题名 | Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS |
作者 | |
通讯作者 | Chen,Wei; Gao,Xin |
共同第一作者 | Zhou,Juexiao; Zhang,Bin |
发表日期 | 2022-10-01
|
DOI | |
发表期刊 | |
ISSN | 1672-0229
|
EISSN | 2210-3244
|
卷号 | 20期号:5页码:959-973 |
摘要 | The accurate annotation of transcription start sites (TSSs) and their usage are critical for the mechanistic understanding of gene regulation in different biological contexts. To fulfill this, specific high-throughput experimental technologies have been developed to capture TSSs in a genome-wide manner, and various computational tools have also been developed for in silico prediction of TSSs solely based on genomic sequences. Most of these computational tools cast the problem as a binary classification task on a balanced dataset, thus resulting in drastic false positive predictions when applied on the genome scale. Here, we present DeeReCT-TSS, a deep learning-based method that is capable of identifying TSSs across the whole genome based on both DNA sequence and conventional RNA sequencing data. We show that by effectively incorporating these two sources of information, DeeReCT-TSS significantly outperforms other solely sequence-based methods on the precise annotation of TSSs used in different cell types. Furthermore, we develop a meta-learning-based extension for simultaneous TSS annotations on 10 cell types, which enables the identification of cell type-specific TSSs. Finally, we demonstrate the high precision of DeeReCT-TSS on two independent datasets by correlating our predicted TSSs with experimentally defined TSS chromatin states. The source code for DeeReCT-TSS is available at https://github.com/JoshuaChou2018/DeeReCT-TSS_release and https://ngdc.cncb.ac.cn/biocode/tools/BT007316. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
WOS记录号 | WOS:000962003300011
|
ESI学科分类 | MOLECULAR BIOLOGY & GENETICS
|
Scopus记录号 | 2-s2.0-85147108326
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536916 |
专题 | 生命科学学院_生物系 生命科学学院 前沿与交叉科学研究院 |
作者单位 | 1.Computer Science Program,Computer,Electrical and Mathematical Sciences and Engineering Division,King Abdullah University of Science and Technology,Thuwal,23955-6900,Saudi Arabia 2.Computational Bioscience Research Center,King Abdullah University of Science and Technology,Thuwal,23955-6900,Saudi Arabia 3.Department of Biology,School of Life Sciences,Southern University of Science and Technology,Shenzhen,518055,China 4.Shenzhen Key Laboratory of Gene Regulation and Systems Biology,School of Life Sciences,Southern University of Science and Technology,Shenzhen,518055,China 5.Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 生物系; 生命科学学院 |
通讯作者单位 | 生物系; 生命科学学院; 前沿与交叉科学研究院 |
推荐引用方式 GB/T 7714 |
Zhou,Juexiao,Zhang,Bin,Li,Haoyang,et al. Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS[J]. Genomics, Proteomics and Bioinformatics,2022,20(5):959-973.
|
APA |
Zhou,Juexiao.,Zhang,Bin.,Li,Haoyang.,Zhou,Longxi.,Li,Zhongxiao.,...&Gao,Xin.(2022).Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS.Genomics, Proteomics and Bioinformatics,20(5),959-973.
|
MLA |
Zhou,Juexiao,et al."Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS".Genomics, Proteomics and Bioinformatics 20.5(2022):959-973.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论