flat lesions on WLC. CystoNet-F was designed to augment WLC in lesion detection by incorporating domain translation of CycleGAN, transfer learning, and region of interest (ROI) detection. We constructed a development dataset of 40 patients for algorithm training and 10 patients for testing. In the training phase, features from both WLC and BLC were learned and embedded in the algorithm as the model weights of an ROI detector. Transfer learning was performed by fine-tuning CystoNet-F on BLC using the weights learned from WLC. We applied CycleGAN for domain translation between WLC and BLC. In the test phase, WLC input was first translated to the BLC domain and then served as the input of the ROI detector to finally generate a mask on the lesion area. CystoNet-F can produce flat lesion predictions close to urologist’s annotations on the validation set without paired BLC information. The proposed deep-learning algorithm may improve the diagnostic yield of standard WLC in a noninvasive and cost-effective fashion.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Institutes of Health[R01 CA260426];
WOS研究方向
Optics ; Urology & Nephrology
WOS类目
Optics ; Urology & Nephrology
WOS记录号
WOS:001011708200012
EI入藏号
20232114128086
EI主题词
Cost effectiveness ; Deep learning ; Diseases ; Endoscopy ; Image segmentation ; Medical imaging ; Statistical tests
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Machine Learning:723.4.2 ; Imaging Techniques:746 ; Industrial Economics:911.2 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85159684929
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536761
专题工学院_电子与电气工程系
作者单位
1.Department of Radiation Oncology,Stanford University,Stanford,United States
2.Department of Urology,Stanford University,Stanford,United States
3.VA Palo Alto Health Care System,Palo Alto,United States
4.Department of Electronic Engineering,The Chinese University of Hong Kong,Hong Kong,Hong Kong
5.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Jia,Xiao,Shkolyar,Eugene,Eminaga,Okyaz,et al. Flat lesion detection of white light cystoscopy with deep learning[C]. 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA:SPIE-INT SOC OPTICAL ENGINEERING,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jia,Xiao]的文章
[Shkolyar,Eugene]的文章
[Eminaga,Okyaz]的文章
百度学术
百度学术中相似的文章
[Jia,Xiao]的文章
[Shkolyar,Eugene]的文章
[Eminaga,Okyaz]的文章
必应学术
必应学术中相似的文章
[Jia,Xiao]的文章
[Shkolyar,Eugene]的文章
[Eminaga,Okyaz]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。