题名 | Hierarchical policy with deep-reinforcement learning for nonprehensile multiobject rearrangement |
作者 | |
通讯作者 | Meng,Max Q.H. |
发表日期 | 2022-09-01
|
DOI | |
发表期刊 | |
ISSN | 2097-0242
|
EISSN | 2667-3797
|
卷号 | 2期号:3 |
摘要 | Nonprehensile multiobject rearrangement is the robotic task of planning feasible paths and transferring multiple objects to their predefined target poses without grasping. It must consider how each object reaches the target and the order in which objects move, considerably increasing the complexity of the problem. Thus, we propose a hierarchical policy for nonprehensile multiobject rearrangement based on deep-reinforcement learning. We use imitation learning and reinforcement learning to train a rollout policy. In a high-level policy, the policy network directs the Monte Carlo tree search algorithm to efficiently seek the ideal rearrangement sequence for several items. In a low-level policy, the robot plans the paths according to the order of path primitives and manipulates the objects to approach the target poses one by one. Our experiments show that the proposed method has a higher success rate, fewer steps, and shorter path length than the state-of-the-art methods. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
Scopus记录号 | 2-s2.0-85150778333
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536917 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electronic Engineering,The Chinese University of Hong Kong,Hong Kong 2.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,China 3.Shenzhen Research Institute of the Chinese University of Hong Kong,Shenzhen,China |
通讯作者单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Bai,Fan,Meng,Fei,Liu,Jianbang,et al. Hierarchical policy with deep-reinforcement learning for nonprehensile multiobject rearrangement[J]. Biomimetic Intelligence and Robotics,2022,2(3).
|
APA |
Bai,Fan,Meng,Fei,Liu,Jianbang,Wang,Jiankun,&Meng,Max Q.H..(2022).Hierarchical policy with deep-reinforcement learning for nonprehensile multiobject rearrangement.Biomimetic Intelligence and Robotics,2(3).
|
MLA |
Bai,Fan,et al."Hierarchical policy with deep-reinforcement learning for nonprehensile multiobject rearrangement".Biomimetic Intelligence and Robotics 2.3(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论