中文版 | English
题名

Hierarchical policy with deep-reinforcement learning for nonprehensile multiobject rearrangement

作者
通讯作者Meng,Max Q.H.
发表日期
2022-09-01
DOI
发表期刊
ISSN
2097-0242
EISSN
2667-3797
卷号2期号:3
摘要

Nonprehensile multiobject rearrangement is the robotic task of planning feasible paths and transferring multiple objects to their predefined target poses without grasping. It must consider how each object reaches the target and the order in which objects move, considerably increasing the complexity of the problem. Thus, we propose a hierarchical policy for nonprehensile multiobject rearrangement based on deep-reinforcement learning. We use imitation learning and reinforcement learning to train a rollout policy. In a high-level policy, the policy network directs the Monte Carlo tree search algorithm to efficiently seek the ideal rearrangement sequence for several items. In a low-level policy, the robot plans the paths according to the order of path primitives and manipulates the objects to approach the target poses one by one. Our experiments show that the proposed method has a higher success rate, fewer steps, and shorter path length than the state-of-the-art methods.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
Scopus记录号
2-s2.0-85150778333
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536917
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic Engineering,The Chinese University of Hong Kong,Hong Kong
2.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,China
3.Shenzhen Research Institute of the Chinese University of Hong Kong,Shenzhen,China
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Bai,Fan,Meng,Fei,Liu,Jianbang,et al. Hierarchical policy with deep-reinforcement learning for nonprehensile multiobject rearrangement[J]. Biomimetic Intelligence and Robotics,2022,2(3).
APA
Bai,Fan,Meng,Fei,Liu,Jianbang,Wang,Jiankun,&Meng,Max Q.H..(2022).Hierarchical policy with deep-reinforcement learning for nonprehensile multiobject rearrangement.Biomimetic Intelligence and Robotics,2(3).
MLA
Bai,Fan,et al."Hierarchical policy with deep-reinforcement learning for nonprehensile multiobject rearrangement".Biomimetic Intelligence and Robotics 2.3(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bai,Fan]的文章
[Meng,Fei]的文章
[Liu,Jianbang]的文章
百度学术
百度学术中相似的文章
[Bai,Fan]的文章
[Meng,Fei]的文章
[Liu,Jianbang]的文章
必应学术
必应学术中相似的文章
[Bai,Fan]的文章
[Meng,Fei]的文章
[Liu,Jianbang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。