题名 | High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers |
作者 | |
通讯作者 | Xiong, Tao |
发表日期 | 2023-09-01
|
DOI | |
发表期刊 | |
ISSN | 0021-9991
|
EISSN | 1090-2716
|
卷号 | 488 |
摘要 | In this paper, a high-order semi-implicit (SI) asymptotic preserving (AP) and divergencefree finite difference weighted essentially nonoscillatory (WENO) scheme is proposed for magnetohydrodynamic (MHD) equations. We consider the sonic Mach number & epsilon; ranging from 0 to O(1). High-order accuracy in time is obtained by SI implicit-explicit Runge-Kutta (IMEX-RK) time discretization. High-order accuracy in space is achieved by finite difference WENO schemes with characteristic-wise reconstructions. A constrained transport method is applied to maintain a discrete divergence-free condition. We formally prove that the scheme is AP. Asymptotic accuracy (AA) in the incompressible MHD limit is obtained if the implicit part of the SI IMEX-RK scheme is stiffly accurate. Numerical experiments are provided to validate the AP, AA, and divergence-free properties of our proposed approach. Besides, the scheme can well capture discontinuities such as shocks in an essentially nonoscillatory fashion in the compressible regime, while it is also a good incompressible solver with uniform large-time step conditions in the low sonic Mach limit.& COPY; 2023 Elsevier Inc. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Key Ramp;D Program of China[2022YFA1004502]
; NSFC[11971025]
; Strategic Priority Research Program of Chinese Academy of Sciences[XDA25010401]
; National Natural Science Foundation of China[12171227]
; Shenzhen Science and Technology Program[RCJC20221008092757098]
|
WOS研究方向 | Computer Science
; Physics
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Physics, Mathematical
|
WOS记录号 | WOS:001015114500001
|
出版者 | |
EI入藏号 | 20232314195832
|
EI主题词 | Aerodynamics
; Incompressible flow
; Magnetohydrodynamics
|
EI分类号 | Magnetohydrodynamics (MHD) Power Generation:615.3
; Aerodynamics, General:651.1
; Mechanical Variables Measurements:943.2
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536956 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) 理学院_深圳国家应用数学中心 |
作者单位 | 1.Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China 2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China 3.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518055, Guangdong, Peoples R China 4.Xiamen Univ, Sch Math Sci, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Fujian, Peoples R China |
推荐引用方式 GB/T 7714 |
Chen, Wei,Wu, Kailiang,Xiong, Tao. High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2023,488.
|
APA |
Chen, Wei,Wu, Kailiang,&Xiong, Tao.(2023).High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers.JOURNAL OF COMPUTATIONAL PHYSICS,488.
|
MLA |
Chen, Wei,et al."High order asymptotic preserving finite difference WENO schemes with constrained transport for MHD equations in all sonic Mach numbers".JOURNAL OF COMPUTATIONAL PHYSICS 488(2023).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
High order asymptoti(2657KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论