题名 | Finite group with Hall normally embedded minimal subgroups |
作者 | |
通讯作者 | Meng,Wei |
发表日期 | 2023
|
DOI | |
发表期刊 | |
ISSN | 0092-7872
|
EISSN | 1532-4125
|
摘要 | Let G be a finite group. A subgroup H of G is called Hall normally embedded in G if H is a Hall subgroup of H (Formula presented.), where H (Formula presented.) is the normal closure of H in G, that is, the smallest normal subgroup of G containing H. A group G is called an HNE -group if all cyclic subgroups of order 2 and 4 of G are Hall normally embedded in G. In this paper, we prove that all HNE -groups are 2-nilpotent. Furthermore, we also characterize the structure of finite group all of whose maximal subgroups are HNE -groups. Finally, we determine finite non-solvable groups all of whose second maximal subgroups are HNE -groups. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
WOS记录号 | WOS:000980177400001
|
ESI学科分类 | MATHEMATICS
|
Scopus记录号 | 2-s2.0-85158893029
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536797 |
专题 | 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | 1.School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin,Guangxi,China 2.SUSTech International Center for Mathematics,Shenzhen,Guangdong,China 3.School of Mathematics and Statistics,Guangxi Normal University,Guilin,Guangxi,China |
通讯作者单位 | 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
推荐引用方式 GB/T 7714 |
Cui,Liang,Zheng,Weicheng,Meng,Wei,et al. Finite group with Hall normally embedded minimal subgroups[J]. Communications in Algebra,2023.
|
APA |
Cui,Liang,Zheng,Weicheng,Meng,Wei,&Lu,Jiakuan.(2023).Finite group with Hall normally embedded minimal subgroups.Communications in Algebra.
|
MLA |
Cui,Liang,et al."Finite group with Hall normally embedded minimal subgroups".Communications in Algebra (2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论