中文版 | English
题名

Interpretable machine learning optimization (InterOpt) for operational parameters: A case study of highly-efficient shale gas development

作者
发表日期
2023
DOI
发表期刊
ISSN
1672-5107
EISSN
1995-8226
卷号20期号:3页码:1788-1805
摘要
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning, and is demonstrated via optimization of shale gas development. InterOpt consists of three parts: a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space (i.e., virtual environment); the Sharpley value method in interpretable machine learning is applied to analyzing the impact of geological and operational parameters in each well (i.e., single well feature impact analysis); and ensemble randomized maximum likelihood (EnRML) is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost. In the experiment, InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions, and finally achieves an average cost reduction of 9.7% for a case study with 104 wells.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[62106116];
WOS研究方向
Energy & Fuels ; Engineering
WOS类目
Energy & Fuels ; Engineering, Petroleum
WOS记录号
WOS:001034569600001
出版者
EI入藏号
20232014099948
EI主题词
Cost benefit analysis ; Cost reduction ; Gases ; Geology ; Hydraulic fracturing ; Infill drilling ; Maximum likelihood estimation ; Monte Carlo methods ; Parameter estimation ; Shale gas ; Vector spaces
EI分类号
Geology:481.1 ; Oil Field Production Operations:511.1 ; Petroleum Deposits : Development Operations:512.1.2 ; Natural Gas Deposits:512.2 ; Gas Fuels:522 ; Artificial Intelligence:723.4 ; Cost and Value Engineering; Industrial Economics:911 ; Management:912.2 ; Mathematics:921 ; Statistical Methods:922 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85159149932
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536779
专题理学院_深圳国家应用数学中心
作者单位
1.Eastern Institute for Advanced Study,Zhejiang,315200,China
2.Department of Mathematics and Theories,Peng Cheng Laboratory,Guangdong,518055,China
3.National Center for Applied Mathematics Shenzhen (NCAMS),Southern University of Science and Technology,Guangdong,518055,China
4.Research Institute of Petroleum Exploration and Development,CNPC,Beijing,100083,China
推荐引用方式
GB/T 7714
Chen,Yun Tian,Zhang,Dong Xiao,Zhao,Qun,et al. Interpretable machine learning optimization (InterOpt) for operational parameters: A case study of highly-efficient shale gas development[J]. Petroleum Science,2023,20(3):1788-1805.
APA
Chen,Yun Tian,Zhang,Dong Xiao,Zhao,Qun,&Liu,De Xun.(2023).Interpretable machine learning optimization (InterOpt) for operational parameters: A case study of highly-efficient shale gas development.Petroleum Science,20(3),1788-1805.
MLA
Chen,Yun Tian,et al."Interpretable machine learning optimization (InterOpt) for operational parameters: A case study of highly-efficient shale gas development".Petroleum Science 20.3(2023):1788-1805.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Yun Tian]的文章
[Zhang,Dong Xiao]的文章
[Zhao,Qun]的文章
百度学术
百度学术中相似的文章
[Chen,Yun Tian]的文章
[Zhang,Dong Xiao]的文章
[Zhao,Qun]的文章
必应学术
必应学术中相似的文章
[Chen,Yun Tian]的文章
[Zhang,Dong Xiao]的文章
[Zhao,Qun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。