题名 | Interpretable machine learning optimization (InterOpt) for operational parameters: A case study of highly-efficient shale gas development |
作者 | |
发表日期 | 2023
|
DOI | |
发表期刊 | |
ISSN | 1672-5107
|
EISSN | 1995-8226
|
卷号 | 20期号:3页码:1788-1805 |
摘要 | An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning, and is demonstrated via optimization of shale gas development. InterOpt consists of three parts: a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space (i.e., virtual environment); the Sharpley value method in interpretable machine learning is applied to analyzing the impact of geological and operational parameters in each well (i.e., single well feature impact analysis); and ensemble randomized maximum likelihood (EnRML) is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost. In the experiment, InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions, and finally achieves an average cost reduction of 9.7% for a case study with 104 wells. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[62106116];
|
WOS研究方向 | Energy & Fuels
; Engineering
|
WOS类目 | Energy & Fuels
; Engineering, Petroleum
|
WOS记录号 | WOS:001034569600001
|
出版者 | |
EI入藏号 | 20232014099948
|
EI主题词 | Cost benefit analysis
; Cost reduction
; Gases
; Geology
; Hydraulic fracturing
; Infill drilling
; Maximum likelihood estimation
; Monte Carlo methods
; Parameter estimation
; Shale gas
; Vector spaces
|
EI分类号 | Geology:481.1
; Oil Field Production Operations:511.1
; Petroleum Deposits : Development Operations:512.1.2
; Natural Gas Deposits:512.2
; Gas Fuels:522
; Artificial Intelligence:723.4
; Cost and Value Engineering; Industrial Economics:911
; Management:912.2
; Mathematics:921
; Statistical Methods:922
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85159149932
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536779 |
专题 | 理学院_深圳国家应用数学中心 |
作者单位 | 1.Eastern Institute for Advanced Study,Zhejiang,315200,China 2.Department of Mathematics and Theories,Peng Cheng Laboratory,Guangdong,518055,China 3.National Center for Applied Mathematics Shenzhen (NCAMS),Southern University of Science and Technology,Guangdong,518055,China 4.Research Institute of Petroleum Exploration and Development,CNPC,Beijing,100083,China |
推荐引用方式 GB/T 7714 |
Chen,Yun Tian,Zhang,Dong Xiao,Zhao,Qun,et al. Interpretable machine learning optimization (InterOpt) for operational parameters: A case study of highly-efficient shale gas development[J]. Petroleum Science,2023,20(3):1788-1805.
|
APA |
Chen,Yun Tian,Zhang,Dong Xiao,Zhao,Qun,&Liu,De Xun.(2023).Interpretable machine learning optimization (InterOpt) for operational parameters: A case study of highly-efficient shale gas development.Petroleum Science,20(3),1788-1805.
|
MLA |
Chen,Yun Tian,et al."Interpretable machine learning optimization (InterOpt) for operational parameters: A case study of highly-efficient shale gas development".Petroleum Science 20.3(2023):1788-1805.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论