中文版 | English
题名

High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers

作者
通讯作者Xiong, Tao
发表日期
2023-09-01
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号488
摘要
In this paper, a high-order semi-implicit (SI) asymptotic preserving (AP) and divergencefree finite difference weighted essentially nonoscillatory (WENO) scheme is proposed for magnetohydrodynamic (MHD) equations. We consider the sonic Mach number & epsilon; ranging from 0 to O(1). High-order accuracy in time is obtained by SI implicit-explicit Runge-Kutta (IMEX-RK) time discretization. High-order accuracy in space is achieved by finite difference WENO schemes with characteristic-wise reconstructions. A constrained transport method is applied to maintain a discrete divergence-free condition. We formally prove that the scheme is AP. Asymptotic accuracy (AA) in the incompressible MHD limit is obtained if the implicit part of the SI IMEX-RK scheme is stiffly accurate. Numerical experiments are provided to validate the AP, AA, and divergence-free properties of our proposed approach. Besides, the scheme can well capture discontinuities such as shocks in an essentially nonoscillatory fashion in the compressible regime, while it is also a good incompressible solver with uniform large-time step conditions in the low sonic Mach limit.& COPY; 2023 Elsevier Inc. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key Ramp;D Program of China[2022YFA1004502] ; NSFC[11971025] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA25010401] ; National Natural Science Foundation of China[12171227] ; Shenzhen Science and Technology Program[RCJC20221008092757098]
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:001015114500001
出版者
EI入藏号
20232314195832
EI主题词
Aerodynamics ; Incompressible flow ; Magnetohydrodynamics
EI分类号
Magnetohydrodynamics (MHD) Power Generation:615.3 ; Aerodynamics, General:651.1 ; Mechanical Variables Measurements:943.2
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536956
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
理学院_深圳国家应用数学中心
作者单位
1.Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
3.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518055, Guangdong, Peoples R China
4.Xiamen Univ, Sch Math Sci, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Fujian, Peoples R China
推荐引用方式
GB/T 7714
Chen, Wei,Wu, Kailiang,Xiong, Tao. High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2023,488.
APA
Chen, Wei,Wu, Kailiang,&Xiong, Tao.(2023).High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers.JOURNAL OF COMPUTATIONAL PHYSICS,488.
MLA
Chen, Wei,et al."High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers".JOURNAL OF COMPUTATIONAL PHYSICS 488(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
High order asymptoti(2657KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Wei]的文章
[Wu, Kailiang]的文章
[Xiong, Tao]的文章
百度学术
百度学术中相似的文章
[Chen, Wei]的文章
[Wu, Kailiang]的文章
[Xiong, Tao]的文章
必应学术
必应学术中相似的文章
[Chen, Wei]的文章
[Wu, Kailiang]的文章
[Xiong, Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。