中文版 | English
题名

Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS

作者
通讯作者Chen,Wei; Gao,Xin
共同第一作者Zhou,Juexiao; Zhang,Bin
发表日期
2022-10-01
DOI
发表期刊
ISSN
1672-0229
EISSN
2210-3244
卷号20期号:5页码:959-973
摘要

The accurate annotation of transcription start sites (TSSs) and their usage are critical for the mechanistic understanding of gene regulation in different biological contexts. To fulfill this, specific high-throughput experimental technologies have been developed to capture TSSs in a genome-wide manner, and various computational tools have also been developed for in silico prediction of TSSs solely based on genomic sequences. Most of these computational tools cast the problem as a binary classification task on a balanced dataset, thus resulting in drastic false positive predictions when applied on the genome scale. Here, we present DeeReCT-TSS, a deep learning-based method that is capable of identifying TSSs across the whole genome based on both DNA sequence and conventional RNA sequencing data. We show that by effectively incorporating these two sources of information, DeeReCT-TSS significantly outperforms other solely sequence-based methods on the precise annotation of TSSs used in different cell types. Furthermore, we develop a meta-learning-based extension for simultaneous TSS annotations on 10 cell types, which enables the identification of cell type-specific TSSs. Finally, we demonstrate the high precision of DeeReCT-TSS on two independent datasets by correlating our predicted TSSs with experimentally defined TSS chromatin states. The source code for DeeReCT-TSS is available at https://github.com/JoshuaChou2018/DeeReCT-TSS_release and https://ngdc.cncb.ac.cn/biocode/tools/BT007316.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
WOS记录号
WOS:000962003300011
ESI学科分类
MOLECULAR BIOLOGY & GENETICS
Scopus记录号
2-s2.0-85147108326
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536916
专题生命科学学院_生物系
生命科学学院
前沿与交叉科学研究院
作者单位
1.Computer Science Program,Computer,Electrical and Mathematical Sciences and Engineering Division,King Abdullah University of Science and Technology,Thuwal,23955-6900,Saudi Arabia
2.Computational Bioscience Research Center,King Abdullah University of Science and Technology,Thuwal,23955-6900,Saudi Arabia
3.Department of Biology,School of Life Sciences,Southern University of Science and Technology,Shenzhen,518055,China
4.Shenzhen Key Laboratory of Gene Regulation and Systems Biology,School of Life Sciences,Southern University of Science and Technology,Shenzhen,518055,China
5.Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位生物系;  生命科学学院
通讯作者单位生物系;  生命科学学院;  前沿与交叉科学研究院
推荐引用方式
GB/T 7714
Zhou,Juexiao,Zhang,Bin,Li,Haoyang,et al. Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS[J]. Genomics, Proteomics and Bioinformatics,2022,20(5):959-973.
APA
Zhou,Juexiao.,Zhang,Bin.,Li,Haoyang.,Zhou,Longxi.,Li,Zhongxiao.,...&Gao,Xin.(2022).Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS.Genomics, Proteomics and Bioinformatics,20(5),959-973.
MLA
Zhou,Juexiao,et al."Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS".Genomics, Proteomics and Bioinformatics 20.5(2022):959-973.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhou,Juexiao]的文章
[Zhang,Bin]的文章
[Li,Haoyang]的文章
百度学术
百度学术中相似的文章
[Zhou,Juexiao]的文章
[Zhang,Bin]的文章
[Li,Haoyang]的文章
必应学术
必应学术中相似的文章
[Zhou,Juexiao]的文章
[Zhang,Bin]的文章
[Li,Haoyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。