中文版 | English
题名

Multi-Tree Guided Efficient Robot Motion Planning

作者
通讯作者Wang, Jiankun; Meng, Max Q.-H.
DOI
发表日期
2022
会议名称
2022 International Symposium on Biomimetic Intelligence and Robotics, ISBIR 2022
EISSN
1877-0509
会议录名称
卷号
209
页码
40-49
会议日期
July 26, 2022 - July 29, 2022
会议地点
Yunnan, China
出版者
摘要
Motion Planning is necessary for robots to complete different tasks. Rapidly-exploring Random Tree (RRT) and its variants have been widely used in robot motion planning due to their fast search in the state space. However, they perform not well in many complex environments since the motion planning needs to simultaneously consider the geometry constraints and differential constraints. In this article, we propose a novel robot motion planning algorithm that utilizes multi-tree to guide the exploration and exploitation. The proposed algorithm maintains more than two trees to search the state space at first. Each tree will explore the local environments. The tree starts from the root will gradually collect information from other trees and grow towards the goal state. This simultaneous exploration and exploitation method can quickly find a feasible trajectory. We compare the proposed algorithm with other popular motion planning algorithms. The experiment results demonstrate that our algorithm performs better on different evaluation metrics.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the Proceedings of International Symposium on Biomimetic Intelligence and Robotics.
学校署名
通讯
语种
英语
收录类别
资助项目
This work is partially supported by Shenzhen Key Laboratory of Robotics Perception and Intelligence (ZDSYS20200810171800001), Southern University of Science and Technology, Shenzhen 518055, China, and National Natural Science Foundation of China grant #62103181.
EI入藏号
20225113265463
EI主题词
Biomimetics ; Heuristic algorithms ; Intelligent robots ; Robot programming ; Trees (mathematics)
EI分类号
Biotechnology:461.8 ; Biology:461.9 ; Computer Programming:723.1 ; Robotics:731.5 ; Robot Applications:731.6 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
来源库
EV Compendex
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536967
专题工学院_电子与电气工程系
作者单位
1.Shenzhen Key Laboratory of Robotics Perception and Intelligence, Shenzhen, China
2.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
3.Jiaxing Research Institute, Southern University of Science and Technology, Jiaxing, China
4.Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong
5.Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Hong Kong
第一作者单位电子与电气工程系;  南方科技大学
通讯作者单位电子与电气工程系;  南方科技大学;  
推荐引用方式
GB/T 7714
Sun, Zhirui,Wang, Jiankun,Meng, Max Q.-H.. Multi-Tree Guided Efficient Robot Motion Planning[C]:Elsevier B.V.,2022:40-49.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun, Zhirui]的文章
[Wang, Jiankun]的文章
[Meng, Max Q.-H.]的文章
百度学术
百度学术中相似的文章
[Sun, Zhirui]的文章
[Wang, Jiankun]的文章
[Meng, Max Q.-H.]的文章
必应学术
必应学术中相似的文章
[Sun, Zhirui]的文章
[Wang, Jiankun]的文章
[Meng, Max Q.-H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。