中文版 | English
名称

User demographic characteristics inference based on big GPS trajectory data

作者
发布日期
2023
关键词
语种
英语
相关链接[Scopus记录]
摘要
The portable devices (e.g., mobile phones) afford a great potential to track the human mobility. But it is hard to know the demograhic characteristics of the users, due to privacy concern. In this context, our study proposed a ubiquitous Internet of Things-based trustworthy approach for trustworthy user demographic characteristics inference. First, we employed a meta-graph-based data structure to represent users' life patterns and projected them into a low-dimension space as uniform features. Then, based on the life-pattern features, we derived a variation-inference-based advanced Bayesian model to infer the demographics. Finally, taking a region in Tokyo as a case study, we compared our methods with baseline methods (heuristic algorithm, deep learning), and the result proved a superior accuracy (the MAPE improved by 0.07–0.28) as well as reliability (0.78 Pearson’s correlation coefficient with survey data).
DOI
期刊来源
卷号
2
页码
75-93
学校署名
其他
Scopus记录号
2-s2.0-85159496126
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型其他
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536769
专题南方科技大学
作者单位
1.Center for Spatial Information Science,The University of Tokyo,Kashiwa-shi,Chiba,Japan
2.School of Urban Planning and Design,Peking University,Shenzhen,China
3.Southern University of Science and Technology,University of Tokyo Joint Research Center for Super Smart Cities,Department of Computer and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,China
推荐引用方式
GB/T 7714
Li,Peiran,Zhang,Haoran,Li,Wenjing,et al. User demographic characteristics inference based on big GPS trajectory data. 2023-01-01.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Peiran]的文章
[Zhang,Haoran]的文章
[Li,Wenjing]的文章
百度学术
百度学术中相似的文章
[Li,Peiran]的文章
[Zhang,Haoran]的文章
[Li,Wenjing]的文章
必应学术
必应学术中相似的文章
[Li,Peiran]的文章
[Zhang,Haoran]的文章
[Li,Wenjing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。