中文版 | English
题名

KISL: knowledge-injected semi-supervised learning for biological co-expression network modules

作者
通讯作者Huang,Zhenyu; Xu,Ying
发表日期
2023
DOI
发表期刊
EISSN
1664-8021
卷号14
摘要
The exploration of important biomarkers associated with cancer development is crucial for diagnosing cancer, designing therapeutic interventions, and predicting prognoses. The analysis of gene co-expression provides a systemic perspective on gene networks and can be a valuable tool for mining biomarkers. The main objective of co-expression network analysis is to discover highly synergistic sets of genes, and the most widely used method is weighted gene co-expression network analysis (WGCNA). With the Pearson correlation coefficient, WGCNA measures gene correlation, and uses hierarchical clustering to identify gene modules. The Pearson correlation coefficient reflects only the linear dependence between variables, and the main drawback of hierarchical clustering is that once two objects are clustered together, the process cannot be reversed. Hence, readjusting inappropriate cluster divisions is not possible. Existing co-expression network analysis methods rely on unsupervised methods that do not utilize prior biological knowledge for module delineation. Here we present a method for identification of outstanding modules in a co-expression network using a knowledge-injected semi-supervised learning approach (KISL), which utilizes apriori biological knowledge and a semi-supervised clustering method to address the issue existing in the current GCN-based clustering methods. To measure the linear and non-linear dependence between genes, we introduce a distance correlation due to the complexity of the gene-gene relationship. Eight RNA-seq datasets of cancer samples are used to validate its effectiveness. In all eight datasets, the KISL algorithm outperformed WGCNA when comparing the silhouette coefficient, Calinski-Harabasz index and Davies-Bouldin index evaluation metrics. According to the results, KISL clusters had better cluster evaluation values and better gene module aggregation. Enrichment analysis of the recognition modules demonstrated their effectiveness in discovering modular structures in biological co-expression networks. In addition, as a general method, KISL can be applied to various co-expression network analyses based on similarity metrics. Source codes for the KISL and the related scripts are available online at https://github.com/Mowonhoo/KISL.git.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Key Research and Development Program of China[2021YFF1201200] ; National Natural Science Foundation of China["62172187","61972174"] ; Liaoning Provincial Archives Science and Technology Project["2021-X-012","2022-X-017"] ; Guangdong Universities' Innovation Team Project[2021KCXTD015] ; Guangdong Key Disciplines Project[2021ZDJS138]
WOS研究方向
Genetics & Heredity
WOS类目
Genetics & Heredity
WOS记录号
WOS:000999288600001
出版者
Scopus记录号
2-s2.0-85159368938
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536772
专题南方科技大学医学院
工学院_计算机科学与工程系
作者单位
1.College of Computer Science and Technology,Jilin University,Changchun,China
2.School of Artificial Intelligence,Jilin University,Changchun,China
3.School of Medicine,Southern University of Science and Technology,Shenzhen,Guangdong,China
通讯作者单位南方科技大学医学院
推荐引用方式
GB/T 7714
Xiao,Gangyi,Guan,Renchu,Cao,Yangkun,et al. KISL: knowledge-injected semi-supervised learning for biological co-expression network modules[J]. Frontiers in Genetics,2023,14.
APA
Xiao,Gangyi,Guan,Renchu,Cao,Yangkun,Huang,Zhenyu,&Xu,Ying.(2023).KISL: knowledge-injected semi-supervised learning for biological co-expression network modules.Frontiers in Genetics,14.
MLA
Xiao,Gangyi,et al."KISL: knowledge-injected semi-supervised learning for biological co-expression network modules".Frontiers in Genetics 14(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao,Gangyi]的文章
[Guan,Renchu]的文章
[Cao,Yangkun]的文章
百度学术
百度学术中相似的文章
[Xiao,Gangyi]的文章
[Guan,Renchu]的文章
[Cao,Yangkun]的文章
必应学术
必应学术中相似的文章
[Xiao,Gangyi]的文章
[Guan,Renchu]的文章
[Cao,Yangkun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。