中文版 | English
题名

Multi elements approach tuning defect, phase structure, and thermoelectric properties of M3Q2-formula thermoelectric materials

其他题名
多元掺杂策略调控M3Q2热电材料的缺陷,相结构和热电性能研究
姓名
姓名拼音
JIANG Feng
学号
11850032
学位类型
博士
学位专业
Mechanical Engineering
导师
刘玮书
导师单位
材料科学与工程系
外机构导师
陈粤
外机构导师单位
香港大学
论文答辩日期
2023-04-20
论文提交日期
2023-06-08
学位授予单位
香港大学
学位授予地点
香港
摘要

Thermoelectric (TE) materials with the formula of M3Q2 exhibit excellent performance near moderate temperatures, showing promise for applications in self-powered wearable smart devices or Internet of Things sensors. In recent years, enormous efforts have been made to tune TE properties through electronic engineering and phonon engineering projects. Most of these works have relied on one or two doping elements to generate defects or nano-inclusions. In this dissertation, the effects of doping multiple elements on M3Q2-formula TE materials are studied.

First, the enhanced TE performance levels of Mg3Sb2-based materials after doping multiple elements are investigated, including multiple transition metals (TM = CrMnFeCoCu) codoped at the interstitial site and Mg3Sb1.5Bi0.5 polycrystalline bulk materials codoped with Ti and Te. The multiple interstitial dopants significantly suppress the formation of Mg vacancies, leading to a high power factor of 2799 μW m-1 K-2 and a high ZT value of 0.76 at room temperature. Moreover, the Young’s modulus, hardness, and compressive strength values of the TM0.01Mg3Sb1.5Bi0.5 sample are significantly better than those of the TM-free Mg3Sb1.5Bi0.5 sample. The Ti dopant at the Mg sublattice site promotes the growth of grain size, favoring high carrier mobility. In addition, the impurity level in the band gap induced by the Ti dopant optimizes the carrier concentration near room temperature, leading to a high power factor of 3000 μW m-1 K-2 and a promising ZT value of 0.82 at room temperature. Furthermore, a doping diagram is constructed based on the defect formation energies and physical elemental properties (electronegativity and atomic radius values) to explore the preferred doping sites of Mg3Sb2 materials to select proper multiple dopants.

Second, a p-type Bi2Se3-based material is obtained by alloying multiple elements at the cationic site of a Bi2Se3 matrix. The intrinsic Se vacancy is significantly suppressed with the increased configuration entropy, and a single phase is obtained in the as-designed composition of Bi0.8Sb0.8In0.4Se3. In addition, a Bi2Se3-Sb2Se3-In2Se3 diagram is depicted to tune the chemical components within a narrow range to further improve the TE performance of high-entropy selenides. Furthermore, multiple elements are found to broaden the solution limit of magnetic elements in Bi2Se3-based materials, and the exploration of magneto-thermoelectric effects is promoted due to the active research on fabricating a single-phase magnetic matrix.

Finally, to discover new potential TE material family, multiple elements from different groups are randomly distributed in formulas for 1M:2M:1X:2X:3X and A:1B:2B:1X:2X to generate a material family of 720 Bi2Te3-type compounds and 360 Mg3Sb2-type compounds. Compounds with known crystal structures from the database are treated as a training set. A random forest method and Bayesian optimization are applied to train the model. Finally, a high prediction accuracy is achieved in the machine learning for predicting the compounds with structural similarities to Bi2Te3 and Mg3Sb2. Furthermore, an empirical rule based on the electronegativity differences of cationic and anionic elements is discussed.

In this work, it was verified that the multiple elements approach is a fruitful and effective strategy for improving the performance of TE materials.

其他摘要

M3Q2型热电材料在近室温附近表现出优异的性能,有望应用于自供电可穿戴智能设备或物联网传感器。近年来,科学家通过声子工程和声子工程来调控热电性能做出了巨大的努力。其中大部分工作依赖于一种或两种掺杂元素来产生点缺陷和纳米夹杂物,进而调控材料的热电性能。本文主要研究多元掺杂对M3Q2型热电材料的影响。

首先,本文研究了多种元素掺杂来调控Mg3Sb2基材料的热电性能,包括在间隙位置掺杂多种过渡族金属(Cr, Mn, Fe, Co, Cu)及在Mg位和Sb位共掺杂TiTe。结果表明,多种间隙元素掺杂可以显著抑制Mg空位的形成,在室温下获得2799 μW m-1 K-2的功率因子和0.76的热电优值。此外,材料的杨氏模量,硬度和抗压强度明显由于不含多元过渡族金属掺杂的样品。在Mg亚晶格位置进行Ti掺杂可以促进晶粒尺寸的长大,有利于获得高的载流子迁移率。同时Ti掺杂优化近室温附近的载流子浓度,进一步提升材料的电学性能,从而在室温获得3000 μW m-1 K-2的功率因子和0.76的热电优值。最后,基于缺陷形成能和元素的基本物理化学性质(电负性和原子半径)构建了一个掺杂相图,为后续探索合适的Mg3Sb2材料的掺杂元素提供了指导。

其次,通过在Bi2Se3基体的阳离子位点固溶多种元素实现了pBi2Se3的多晶热电材料。随着体系的构型熵的增加,Se空位得到明显的抑制,最终在Bi0.8Sb0.8In0.4Se3的成分是获得一个单行。此外,通过描绘Bi2Se3-Sb2Se3-In2Se3相图,在窄范围内调价化学成分,进一步提高了高熵硒化物的p型热电性能。最后,我们揭示了多种元素可以拓宽磁性元素在Bi2Se3基材料的固溶极限,为后续制备单相磁性热电基体提供了指导和帮助。

最后,为了发现新的潜在热电材料,将来自不同主族的多种元素以1M:2M:1X:2X:3XA:1B:2B:1X:2X的化学式来产生720Bi2Te3型化合物和360Mg3Sb2型化合物的材料家族。通过晶体库来确定已知材料的结构并作为训练集。采用随机森林方法和贝叶斯优化方法对模型进行训练。最后,通过机器学习来预测判断与Bi2Te3型和Mg3Sb2型结构相似的化合物,并获得了94%的预测值。最后,基于元素电负性差异帅选出一批具有潜力的化合物。

本文揭示了多元掺杂策略是提高热电材料性能的一种富有成效的策略。

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2023-07
参考文献列表

[1] W.-S. Liu, Q. Jie, H. S. Kim, Z.-F. Ren, Current progress and future challenges in thermoelectric power generation: From materials to devices, Acta Mater. 87 (2015) 357-376.
[2] W. S. Liu, X. Yan, G. Chen, Z. F. Ren, Recent advances in thermoelectric nanocomposites, Nano Energy 1 (2012) 42-56.
[3] N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, M. Ismail, A comprehensive review of Thermoelectric Generators: Technologies and common applications, Energy Rep. 6 (2020) 264-287.
[4] X. L. Shi, J. Zou, Z. G. Chen, Advanced Thermoelectric Design: From Materials and Structures to Devices, Chem. Rev. 120 (2020) 7399-7515.
[5] M. Thielen, L. Sigrist, M. Magno, C. Hierold, L. Benini, Human body heat for powering wearable devices: From thermal energy to application, Energy Convers. Manage. 131 (2017) 44-54.
[6] G. S. Nolas, D. T. Morelli, T. M. Tritt, SKUTTERUDITES: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications, Annu. Rev. Mater. Sci. 29 (1999) 89-116.
[7] J. He, T. M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, Science 357 (2017) 1369.
[8] H. S. Kim, W. S. Liu, G. Chen, C. W. Chu, Z. f. Ren, Relationship between thermoelectric figure of merit and energy conversion efficiency, Proc. Natl. Acad. Sci. USA 112 (2015) 8205-8210.
[9] H. S. Kim, W. S. Liu, Z. F. Ren, The bridge between the materials and devices of thermoelectric power generators, Energy Environ. Sci. 10 (2017) 69-85.
[10] G. J. Snyder, E. S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105-114.
[11] G. H. Zhu, H. Lee, Y. C. Lan, X. W. Wang, G. Joshi, D. Z. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M. S. Dresselhaus, G. Chen, Z. F. Ren, Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium, Phys. Rev. Lett. 102 (2009) 196803.
[12] P. G. Klemens, Thermal Resistance due to Point Defects at High Temperatures, Phys. Rev. 119 (1960) 507-509.
[13] J. Callaway, H. C. von Baeyer, Effect of Point Imperfections on Lattice Thermal Conductivity, Phys. Rev. 120 (1960) 1149-1154.
[14] D. M. Rowe, V. S. Shukla, The effect of phonon‐grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine‐grained, hot‐pressed silicon germanium alloy, J. Appl. Phys. 52 (1981) 7421-7426.
[15] S. Y. Wang, Y. X. Sun, J. Yang, B. Duan, L. H. Wu, W. Q. Zhang, J. H. Yang, High thermoelectric performance in Te-free (Bi,Sb)2Se3 via structural transition induced band convergence and chemical bond softening, Energy Environ. Sci. 9 (2016) 3436-3447.
[16] W. Li, S. Q. Lin, B. H. Ge, J. Yang, W. Q. Zhang, Y. Z. Pei, Low Sound Velocity Contributing to the High Thermoelectric Performance of Ag8SnSe6, Adv. Sci. 3 (2016) 1600196.
[17] J. Li, J. H. Sui, Y. L. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. Q. He, L.-D. Zhao, A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides, Energy Environ. Sci. 5 (2012) 8543-8547.
[18] Y.-L. Pei, H. J. Wu, J. H. Sui, J. Li, D. Berardan, C. Barreteau, L. Pan, N. Dragoe, W.-S. Liu, J. Q. He, L.-D. Zhao, High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity, Energy Environ. Sci. 6 (2013) 1750.
[19] T. Xing, C. X. Zhu, Q. F. Song, H. Huang, J. Xiao, D. D. Ren, M. J. Shi, P. F. Qiu, X. Shi, F. F. Xu, L. D. Chen, Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe, Adv. Mater. 33 (2021) 2008773.
[20] Z. X. Zhang, K. P. Zhao, H. Y. Chen, Q. Y. Ren, Z. M. Yue, T.-R. Wei, P. F. Qiu, L. D. Chen, X. Shi, Entropy engineering induced exceptional thermoelectric and mechanical performances in Cu2-yAgyTe1-2xSxSex, Acta Mater. 224 (2022) 117512-117519.
[21] W. S. Liu, K. C. Lukas, K. McEnaney, S. Lee, Q. Zhang, C. P. Opeil, G. Chen, Z. F. Ren, Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion, Energy Environ. Sci. 6 (2013) 552-560.
[22] H.-T. Liu, Q. Sun, Y. Zhong, C.-L. Xia, Y. Chen, Z.-G. Chen, R. Ang, Achieving high-performance n-type PbTe via synergistically optimizing effective mass and carrier concentration and suppressing lattice thermal conductivity, Chem. Eng. J. 428 (2022) 132601.
[23] X. Zhang, H. S. Gu, Y. Zhang, L. J. Guo, J. T. Yang, S. J. Luo, X. Lu, K. S. Chen, H. X. Chai, G. Y. Wang, X. Zhang, X. Y. Zhou, Enhanced thermoelectric properties of YbZn2Sb2−xBix through a synergistic effect via Bi-doping, Chem. Eng. J. 374 (2019) 589-595.
[24] Y. Pan, T.-R. Wei, C.-F. Wu, J.-F. Li, Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3−xSex alloys: the combined effect of point defect and Se content, J. Mater. Chem. C 3 (2015) 10583-10589.
[25] T. J. Zhu, L. P. Hu, X. B. Zhao, J. He, New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials, Adv. Sci. 3 (2016) 1600004.
[26] M. Yaprintsev, A. Vasil’ev, O. Ivanov, Sintering temperature effect on thermoelectric properties and microstructure of the grained Bi1.9Gd0.1Te3 compound, J. Eur. Cera. Soc. 39 (2019) 1193-1205.
[27] Z.-H. Ge, B.-P. Zhang, Z.-X. Yu, J.-F. Li, Effect of spark plasma sintering temperature on thermoelectric properties of Bi2S3 polycrystal, J. Mater. Res. 26 (2011) 2711-2718.
[28] Z. Y. Liu, W. T. Zhu, X. L. Nie, W. Y. Zhao, Effects of sintering temperature on microstructure and thermoelectric properties of Ce-filled Fe4Sb12 skutterudites, J. Mater. Sci.: Mater. Electron. 30 (2019) 12493-12499.
[29] J. Androulakis, E. Beciragic, Robust p-type behavior in polycrystalline, ball-milled, magnesium-doped Bi2Se3, Solid State Commun. 173 (2013) 5-8.
[30] H. Tamaki, H. K. Sato, T. Kanno, Isotropic Conduction Network and Defect Chemistry in Mg3+δSb2-Based Layered Zintl Compounds with High Thermoelectric Performance, Adv. Mater. 28 (2016) 10182-10187.
[31] U. Saparamadu, X. J. Tan, J. F. Sun, Z. S. Ren, S. W. Song, D. J. Singh, J. Shuai, J. Jiang, Z. F. Ren, Achieving high-performance p-type SmMg2Bi2 thermoelectric materials through band engineering and alloying effects, J. Mater. Chem. A 8 (2020) 15760-15766.
[32] J. H. Li, Q. Tan, J.-F. Li, D.-W. Liu, F. Li, Z.-Y. Li, M. M. Zou, K. Wang, BiSbTe-Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties, Adv. Funct. Mater. 23 (2013) 4317-4323.
[33] T. Hong, D. Y. Wang, B. C. Qin, X. Zhang, Y. J. Chen, X. Gao, L.-D. Zhao, Band convergence and nanostructure modulations lead to high thermoelectric performance in SnPb0.04Te-y% AgSbTe2, Mater. Today Phys. 21 (2021) 100505.
[34] L. C. Yin, W. D. Liu, M. Li, Q. Sun, H. Gao, D. Z. Wang, H. Wu, Y. F. Wang, X. L. Shi, Q. F. Liu, Z. G. Chen, High Carrier Mobility and High Figure of Merit in the CuBiSe2 Alloyed GeTe, Adv. Energy Mater. (2021) 2102913.
[35] Y. T. Qiu, Y. Jin, D. Y. Wang, M. J. Guan, W. K. He, S. Peng, R. H. Liu, X. Gao, L.-D. Zhao, Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering, J. Mater. Chem. A 7 (2019) 26393-26401.
[36] M. Hong, Z. G. Chen, L. Yang, Y. C. Zou, M. S. Dargusch, H. Wang, J. Zou, Realizing zT of 2.3 in Ge1-x-ySbxInyTe via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping, Adv. Mater. 30 (2018) 1705942.
[37] Y. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. D. Chen, G. J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473 (2011) 66-69.
[38] H.-S. Kim, N. A. Heinz, Z. M. Gibbs, Y. L. Tang, S. D. Kang, G. J. Snyder, High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control, Mater. Today 20 (2017) 452-459.
[39] W. Liu, X. J. Tan, K. Yin, H. J. Liu, X. F. Tang, J. Shi, Q. J. Zhang, C. Uher, Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions, Phys. Rev. Lett. 108 (2012) 166601.
[40] K. Imasato, S. D. Kang, G. J. Snyder, Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery, Energy Environ. Sci. 12 (2019) 965-971.
[41] G. J. Tan, L. D. Zhao, M. G. Kanatzidis, Rationally Designing High-Performance Bulk Thermoelectric Materials, Chem. Rev. 116 (2016) 12123-12149.
[42] F. J. Disalvo, Thermoelectric Cooling and Power Generation, Science 285 (1999) 703-705.
[43] Q. Zhang, Q. C. Song, X. Y. Wang, J. Y. Sun, Q. Zhu, K. Dahal, X. Lin, F. Cao, J. W. Zhou, S. Chen, G. Chen, J. Mao, Z. F. Ren, Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance, Energy Environ. Sci. 11 (2018) 933-940.
[44] C. Gayner, Y. Amouyal, Energy Filtering of Charge Carriers: Current Trends, Challenges, and Prospects for Thermoelectric Materials, Adv. Funct. Mater. 30 (2019) 1901789.
[45] L. Yang, Z. G. Chen, M. S. Dargusch, J. Zou, High Performance Thermoelectric Materials: Progress and Their Applications, Adv. Energy Mater. 8 (2017) 1701797.
[46] J. Shuai, J. Mao, S. W. Song, Q. Zhu, J. F. Sun, Y. M. Wang, R. He, J. W. Zhou, G. Chen, D. J. Singh, Z. F. Ren, Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties, Energy Environ. Sci. 10 (2017) 799-807.
[47] J. Mao, Y. X. Wu, S. W. Song, Q. Zhu, J. Shuai, Z. H. Liu, Y. Z. Pei, Z. F. Ren, Defect Engineering for Realizing High Thermoelectric Performance in n-Type Mg3Sb2-Based Materials, ACS Energy Lett. 2 (2017) 2245-2250.
[48] M. Zebarjadi, G. Joshi, G. H. Zhu, B. Yu, A. Minnich, Y. C. Lan, X. W. Wang, M. Dresselhaus, Z. F. Ren, G. Chen, Power factor enhancement by modulation doping in bulk nanocomposites, Nano Lett. 11 (2011) 2225-2230.
[49] B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Z. Wang, D. Z. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z. F. Ren, Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites, Nano Lett. 12 (2012) 2077-2082.
[50] Y. L. Pei, H. J. Wu, D. Wu, F. S. Zheng, J. Q. He, High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping, J. Am. Chem. Soc. 136 (2014) 13902-13908.
[51] T. J. Zhu, Y. T. Liu, C. G. Fu, J. P. Heremans, J. G. Snyder, X. B. Zhao, Compromise and Synergy in High-Efficiency Thermoelectric Materials, Adv. Mater. 29 (2017) 1605884-1605909.
[52] X. Shi, L. D. Chen, C. Uher, Recent advances in high-performance bulk thermoelectric materials, Int. Mater. Rev. 61 (2016) 379-415.
[53] Z. J. Xu, H. J. Wu, T. J. Zhu, C. G. Fu, X. H. Liu, L. P. Hu, J. He, J. Q. He, X. B. Zhao, Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization, NPG Asia Mater. 8 (2016) 302.
[54] F. Hao, T. Xing, P. F. Qiu, P. Hu, T. R. Wei, D. D. Ren, X. Shi, L. D. Chen, Enhanced Thermoelectric Performance in n-Type Bi2Te3-Based Alloys via Suppressing Intrinsic Excitation, ACS Appl. Mater. Interfaces 10 (2018) 21372-21380.
[55] M. U. Muzaffar, B. Zhu, Q. Yang, Y. Zhou, S. Zhang, Z. Zhang, J. Q. He, Suppressing bipolar effect to broadening the optimum range of thermoelectric performance for p-type bismuth telluride–based alloys via calcium doping, Mater. Today Phys. 9 (2019) 100130.
[56] J.-J. Shen, T. Fang, T.-Z. Fu, J.-Z. Xin, X.-B. Zhao, T.-J. Zhu, Lattice Thermal Conductivity in Thermoelectric Materials, J. Inorg. Mater. 34 (2019) 260.
[57] K. Kurosaki, A. Kosuga, H. Muta, M. Uno, S. Yamanaka, Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity, Appl. Phys. Lett. 87 (2005) 061919.
[58] C. L. Wan, W. Pan, Q. Xu, Y. X. Qin, J. D. Wang, Z. X. Qu, M. H. Fang, Effect of point defects on the thermal transport properties of(LaxGd1−x)2Zr2O7: Experiment and theoretical model, Phys. Rev. B 74 (2006) 144109.
[59] X. Y. Liu, D. Y. Wang, H. J. Wu, J. F. Wang, Y. Zhang, G. T. Wang, S. J. Pennycook, L.-D. Zhao, Intrinsically Low Thermal Conductivity in BiSbSe3: A Promising Thermoelectric Material with Multiple Conduction Bands, Adv. Funct. Mater. 29 (2019) 1806558.
[60] X. C. Shen, Y. Xia, C. C. Yang, Z. Zhang, S. L. Li, Y. H. Tung, A. Benton, X. Zhang, X. Lu, G. Y. Wang, J. He, X. Y. Zhou, High Thermoelectric Performance in Sulfide‐Type Argyrodites Compound Ag8Sn(S1−xSex)6 Enabled by Ultralow Lattice Thermal Conductivity and Extended Cubic Phase Regime, Adv. Funct. Mater. 30 (2020) 2000526.
[61] B. B. Jiang, P. F. Qiu, H. Y. Chen, Q. H. Zhang, K. P. Zhao, D. D. Ren, X. Shi, L. D. Chen, An argyrodite-type Ag9GaSe6 liquid-like material with ultralow thermal conductivity and high thermoelectric performance, Chem. Commun. 53 (2017) 11658-11661.
[62] H. Wu, X. Lu, G. Y. Wang, K. L. Peng, B. Zhang, Y. J. Chen, X. N. Gong, X. D. Tang, X. M. Zhang, Z. Z. Feng, G. Han, Y. S. Zhang, X. Y. Zhou, Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying, Nano Energy 76 (2020) 105084.
[63] S. R. Brown, S. M. Kauzlarich, F. Gascoin, G. J. Snyder, Yb14MnSb11:  New High Efficiency Thermoelectric Material for Power Generation, Chem. Mater. 18 (2006) 1873-1877.
[64] P. Ying, X. Li, Y. Wang, J. Yang, C. Fu, W. Zhang, X. Zhao, T. Zhu, Hierarchical Chemical Bonds Contributing to the Intrinsically Low Thermal Conductivity in α-MgAgSb Thermoelectric Materials, Adv. Funct. Mater. 27 (2017) 1604145.
[65] Z. Z. Zeng, C. Z. Zhang, H. L. Yu, W. Li, Y. Z. Pei, Y. Chen, Ultralow and glass-like lattice thermal conductivity in crystalline BaAg2Te2: Strong fourth-order anharmonicity and crucial diffusive thermal transport, Mater. Today Phys. 21 (2021) 100487.
[66] Y. C. Zhu, B. Wei, J. Y. Liu, N. Z. Koocher, Y. H. Li, L. Hu, W. K. He, G. C. Deng, W. Xu, X. Y. Wang, J. M. Rondinelli, L.-D. Zhao, G. J. Snyder, J. W. Hong, Physical insights on the low lattice thermal conductivity of AgInSe2, Mater. Today Phys. 19 (2021) 100428.
[67] S. H. Han, Z. Z. Zhou, C. Y. Sheng, R. Hu, H. M. Yuan, Q. H. Tang, H. J. Liu, Decoupling thermoelectric transport coefficients of Dirac semimetal Na2AgSb with intrinsically ultralow lattice thermal conductivity, Mater. Today Phys. 21 (2021) 100560.
[68] Z. Z. Feng, Y. H. Fu, Y. L. Yan, Y. S. Zhang, D. J. Singh, Zintl chemistry leading to ultralow thermal conductivity, semiconducting behavior, and high thermoelectric performance of hexagonal KBaBi, Phys. Rev. B 103 (2021) 224101.
[69] X. F. Ye, Z. Z. Feng, Y. S. Zhang, G. F. Zhao, D. J. Singh, Low thermal conductivity and high thermoelectric performance via Cd underbonding in half-Heusler PCdNa, Phys. Rev. B 105 (2022) 104309.
[70] C. X. Zhao, Z. Li, T. J. Fan, C. Xiao, Y. Xie, Defects Engineering with Multiple Dimensions in Thermoelectric Materials, Research 2020 (2020) 9652749.
[71] J. M. Hodges, S. Q. Hao, J. A. Grovogui, X. M. Zhang, T. P. Bailey, X. Li, Z. H. Gan, Y. Y. Hu, C. Uher, V. P. Dravid, C. Wolverton, M. G. Kanatzidis, Chemical Insights into PbSe- x%HgSe: High Power Factor and Improved Thermoelectric Performance by Alloying with Discordant Atoms, J. Am. Chem. Soc. 140 (2018) 18115-18123.
[72] J. Yang, G. P. Meisner, L. D. Chen, Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds, Appl. Phys. Lett. 85 (2004) 1140-1142.
[73] X. M. Shi, X. Wang, W. Li, Y. Z. Pei, Advances in Thermoelectric Mg3Sb2 and Its Derivatives, Small Methods 2 (2018) 1800022.
[74] H. J. Shang, Z. X. Liang, C. C. Xu, J. Mao, H. W. Gu, F. Z. Ding, Z. F. Ren, N-Type Mg3Sb2-xBix Alloys as Promising Thermoelectric Materials, Research 2020 (2020) 1219461.
[75] A. R. Li, C. G. Fu, X. B. Zhao, T. J. Zhu, High-Performance Mg3Sb2-xBix Thermoelectrics: Progress and Perspective, Research 2020 (2020) 1934848.
[76] P. Gao, X. Lu, I. Berkun, R. D. Schmidt, E. D. Case, T. P. Hogan, Reduced lattice thermal conductivity in Bi-doped Mg2Si0.4Sn0.6, Appl. Phys. Lett. 105 (2014) 202104.
[77] Z. L. Du, T. J. Zhu, X. B. Zhao, Enhanced thermoelectric properties of Mg2Si0.58Sn0.42 compounds by Bi doping, Mater. Lett. 66 (2012) 76-78.
[78] Y. B. Zhu, E. T. Dong, Z. J. Han, F. Jiang, J. H. Sui, W. Q. Zhang, W. S. Liu, Maximized atomic disordering approach boost the thermoelectric performance of Mg2Sn through the self-compensation effect and steric effect, Acta Mater. 217 (2021) 117172.
[79] H. M. Huang, P. F. Wen, S. Deng, X. L. Zhou, B. Duan, Y. Li, P. C. Zhai, The thermoelectric and mechanical properties of Mg2(Si0.3Sn0.7)0.99Sb0.01 prepared by one-step solid state reaction combined with hot-pressing, J. Alloys Compd. 881 (2021)
[80] H. L. Liu, X. Shi, F. F. Xu, L. L. Zhang, W. Q. Zhang, L. D. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Copper ion liquid-like thermoelectrics, Nat. Mater. 11 (2012) 422-425.
[81] H. L. Liu, X. Yuan, P. Lu, X. Shi, F. F. Xu, Y. He, Y. S. Tang, S. Q. Bai, W. Q. Zhang, L. D. Chen, Y. Lin, L. Shi, H. Lin, X. Y. Gao, X. M. Zhang, H. Chi, C. Uher, Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xIx, Adv. Mater. 25 (2013) 6607-6612.
[82] L. D. Zhao, H. J. Wu, S. Q. Hao, C. I. Wu, X. Y. Zhou, K. Biswas, J. Q. He, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance, Energy Environ. Sci. 6 (2013)
[83] Y. Xiao, H. J. Wu, W. Li, M. J. Yin, Y. L. Pei, Y. Zhang, L. W. Fu, Y. X. Chen, S. J. Pennycook, L. Huang, J. Q. He, L. D. Zhao, Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu2Te, J. Am. Chem. Soc. 139 (2017) 18732-18738.
[84] D. R. Liu, B. C. Qin, L.-d. Zhao, SnSe/SnS: Multifunctions Beyond Thermoelectricity, Mater. Lab 1 (2022) 220006.
[85] W.-S. Liu, Q. Y. Zhang, Y. C. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Z. Wang, G. Chen, Z. F. Ren, Thermoelectric Property Studies on Cu-Doped n-type CuxBi2Te2.7Se0.3 Nanocomposites, Adv. Energy Mater. 1 (2011) 577-587.
[86] K. Biswas, L.-D. Zhao, M. G. Kanatzidis, Tellurium-Free Thermoelectric: The Anisotropic n-Type Semiconductor Bi2S3, Adv. Energy Mater. 2 (2012) 634-638.
[87] Y. Zheng, Q. Zhang, X. L. Su, H. Y. Xie, S. C. Shu, T. L. Chen, G. J. Tan, Y. G. Yan, X. F. Tang, C. Uher, G. J. Snyder, Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials, Adv. Energy Mater. 5 (2015) 1401391.
[88] Y.-Z. Jiang, X.-K. Duan, Thermoelectric properties of Bi0.5Sb1.4−xNaxIn0.1Te3 alloys, Rare Met. 38 (2019) 1187-1192.
[89] L. L. Wang, L. Miao, Z. Y. Wang, W. Wei, R. Xiong, H. J. Liu, J. Shi, X. F. Tang, Thermoelectric performance of half-Heusler compounds TiNiSn and TiCoSb, J. Appl. Phys. 105 (2009)
[90] S. Chen, K. C. Lukas, W. S. Liu, C. P. Opeil, G. Chen, Z. F. Ren, Effect of Hf Concentration on Thermoelectric Properties of Nanostructured N-Type Half-Heusler Materials HfxZr1-xNiSn0.99Sb0.01, Adv. Energy Mater. 3 (2013) 1210-1214.
[91] C. G. Fu, T. J. Zhu, Y. T. Liu, H. H. Xie, X. B. Zhao, Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1, Energy Environ. Sci. 8 (2015) 216-220.
[92] J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials, NPG Asia Mater. 2 (2010) 152-158.
[93] B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. Dressel, G. Chen, Z. F. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science 320 (2008) 634-638.
[94] Z. W. Chen, Z. Z. Jian, W. Li, Y. J. Chang, B. H. Ge, R. Hanus, J. Yang, Y. Chen, M. X. Huang, G. J. Snyder, Y. Z. Pei, Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence, Adv. Mater. 29 (2017) 1606768-1606775.
[95] J.-z. Xin, H.-j. Wu, X.-h. Liu, T.-j. Zhu, G.-t. Yu, X.-b. Zhao, Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1−xSbx thermoelectric materials, Nano Energy 34 (2017) 428-436.
[96] L. D. Chen, X. Y. Huang, M. Zhou, X. Shi, W. B. Zhang, The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions, J. Appl. Phys. 99 (2006) 064305.
[97] K. Biswas, J. Q. He, Q. C. Zhang, G. Y. Wang, C. Uher, V. P. Dravid, M. G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit, Nat. Chem. 3 (2011) 160-166.
[98] L. D. Zhao, S. H. Lo, J. Q. He, H. Li, K. Biswas, J. Androulakis, C. I. Wu, T. P. Hogan, D. Y. Chung, V. P. Dravid, M. G. Kanatzidis, High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures, J. Am. Chem. Soc. 133 (2011) 20476-20487.
[99] G.-h. Zhu, W.-s. Liu, Y.-c. Lan, G. Joshi, H. Wang, G. Chen, Z.-f. Ren, The effect of secondary phase on thermoelectric properties of Zn4Sb3 compound, Nano Energy 2 (2013) 1172-1178.
[100] W. Y. Zhao, Z. Y. Liu, Z. G. Sun, Q. J. Zhang, P. Wei, X. Mu, H. Y. Zhou, C. C. Li, S. F. Ma, D. Q. He, P. X. Ji, W. T. Zhu, X. L. Nie, X. L. Su, X. F. Tang, B. G. Shen, X. L. Dong, J. H. Yang, Y. Liu, J. Shi, Superparamagnetic enhancement of thermoelectric performance, Nature 549 (2017) 247-251.
[101] B. S. Du, X. F. Lai, Q. L. Liu, H. T. Liu, J. Wu, J. Liu, Z. H. Zhang, Y. Z. Pei, H. Z. Zhao, J. K. Jian, Spark Plasma Sintered Bulk Nanocomposites of Bi2Te2.7Se0.3 Nanoplates Incorporated Ni Nanoparticles with Enhanced Thermoelectric Performance, ACS Appl. Mater. Interfaces 11 (2019) 31816-31823.
[102] R. H. Liu, H. Y. Chen, K. P. Zhao, Y. T. Qin, B. B. Jiang, T. S. Zhang, G. Sha, X. Shi, C. Uher, W. Q. Zhang, L. D. Chen, Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials, Adv. Mater. 29 (2017) 1702712.
[103] R. Z. Zhang, F. Gucci, H. Y. Zhu, K. Chen, M. J. Reece, Data-Driven Design of Ecofriendly Thermoelectric High-Entropy Sulfides, Inorg. Chem. 57 (2018) 13027-13033.
[104] N. Dragoe, Entropy driven synthesis of new materials, Mater. Lab 1 (2022) 220001.
[105] R.-Z. Zhang, M. J. Reece, Review of high entropy ceramics: design, synthesis, structure and properties, J. Mater. Chem. A 7 (2019) 22148-22162.
[106] Z. Ma, T. Xu, W. Li, Y. M. Cheng, J. M. Li, D. Zhang, Q. H. Jiang, Y. B. Luo, J. Y. Yang, High Entropy Semiconductor AgMnGeSbTe4 with Desirable Thermoelectric Performance, Adv. Funct. Mater. 31 (2021) 2103197.
[107] Y. B. Luo, S. Q. Hao, S. T. Cai, T. J. Slade, Z. Z. Luo, V. P. Dravid, C. Wolverton, Q. Y. Yan, M. G. Kanatzidis, High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe3 by High-Entropy Engineering, J. Am. Chem. Soc. 142 (2020) 15187-15198.
[108] A. Karati, M. Nagini, S. Ghosh, R. Shabadi, K. G. Pradeep, R. C. Mallik, B. S. Murty, U. V. Varadaraju, Ti2NiCoSnSb - a new half-Heusler type high-entropy alloy showing simultaneous increase in Seebeck coefficient and electrical conductivity for thermoelectric applications, Sci. Rep. 9 (2019) 5331.
[109] B. B. Jiang, Y. Yu, J. Cui, X. X. Liu, L. Xie, J. C. Liao, Q. H. Zhang, Y. Huang, S. C. Ning, B. H. Jia, B. Zhu, S. Q. Bai, L. D. Chen, S. J. Pennycook, J. Q. He, High-entropy-stabilized chalcogenides with high thermoelectric performance, Science 371 (2021) 830-834.
[110] B. B. Jiang, Y. Yu, H. Y. Chen, J. Cui, X. X. Liu, L. Xie, J. Q. He, Entropy engineering promotes thermoelectric performance in p-type chalcogenides, Nat. Commun. 12 (2021) 3234-3241.
[111] D. Frenkel, Entropy-driven phase transitions, Phys. A 263 (1997) 26-38.
[112] L. J. Guo, B. Zhang, H. X. Zhu, H. Wu, Y. C. Yan, X. N. Gong, X. Lu, G. Han, G. Y. Wang, X. Y. Zhou, Manipulating the phase transformation temperature to achieve cubic Cu5FeS4−xSex and enhanced thermoelectric performance, J. Mater. Chem. C 8 (2020) 17222-17228.
[113] T. Zhao, H. X. Zhu, B. Zhang, S. K. Zheng, N. H. Li, G. W. Wang, G. Y. Wang, X. Lu, X. Y. Zhou, High thermoelectric performance of tellurium-free n-type AgBi1-xSbxSe2 with stable cubic structure enabled by entropy engineering, Acta Mater. 220 (2021)
[114] B. B. Jiang, P. F. Qiu, H. Chen, J. Huang, T. Mao, Y. Wang, Q. Song, D. Ren, X. Shi, L. D. Chen, Entropy optimized phase transitions and improved thermoelectric performance in n-type liquid-like Ag9GaSe6 materials, Mater. Today Phys. 5 (2018) 20-28.
[115] R. Chen, P. F. Qiu, B. B. Jiang, P. Hu, Y. M. Zhang, J. Yang, D. D. Ren, X. Shi, L. D. Chen, Significantly optimized thermoelectric properties in high-symmetry cubic Cu7PSe6 compounds via entropy engineering, J. Mater. Chem. A 6 (2018) 6493-6502.
[116] P. C. Wei, C. N. Liao, H. J. Wu, D. Yang, J. He, G. V. Biesold-McGee, S. Liang, W. T. Yen, X. Tang, J. W. Yeh, Z. Lin, J. H. He, Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance, Adv. Mater. 32 (2020) 1906457.
[117] K. P. Zhao, P. F. Qiu, X. Shi, L. D. Chen, Recent Advances in Liquid‐Like Thermoelectric Materials, Adv. Funct. Mater. 30 (2019) 1903867.
[118] X. Yan, W. S. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Z. Wang, D. Z. Wang, G. Chen, Z. F. Ren, Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2, Energy Environ. Sci. 5 (2012) 7543.
[119] J. Shuai, H. Y. Geng, Y. C. Lan, Z. Zhu, C. Wang, Z. H. Liu, J. M. Bao, C. W. Chu, J. H. Sui, Z. F. Ren, Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation, Proc. Natl. Acad. Sci. USA 113 (2016) 4125-4132.
[120] J. F. Cai, J. X. Yang, G. Q. Liu, H. X. Wang, F. F. Shi, X. J. Tan, Z. H. Ge, J. Jiang, Ultralow thermal conductivity and improved ZT of CuInTe2 by high-entropy structure design, Mater. Today Phys. 18 (2021) 100394.
[121] G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. B. Kerber, M. Zehetbauer, S. Puchegger, Multifilled nanocrystalline p-type didymium – Skutterudites with ZT > 1.2, Intermetallics 18 (2010) 2435-2444.
[122] L. D. Zhao, S. Q. Hao, S. H. Lo, C. I. Wu, X. Y. Zhou, Y. Lee, H. Li, K. Biswas, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, High thermoelectric performance via hierarchical compositionally alloyed nanostructures, J. Am. Chem. Soc. 135 (2013) 7364-7370.
[123] W. G. Zeier, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, G. J. Snyder, Thinking Like a Chemist: Intuition in Thermoelectric Materials, Angew. Chem. Int. Ed. Engl. 55 (2016) 6826-6841.
[124] S. Z. Zhi, J. B. Li, L. P. Hu, J. Q. Li, N. Li, H. J. Wu, F. S. Liu, C. H. Zhang, W. Q. Ao, H. P. Xie, X. B. Zhao, S. J. Pennycook, T. J. Zhu, Medium Entropy-Enabled High Performance Cubic GeTe Thermoelectrics, Adv. Sci. 8 (2021) 2100220.
[125] O. Cherniushok, T. Parashchuk, J. Tobola, S. D. N. Luu, A. Pogodin, O. Kokhan, I. Studenyak, I. Barchiy, M. Piasecki, K. T. Wojciechowski, Entropy-Induced Multivalley Band Structures Improve Thermoelectric Performance in p-Cu7P(SxSe1-x)6 Argyrodites, ACS Appl. Mater. Interfaces 13 (2021) 39606-39620.
[126] X. Y. Wang, H. H. Yao, Z. W. Zhang, X. F. Li, C. Chen, L. Yin, K. N. Hu, Y. R. Yan, Z. Li, B. Yu, F. Cao, X. J. Liu, X. Lin, Q. Zhang, Enhanced Thermoelectric Performance in High Entropy Alloys Sn0.25Pb0.25Mn0.25Ge0.25Te, ACS Appl. Mater. Interfaces 13 (2021) 18638-18647.
[127] S. Butt, W. Xu, W. Q. He, Q. Tan, G. K. Ren, Y. H. Lin, C.-W. Nan, Enhancement of thermoelectric performance in Cd-doped Ca3Co4O9 via spin entropy, defect chemistry and phonon scattering, J. Mater. Chem. A 2 (2014) 19479-19487.
[128] L. P. Hu, Y. Zhang, H. J. Wu, J. Q. Li, Y. Li, M. McKenna, J. He, F. S. Liu, S. J. Pennycook, X. R. Zeng, Entropy Engineering of SnTe: Multi‐Principal‐Element Alloying Leading to Ultralow Lattice Thermal Conductivity and State‐of‐the‐Art Thermoelectric Performance, Adv. Energy Mater. 8 (2018) 1802116.
[129] E. P. George, D. Raabe, R. O. Ritchie, High-entropy alloys, Nat. Rev. Mater. 4 (2019) 515-534.
[130] A. Suwardi, S. H. Lim, Y. Zheng, X. Z. Wang, S. W. Chien, X. Y. Tan, Q. Zhu, L. M. N. Wong, J. Cao, W. D. Wang, Q. Y. Yan, C. K. I. Tan, J. W. Xu, Effective enhancement of thermoelectric and mechanical properties of germanium telluride via rhenium-doping, J. Mater. Chem. C 8 (2020) 16940-16948.
[131] H. J. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5 (2009) 438-442.
[132] J. Zhu, J. L. Zhang, P. P. Kong, S. J. Zhang, X. H. Yu, J. L. Zhu, Q. Q. Liu, X. Li, R. C. Yu, R. Ahuja, W. G. Yang, G. Y. Shen, H. K. Mao, H. M. Weng, X. Dai, Z. Fang, Y. S. Zhao, C. Q. Jin, Superconductivity in topological insulator Sb2Te3 induced by pressure, Sci. Rep. 3 (2013) 2016.
[133] C. F. Li, Y. Q. Li, Y. S. Tang, S. H. Zheng, J. H. Zhang, Y. Zhang, L. Lin, Z. B. Yan, X. P. Jiang, J. M. Liu, Band structure, ferroelectric instability, and spin–orbital coupling effect of bilayer α-In2Se3, J. Appl. Phys. 128 (2020) 234106.
[134] W. Feng, F. Gao, Y. X. Hu, M. J. Dai, H. Liu, L. F. Wang, P. A. Hu, Phase-Engineering-Driven Enhanced Electronic and Optoelectronic Performance of Multilayer In2Se3 Nanosheets, ACS Appl. Mater. Interfaces 10 (2018) 27584-27588.
[135] J. F. Li, Microfabrication technology of three-dimensional microdevices and their MEMS applications, J. Inorg. Mater. 17 (2002) 657-664.
[136] G. L. Wang, C. W. Liu, W. G. Kong, H. Chen, D. Li, A. Amini, B. M. Xu, C. Cheng, Liberating Researchers from the Glovebox: A Universal Thermal Radiation Protocol Toward Efficient Fully Air-Processed Perovskite Solar Cells, Solar RRL 3 (2019) 1800324.
[137] X. X. Wen, Z. H. Lu, L. Valdman, G. C. Wang, M. Washington, T. M. Lu, High-Crystallinity Epitaxial Sb2Se3 Thin Films on Mica for Flexible Near-Infrared Photodetectors, ACS Appl. Mater. Interfaces 12 (2020) 35222-35231.
[138] H.-W. Jeon, H.-P. Ha, D.-B. Hyun, J.-D. Shim, Electrical and thermoelectrical properties of undoped Bi2Te3-Sb2Te3 and Bi2Te3-Sb2Te3-Sb2Se3 single crystals, J. Phys. Chem. Solids 52 (1991) 579-585.
[139] G.-K. Ren, J.-L. Lan, L.-D. Zhao, C. Liu, H. C. Yuan, Y. Shi, Z. F. Zhou, Y.-H. Lin, Layered oxygen-containing thermoelectric materials: Mechanisms, strategies, and beyond, Mater. Today 29 (2019) 68-85.
[140] Y. Qin, Y. Xiao, L.-D. Zhao, Carrier mobility does matter for enhancing thermoelectric performance, APL Mater. 8 (2020)
[141] W. S. Liu, H. S. Kim, Q. Jie, Z. F. Ren, Importance of high power factor in thermoelectric materials for power generation application: A perspective, Scr. Mater. 111 (2016) 3-9.
[142] F. D. Rosi, Thermoelectricity and thermoelectric power generation, Solid-State Electron. 11 (1968) 833-868.
[143] R. R. Heikes, R. W. Ure, Thermoelectricity: science and engineering, Interscience Publishers, 1961.
[144] S. Nakajima, The crystal structure of Bi2Te3−xSex, J. Phys. Chem. Solids 24 (1963) 479-485.
[145] L. R. Testardi, P. J. Stiles, E. Burstein, De Haas-van Alphen and high field galvanomagnetic studies of the Bi2Te3 valence band structure, Solid State Commun. 1 (1963) 28-34.
[146] G. S. Yang, R. M. Niu, L. N. Sang, X. Z. Liao, D. R. G. Mitchell, N. Ye, J. Pei, J. F. Li, X. L. Wang, Ultra‐High Thermoelectric Performance in Bulk BiSbTe/Amorphous Boron Composites with Nano‐Defect Architectures, Adv. Energy Mater. 10 (2020)
[147] L. P. Hu, T. J. Zhu, X. Q. Yue, X. H. Liu, Y. G. Wang, Z. J. Xu, X. B. Zhao, Enhanced figure of merit in antimony telluride thermoelectric materials by In–Ag co-alloying for mid-temperature power generation, Acta Mater. 85 (2015) 270-278.
[148] B. Jabar, F. Li, Z. H. Zheng, A. Mansoor, Y. B. Zhu, C. B. Liang, D. W. Ao, Y. X. Chen, G. X. Liang, P. Fan, W. S. Liu, Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2 - Pnnm Bi2SeS2 with high thermoelectric performance, Nat. Commun. 12 (2021) 7192.
[149] W. T. Ji, X.-L. Shi, W.-D. Liu, H. L. Yuan, K. Zheng, B. Wan, W. X. Shen, Z. F. Zhang, C. Fang, Q. Q. Wang, L. C. Chen, Y. W. Zhang, X. P. Jia, Z.-G. Chen, Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization, Nano Energy 87 (2021) 106171.
[150] S. X. Wang, P. Zhang, Native point defects in Bi2Se3: A first-principles study, Phys. Lett. A 384 (2020) 126281.
[151] J. W. Zhang, L. R. Song, G. K. Madsen, K. F. Fischer, W. Q. Zhang, X. Shi, B. B. Iversen, Designing high-performance layered thermoelectric materials through orbital engineering, Nat. Commun. 7 (2016) 10892-10898.
[152] C. L. Condron, S. M. Kauzlarich, F. Gascoin, G. J. Snyder, Thermoelectric Properties and Microstructure of Mg3Sb2, J. Solid State Chem. 179 (2016) 2252-2257.
[153] Z. J. Han, J.-W. Li, F. Jiang, J. T. Xia, B.-P. Zhang, J.-F. Li, W. S. Liu, Room-temperature thermoelectric materials: Challenges and a new paradigm, J. Materiomics (2021) 427-436.
[154] J. Shuai, J. Mao, S. W. Song, Q. Y. Zhang, G. Chen, Z. F. Ren, Recent progress and future challenges on thermoelectric Zintl materials, Mater. Today Phys. 1 (2017) 74-95.
[155] P. Gorai, B. R. Ortiz, E. S. Toberer, V. Stevanović, Investigation of n-type doping strategies for Mg3Sb2, J. Mater. Chem. A 6 (2018) 13806-13815.
[156] P. Gorai, E. S. Toberer, V. Stevanović, Effective n-type doping of Mg3Sb2 with group-3 elements, J. Appl. Phys. 125 (2019) 025105-025110.
[157] C. L. Xia, J. Cui, Y. Chen, Effect of group-3 elements doping on promotion of in-plane Seebeck coefficient of n-type Mg3Sb2, J. Materiomics 6 (2020) 274-279.
[158] X. M. Shi, C. Sun, X. Y. Zhang, Z. W. Chen, S. Q. Lin, W. Li, Y. Z. Pei, Efficient Sc-Doped Mg3.05–xScxSbBi Thermoelectrics Near Room Temperature, Chem. Mater. 31 (2019) 8987-8994.
[159] X. M. Shi, T. T. Zhao, X. Y. Zhang, C. Sun, Z. W. Chen, S. Q. Lin, W. Li, H. Gu, Y. Z. Pei, Extraordinary n-Type Mg3SbBi Thermoelectrics Enabled by Yttrium Doping, Adv. Mater. 31 (2019) 1903387-1903394.
[160] J. D. Lei, H. Wuliji, K. P. Zhao, T.-R. Wei, Q. Xu, P. Li, P. F. Qiu, X. Shi, Efficient lanthanide Gd doping promoting the thermoelectric performance of Mg3Sb2-based materials, J. Mater. Chem. A 9 (2021) 25944-25953.
[161] J. Mao, J. Shuai, S. W. Song, Y. X. Wu, R. Dally, J. W. Zhou, Z. H. Liu, J. F. Sun, Q. Y. Zhang, C. Dela Cruz, S. Wilson, Y. Z. Pei, D. J. Singh, G. Chen, C. W. Chu, Z. F. Ren, Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials, Proc. Natl. Acad. Sci. USA 114 (2017) 10548-10553.
[162] J. J. Kuo, S. D. Kang, K. Imasato, H. Tamaki, S. Ohno, T. Kanno, G. J. Snyder, Grain boundary dominated charge transport in Mg3Sb2-based compounds, Energy Environ. Sci. 11 (2018) 429-434.
[163] M. Wood, J. J. Kuo, K. Imasato, G. J. Snyder, Improvement of Low-Temperature zT in a Mg3Sb2-Mg3Bi2 Solid Solution via Mg-Vapor Annealing, Adv. Mater. 31 (2019) 1902337.
[164] T. Kanno, H. Tamaki, H. K. Sato, S. D. Kang, S. Ohno, K. Imasato, J. J. Kuo, G. J. Snyder, Y. Miyazaki, Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01, Appl. Phys. Lett. 112 (2018) 033903.
[165] X. X. Chen, H. J. Wu, J. Cui, Y. Xiao, Y. Zhang, J. Q. He, Y. Chen, J. Cao, W. Cai, S. J. Pennycook, Z. H. Liu, L.-D. Zhao, J. H. Sui, Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure, Nano Energy 52 (2018) 246-255.
[166] R. Shu, Y. C. Zhou, Q. Wang, Z. J. Han, Y. B. Zhu, Y. Liu, Y. X. Chen, M. Gu, W. Xu, Y. Wang, W. Q. Zhang, L. Huang, W. S. Liu, Mg3+δSbxBi2−xFamily: A Promising Substitute for the State-of-the-Art n-Type Thermoelectric Materials near Room Temperature, Adv. Funct. Mater. 29 (2019) 1807235-1807244.
[167] F. Zhang, C. Chen, H. H. Yao, F. X. Bai, L. Yin, X. F. Li, S. Li, W. H. Xue, Y. M. Wang, F. Cao, X. J. Liu, J. H. Sui, Q. Zhang, High-Performance N-type Mg3Sb2 towards Thermoelectric Application near Room Temperature, Adv. Funct. Mater. 30 (2019) 1906143-1906149.
[168] Z. H. Liu, N. Sato, W. H. Gao, K. Yubuta, N. Kawamoto, M. Mitome, K. Kurashima, Y. Owada, K. Nagase, C.-H. Lee, J. J. Yi, K. Tsuchiya, T. Mori, Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting, Joule 5 (2021) 1196-1208.
[169] Z. J. Han, Z. G. Gui, Y. B. Zhu, P. Qin, B. P. Zhang, W. Q. Zhang, L. Huang, W. S. Liu, The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg3+δSb2-yBiy near Room Temperature, Research 2020 (2020) 1672051.
[170] M. T. Agne, K. Imasato, S. Anand, K. Lee, S. K. Bux, A. Zevalkink, A. J. E. Rettie, D. Y. Chung, M. G. Kanatzidis, G. J. Snyder, Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature, Mater. Today Phys. 6 (2018) 83-88.
[171] Y. B. Zhu, Z. J. Han, B. Han, F. Jiang, X. Z. Wu, C. G. Han, Y. H. Deng, W. S. Liu, Enhanced Thermoelectric Performance by Strong Phonon Scattering at the Heterogeneous Interfaces of the Mg2Sn/Mg3Sb2 High-Content Nanocomposite, ACS Appl. Mater. Interfaces 13 (2021) 56164-56170.
[172] M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, G. Chen, Perspectives on thermoelectrics: from fundamentals to device applications, Energy Environ. Sci. 5 (2012) 5147-5162.
[173] H. Y. Chen, T. R. Wei, K. P. Zhao, P. F. Qiu, L. D. Chen, J. He, X. Shi, Room‐temperature plastic inorganic semiconductors for flexible and deformable electronics, InfoMat 3 (2020) 22-35.
[174] X. Z. Wu, Z. J. Han, Y. B. Zhu, B. Deng, K. Zhu, C. Y. Liu, F. Jiang, W. S. Liu, A general design strategy for thermoelectric interface materials in n-type Mg3Sb1.5Bi0.5 single leg used in TEGs, Acta Mater. 226 (2022) 117616.
[175] Z. H. Liu, W. H. Gao, X. F. Meng, X. B. Li, J. Mao, Y. M. Wang, J. Shuai, W. Cai, Z. F. Ren, J. H. Sui, Mechanical properties of nanostructured thermoelectric materials α-MgAgSb, Scr. Mater. 127 (2017) 72-75.
[176] J. Chen, Q. Sun, D. Y. Bao, B.-Z. Tian, Z. G. Wang, J. Tang, D. L. Zhou, L. Yang, Z.-G. Chen, Simultaneously enhanced strength and plasticity of Ag2Se-based thermoelectric materials endowed by nano-twinned CuAgSe secondary phase, Acta Mater. 220 (2021) 117335.
[177] Y. Gelbstein, G. Gotesman, Y. Lishzinker, Z. Dashevsky, M. P. Dariel, Mechanical properties of PbTe-based thermoelectric semiconductors, Scr. Mater. 58 (2008) 251-254.
[178] D. Y. Bao, J. Chen, Y. Yu, W. D. Liu, L. S. Huang, G. Han, J. Tang, D. L. Zhou, L. Yang, Z.-G. Chen, Texture-dependent thermoelectric properties of nano-structured Bi2Te3, Chem. Eng. J. 388 (2020) 124295-124302.
[179] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) 864-871.
[180] J. E. Jaffe, A. Zunger, Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors, Phys. Rev. B 29 (1984) 1882-1906.
[181] E. Runge, E. K. U. Gross, Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett. 52 (1984) 997-1000.
[182] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.
[183] V. Heine, D. Weaire, Pseudopotential Theory of Cohesion and Structure, Solid State Phys. 24 (1970) 249-463.
[184] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational materials science 6 (1996) 15-50.
[185] P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, wien2k, 60 (2001)
[186] X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J. M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D. R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M. J. T. Oliveira, S. Poncé, Y. Pouillon, T. Rangel, G. M. Rignanese, A. H. Romero, B. Rousseau, O. Rubel, A. A. Shukri, M. Stankovski, M. Torrent, M. J. Van Setten, B. Van Troeye, M. J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, J. W. Zwanziger, Recent developments in the ABINIT software package, Comp. Phys. Commun. 205 (2016) 106-131.
[187] F. J. W. I. R. C. M. S. Neese, Software update: the ORCA program system, version 4.0, 8 (2018) e1327.
[188] W. H. Butler, Theory of electronic transport in random alloys: Korringa-Kohn-Rostoker coherent-potential approximation, Phys. Rev. B Condens. Matter 31 (1985) 3260-3277.
[189] H. Akai, Fast Korringa-Kohn-Rostoker coherent potential approximation and its application to FCC Ni-Fe systems, J. Phys.: Condens. Matter 1 (1989) 8045-8064.
[190] U. v. Barth, L. Hedin, A local exchange-correlation potential for the spin polarized case. i, J. Phys. C: Solid State Phys. 5 (1972) 1629-1642.
[191] D. M. Ceperley, B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. 45 (1980) 566-569.
[192] B. Wiendlocha, Resonant Levels, Vacancies, and Doping in Bi2Te3, Bi2Te2Se, and Bi2Se3 Tetradymites, J. Electron. Mater. 45 (2016) 3515-3531.
[193] W. Zhang, R. Yu, H.-J. Zhang, X. Dai, Z. Fang, First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3, New J. Phys. 12 (2010) 065013.
[194] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50.
[195] C. W. Glass, A. R. Oganov, N. Hansen, USPEX—Evolutionary crystal structure prediction, Comput. Phys. Commun. 175 (2006) 713-720.
[196] K. Matsunaga, T. Tanaka, T. Yamamoto, Y. Ikuhara, First-principles calculations of intrinsic defects in Al2O3, Phys. Rev. B 68 (2003) 085110-085118.
[197] X. M. Zhang, M. Y. Toriyama, J. P. Male, Z. Z. Feng, S. P. Guo, T. T. Jia, Z. Y. Ti, G. J. Snyder, Y. S. Zhang, First principles investigation of intrinsic and Na defects in XTe (X=Ca, Sr, Ba) nanostructured PbTe, Mater. Today Phys. 19 (2021)
[198] D. Broberg, B. Medasani, N. E. R. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta, G. Hautier, PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators, Comp. Phys. Commun. 226 (2018) 165-179.
[199] S. Lany, A. Zunger, Accurate prediction of defect properties in density functional supercell calculations, Modell. Simul. Mater. Sci. Eng. 17 (2009) 084002.
[200] A. L. Samuel, Some studies in machine learning using the game of checkers. II—recent progress, Comput. Games I (1988) 366-400.
[201] A. L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Dev. 44 (2000) 206-226.
[202] B. Mahesh, Machine learning algorithms-a review, Int. J. Sci. Res. 9 (2020) 381-386.
[203] H. Wang, C. Ma, L. Zhou, A brief review of machine learning and its application, 2009 international conference on information engineering and computer science, 2009,
[204] M. I. Jordan, T. M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science 349 (2015) 255-260.
[205] S. B. Kotsiantis, I. D. Zaharakis, P. E. Pintelas, Machine learning: a review of classification and combining techniques, Artif. Intell. Rev. 26 (2007) 159-190.
[206] K. G. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis, Machine Learning in Agriculture: A Review, Sensors 18 (2018) 2674.
[207] S. Ray, A Quick Review of Machine Learning Algorithms, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, 2019,
[208] A. Liaw, M. Wiener, Classification and regression by randomForest, R News 2 (2002) 18-22.
[209] U. Grömping, Variable importance assessment in regression: linear regression versus random forest, Am. Stat. 63 (2009) 308-319.
[210] K. J. Archer, R. V. Kimes, Empirical characterization of random forest variable importance measures, Comput. Stat. Data Anal. 52 (2008) 2249-2260.
[211] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, N. d. Freitas, Taking the Human Out of the Loop: A Review of Bayesian Optimization, Proc. IEEE 104 (2016) 148-175.
[212] M. Pelikan, D. E. Goldberg, E. Cantú-Paz, BOA: The Bayesian optimization algorithm, Proceedings of the genetic and evolutionary computation conference GECCO-99, 1999,
[213] J. Snoek, H. Larochelle, R. P. Adams, Practical bayesian optimization of machine learning algorithms, Adv. Neural Inf. Process. Syst. 25 (2012) 1.
[214] S. L. Brunton, B. R. Noack, P. Koumoutsakos, Machine Learning for Fluid Mechanics, Annu. Rev. Fluid Mech. 52 (2020) 477-508.
[215] M. Molina, F. Garip, Machine learning for sociology, Annu. Rev. Soc. 45 (2019) 27-45.
[216] M. J. Volk, I. Lourentzou, S. Mishra, L. T. Vo, C. X. Zhai, H. M. Zhao, Biosystems Design by Machine Learning, ACS Synth. Biol. 9 (2020) 1514-1533.
[217] A. L. Tarca, V. J. Carey, X.-w. Chen, R. Romero, S. Drăghici, Machine learning and its applications to biology, PLoS comput. biol. 3 (2007) 116.
[218] J. Wei, X. Chu, X. Y. Sun, K. Xu, H. X. Deng, J. G. Chen, Z. M. Wei, M. Lei, Machine learning in materials science, InfoMat 1 (2019) 338-358.
[219] S. Angra, S. Ahuja, Machine learning and its applications: A review, 2017 international conference on big data analytics and computational intelligence, 2017,
[220] P. P. Shinde, S. Shah, A review of machine learning and deep learning applications, 2018 Fourth international conference on computing communication control and automation, 2018,
[221] A. O. Oliynyk, E. Antono, T. D. Sparks, L. Ghadbeigi, M. W. Gaultois, B. Meredig, A. Mar, High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds, Chem. Mater. 28 (2016) 7324-7331.
[222] W. K. Ye, C. Chen, Z. B. Wang, I.-H. Chu, S. P. Ong, Deep neural networks for accurate predictions of crystal stability, Nat. Commun. 9 (2018) 1-6.
[223] A. Ziletti, D. Kumar, M. Scheffler, L. M. Ghiringhelli, Insightful classification of crystal structures using deep learning, Nat. Commun. 9 (2018) 1-10.
[224] F. Legrain, J. Carrete, A. van Roekeghem, G. K. Madsen, N. Mingo, Materials screening for the discovery of new half-Heuslers: Machine learning versus ab initio methods, J. Phys. Chem. B 122 (2018) 625-632.
[225] G. Pilania, A. Mannodi-Kanakkithodi, B. Uberuaga, R. Ramprasad, J. Gubernatis, T. Lookman, Machine learning bandgaps of double perovskites, Sci. Rep. 6 (2016) 1-10.
[226] J. Lee, A. Seko, K. Shitara, K. Nakayama, I. Tanaka, Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques, Phys. Rev. B 93 (2016) 115104.
[227] L. Weston, C. Stampfl, Machine learning the band gap properties of kesterite I2−II−IV−V4 quaternary compounds for photovoltaics applications, Phys. Rev. Mater. 2 (2018) 085407.
[228] G. Pilania, X.-Y. Liu, Machine learning properties of binary wurtzite superlattices, J. Mater. Sci. 53 (2018) 6652-6664.
[229] M. W. Gaultois, T. D. Sparks, C. K. Borg, R. Seshadri, W. D. Bonificio, D. R. Clarke, Data-driven review of thermoelectric materials: performance and resource considerations, Chem. Mater. 25 (2013) 2911-2920.
[230] T. D. Sparks, M. W. Gaultois, A. Oliynyk, J. Brgoch, B. Meredig, Data mining our way to the next generation of thermoelectrics, Scr. Mater. 111 (2016) 10-15.
[231] A. o. Furmanchuk, J. E. Saal, J. W. Doak, G. B. Olson, A. Choudhary, A. Agrawal, Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: A machine learning approach, J. Comput. Chem. 39 (2018) 191-202.
[232] A. Tewari, S. Dixit, N. Sahni, S. P. A. Bordas, Machine learning approaches to identify and design low thermal conductivity oxides for thermoelectric applications, Data-Centric Eng. 1 (2020) 8.
[233] N. Parse, C. Pongkitivanichkul, S. Pinitsoontorn, Machine Learning Approach for Maximizing Thermoelectric Properties of BiCuSeO and Discovering New Doping Element, Energies 15 (2022) 779.
[234] M. W. Mitchell, Bias of the Random Forest Out-of-Bag (OOB) Error for Certain Input Parameters, Open J. Statistics 01 (2011) 205-211.
[235] X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports, J. Am. Chem. Soc. 133 (2011) 7837-7846.
[236] G. Rogl, P. Rogl, Skutterudites, a most promising group of thermoelectric materials, Curr. Opin. Green Sustainable Chem. 4 (2017) 50-57.
[237] J. S. Dyck, W. Chen, C. Uher, L. D. Chen, X. F. Tang, T. Hirai, Thermoelectric properties of then-type filled skutterudite Ba0.3Co4Sb12 doped with Ni, J. Appl. Phys. 91 (2002) 3698-3705.
[238] J. Mao, H. S. Kim, J. Shuai, Z. Liu, R. He, U. Saparamadu, F. Tian, W. Liu, Z. Ren, Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system, Acta Mater. 103 (2016) 633-642.
[239] B.-C. Qin, Y. Xiao, Y.-M. Zhou, L.-D. Zhao, Thermoelectric transport properties of Pb–Sn–Te–Se system, Rare Met. 37 (2017) 343-350.
[240] W.-S. Liu, B.-P. Zhang, L.-D. Zhao, J.-F. Li, Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb, Chem. Mater. 20 (2008) 7526-7531.
[241] J. W. Zhang, L. R. Song, S. H. Pedersen, H. Yin, L. T. Hung, B. B. Iversen, Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands, Nat. Commun. 8 (2017) 13901-13908.
[242] J. W. Zhang, L. R. Song, K. A. Borup, M. R. V. Jørgensen, B. B. Iversen, New Insight on Tuning Electrical Transport Properties via Chalcogen Doping in n-type Mg3Sb2-Based Thermoelectric Materials, Adv. Energy Mater. 8 (2018) 1702776-1702782.
[243] J. W. Zhang, L. R. Song, B. B. Iversen, Rapid One-Step Synthesis and Compaction of High-Performance n-Type Mg3Sb2 Thermoelectrics, Angew. Chem. Int. Ed. Engl. 59 (2020) 4278-4282.
[244] J. Zhang, L. Song, B. B. Iversen, Probing Efficient N-Type Lanthanide Dopants for Mg3Sb2 Thermoelectrics, Adv. Sci. 7 (2020) 2002867.
[245] J. W. Yang, G. D. Li, H. T. Zhu, N. Chen, T. B. Lu, J. L. Gao, L. W. Guo, J. S. Xiang, P. J. Sun, Y. Yao, R. G. Yang, H. Z. Zhao, Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material, Joule 6 (2021) 1-12.
[246] J. Mao, H. T. Zhu, Z. W. Ding, Z. H. Liu, A. Gamage Geethal, G. Chen, Z. F. Ren, High thermoelectric cooling performance of n-type Mg3Bi2-based materials, Science 365 (2019) 495-498.
[247] J. Li, F. Jia, S. Zhang, S. Q. Zheng, B. Y. Wang, L. Q. Chen, G. W. Lu, L. M. Wu, The manipulation of substitutional defects for realizing high thermoelectric performance in Mg3Sb2-based Zintl compounds, J. Mater. Chem. A 7 (2019) 19316-19323.
[248] H. J. Shang, Z. X. Liang, C. C. Xu, S. W. Song, D. X. Huang, H. W. Gu, J. Mao, Z. F. Ren, F. Z. Ding, N-type Mg3Sb2-xBix with improved thermal stability for thermoelectric power generation, Acta Mater. 201 (2020) 572-579.
[249] Y.-K. Zhu, P. Wu, J. Guo, Y. Zhou, X. Chong, Z.-H. Ge, J. Feng, Achieving a fine balance in mechanical properties and thermoelectric performance in commercial Bi2Te3 materials, Ceram. Int. 46 (2020) 14994-15002.
[250] Y.-X. Zhang, Y.-K. Zhu, J. Feng, Z.-H. Ge, Precious metal nanoparticles dispersing toward highly enhanced mechanical and thermoelectric properties of copper sulfides, J. Alloys Compd. 892 (2022) 162035-162044.
[251] J. Li, S. Zhang, F. Jia, S. Q. Zheng, X. L. Shi, D. Q. Jiang, S. Y. Wang, G. W. Lu, L. M. Wu, Z.-G. Chen, Point defect engineering and machinability in n-type Mg3Sb2-based materials, Mater. Today Phys. 15 (2020) 100269-100277.
[252] L. Wang, J. Li, Y. Xie, L. Hu, F. Liu, W. Ao, J. Luo, C. Zhang, Tailoring the chemical bonding of GeTe-based alloys by MgB2 alloying to simultaneously enhance their mechanical and thermoelectric performance, Mater. Today Phys. 16 (2021) 100308-100317.
[253] K. Tyagi, B. Gahtori, S. Bathula, M. Jayasimhadri, S. Sharma, N. K. Singh, D. Haranath, A. K. Srivastava, A. Dhar, Crystal structure and mechanical properties of spark plasma sintered Cu2Se: An efficient photovoltaic and thermoelectric material, Solid State Commun. 207 (2015) 21-25.
[254] J. F. Fu, X. L. Su, H. Y. Xie, Y. G. Yan, W. Liu, Y. H. You, X. Cheng, C. Uher, X. F. Tang, Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics, Nano Energy 44 (2018) 53-62.
[255] K. J. Liu, C. Chen, X. F. Li, J. C. Jia, C. L. Xia, J. Mao, Q. Huang, J. H. Sui, F. Cao, X. J. Liu, Y. Chen, Q. Zhang, Tuning the Carrier Scattering Mechanism by Rare-Earth Element Doping for High Average zT in Mg3Sb2-Based Compounds, ACS Appl. Mater. Interfaces 14 (2022) 7022-7029.
[256] A. Roy, P. Sreeramagiri, T. Babuska, B. Krick, P. K. Ray, G. Balasubramanian, Lattice distortion as an estimator of solid solution strengthening in high-entropy alloys, Mater. Charact. 172 (2021) 110877-110886.
[257] F. Jiang, C. L. Xia, Y. B. Zhu, Z. J. Han, C. Y. Liu, J. T. Xia, Y. Chen, W. S. Liu, Thermoelectric properties of p-type polycrystalline Bi0.8Sb0.8In0.4Se3, Appl. Phys. Lett. 118 (2021) 193903-193907.
[258] K. Imasato, M. Wood, J. J. Kuo, G. J. Snyder, Improved stability and high thermoelectric performance through cation site doping in n-type La-doped Mg3Sb1.5Bi0.5, J. Mater. Chem. A 6 (2018) 19941-19946.
[259] J. S. Liang, X. L. Shi, Y. Peng, W. D. Liu, H. Q. Yang, C. Y. Liu, J. L. Chen, Q. Zhou, L. Miao, Z. G. Chen, Synergistic Effect of Band and Nanostructure Engineering on the Boosted Thermoelectric Performance of n‐Type Mg3+δ(Sb, Bi)2 Zintls, Adv. Energy Mater. (2022) 2201086-2201095.
[260] C. L. Hu, K. Y. Xia, C. G. Fu, X. B. Zhao, T. J. Zhu, Carrier grain boundary scattering in thermoelectric materials, Energy Environ. Sci. 15 (2022) 1406-1422.
[261] J. Wang, Y. Q. Zhao, W. Zhou, Q. Y. Zhao, S. X. Huang, W. D. Zeng, In-situ investigation on tensile deformation and fracture behaviors of a new metastable β titanium alloy, Mater. Sci. Eng.: A 799 (2021) 140187.
[262] W. S. Liu, H. S. Kim, S. Chen, Q. Jie, B. Lv, M. L. Yao, Z. S. Ren, C. P. Opeil, S. Wilson, C. W. Chu, Z. F. Ren, n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation, Proc. Natl. Acad. Sci. USA 112 (2015) 3269-3274.
[263] R. He, H. T. Zhu, J. Y. Sun, J. Mao, H. Reith, S. Chen, G. Schierning, K. Nielsch, Z. F. Ren, Improved thermoelectric performance of n-type half-Heusler MCo1-xNixSb (M = Hf, Zr), Mater. Today Phys. 1 (2017) 24-30.
[264] D. D. Qin, W. J. Shi, Y. Z. Lu, W. Cai, J. H. Sui, Efficient Si Doping Promoting Thermoelectric Performance of Yb-Filled CoSb3-Based Skutterudites, ACS Appl. Mater. Interfaces (2022) 30901-30906.
[265] L. W. Fu, M. J. Yin, D. Wu, W. Li, D. Feng, L. Huang, J. Q. He, Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects, Energy Environ. Sci. 10 (2017) 2030-2040.
[266] C. C. Xu, Z. X. Liang, H. J. Shang, D. Z. Wang, H. Wang, F. Z. Ding, J. Mao, Z. F. Ren, Scalable synthesis of n-type Mg3Sb2-xBix for thermoelectric applications, Mater. Today Phys. 17 (2021) 100336.
[267] L. H. Huang, T. Liu, X. B. Mo, G. C. Yuan, R. Y. Wang, H. Liu, X. B. Lei, Q. Y. Zhang, Z. F. Ren, Thermoelectric performance improvement of p-type Mg3Sb2-based materials by Zn and Ag co-doping, Mater. Today Phys. 21 (2021) 100564-100569.
[268] J. K. Burdett, G. J. Miller, Fragment formalism in main-group solids: applications to AlB2, CaAl2Si2, BaAl4, and related materials, Chem. Mater. 2 (1990) 12-26.
[269] Y. L. Cui, X. L. Zhang, B. Duan, J. L. Li, H. J. Yang, H. T. Wang, P. Wen, T. Gao, Z. Fang, G. D. Li, Y. Li, P. C. Zhai, Band structure and thermoelectric properties of Al-doped Mg3−xAlxSb2 compounds, J. Mater. Sci.: Mater. Electron. 30 (2019) 15206-15213.
[270] K. Imasato, S. D. Kang, S. Ohno, G. J. Snyder, Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance, Mater. Horiz. 5 (2018) 59-64.
[271] R. Shu, Z. J. Han, A. Elsukova, Y. B. Zhu, P. Qin, F. Jiang, J. Lu, P. O. Å. Persson, J. Palisaitis, A. le Febvrier, W. Q. Zhang, O. Cojocaru‐Mirédin, Y. Yu, P. Eklund, W. S. Liu, Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg3Sb2‐based Thermoelectric Materials, Adv. Sci. (2022) 2202594.
[272] D. Chen, F. Jiang, L. Fang, Y.-B. Zhu, C.-C. Ye, W.-S. Liu, Machine learning assisted discovering of new M2X3-type thermoelectric materials, Rare Met. 41 (2022) 1543-1553.
[273] G. S. Pomrehn, A. Zevalkink, W. G. Zeier, A. Walle, G. J. Snyder, Defect‐Controlled Electronic Properties in AZn2Sb2 Zintl Phases, Angew. Chem. Int. Ed. Engl. 126 (2014) 3490-3494.
[274] K. Y. Li, X. T. Wang, F. F. Zhang, D. F. Xue, Electronegativity identification of novel superhard materials, Phys. Rev. Lett. 100 (2008) 235504-235507.
[275] A. L. Allred, A Scale of Electronegativity based on Electronic Forces, J. Inorg. Nucl. Chem. 5 (1958) 264-268.
[276] Weast, RobertC, CRC Handbook of Chemistry and Physics, CRC Press, Florida, 1988.
[277] J. Li, S. Zhang, S. Zheng, Z. Zhang, B. Wang, L. Chen, G. Lu, Defect Chemistry for N-Type Doping of Mg3Sb2-Based Thermoelectric Materials, J. Phys. Chem. C 123 (2019) 20781-20788.
[278] A. Bhardwaj, D. K. Misra, Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework, RSC Adv. 4 (2014) 34552-34560.
[279] Z. Ren, J. Shuai, J. Mao, Q. Zhu, S. Song, Y. Ni, S. Chen, Significantly enhanced thermoelectric properties of p-type Mg3Sb2 via co-doping of Na and Zn, Acta Mater. 143 (2018) 265-271.
[280] L. R. Song, J. W. Zhang, B. B. Iversen, Thermal stability of p-type Ag-doped Mg3Sb2 thermoelectric materials investigated by powder X-ray diffraction, Phys. Chem. Chem. Phys. 21 (2019) 4295-4305.
[281] Y. Wang, X. Zhang, Y. Q. Liu, Y. Z. Wang, J. X. Zhang, M. Yue, Optimizing the thermoelectric performance of p-type Mg3Sb2 by Sn doping, Vacuum 177 (2020) 109388-109394.
[282] K. Imasato, S. Anand, R. Gurunathan, G. J. Snyder, The effect of Mg3As2 alloying on the thermoelectric properties of n-type Mg3(Sb, Bi)2, Dalton Trans. 50 (2021) 9376-9382.
[283] H. Shang, J. Zhang, H. Gu, S. Song, C. L. Chen, J. F. Lee, K. Shih, Z. F. Ren, F. Z. Ding, Depressed lattice oxygen and improved thermoelectric performance in N-type Mg3Bi2-xSbx via La-doping, Mater. Today Phys. 21 (2021) 100485-100491.
[284] J. Ding, T. Lanigan-Atkins, M. Calderón-Cueva, A. Banerjee, D. L. Abernathy, A. Said, A. Zevalkink, O. Delaire, Soft anharmonic phonons and ultralow thermal conductivity in Mg3(Sb, Bi)2 thermoelectrics, Sci. Adv. 7 (2021) 1449-1455.
[285] J. Zhang, L. Song, B. B. Iversen, Improved Thermoelectric Properties of N-Type Mg3Sb2 through Cation-Site Doping with Gd or Ho, ACS Appl. Mater. Interfaces 13 (2021) 10964-10971.
[286] W. Y. Zhu, W. Q. Fang, J. H. Zou, S. J. Zhu, J. X. Si, Enhanced Thermoelectric Performance of Indium-Doped n-type Mg3Sb2-Based Materials Synthesized by Rapid Induction Melting, J. Electron. Mater. 51 (2022) 1591-1596.
[287] R. He, G. Schierning, K. Nielsch, Thermoelectric Devices: A Review of Devices, Architectures, and Contact Optimization, Adv. Mater. Technol. 3 (2018)
[288] A. S. Al-Merbati, B. S. Yilbas, A. Z. Sahin, Thermodynamics and thermal stress analysis of thermoelectric power generator: Influence of pin geometry on device performance, Appl. Therm. Eng. 50 (2013) 683-692.
[289] J. Zhang, L. Song, S. H. Pedersen, H. Yin, L. T. Hung, B. B. Iversen, Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands, Nat Commun 8 (2017) 13901.
[290] Y. B. Zhu, Z. J. Han, F. Jiang, E. T. Dong, B.-P. Zhang, W. Q. Zhang, W. S. Liu, Thermodynamic criterions of the thermoelectric performance enhancement in Mg2Sn through the self-compensation vacancy, Mater. Today Phys. 16 (2021) 100327.
[291] W.-S. Liu, B.-P. Zhang, L.-D. Zhao, J.-F. Li, Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb, chemistry of materials 20 (2008) 7526-7531.
[292] B. Duan, J. Yang, J. R. Salvador, Y. He, B. Zhao, S. Y. Wang, P. Wei, F. S. Ohuchi, W. Q. Zhang, R. P. Hermann, O. Gourdon, S. X. Mao, Y. W. Cheng, C. M. Wang, J. Liu, P. C. Zhai, X. F. Tang, Q. J. Zhang, J. H. Yang, Electronegative guests in CoSb3, Energy Environ. Sci. 9 (2016) 2090-2098.
[293] D. Parker, D. J. Singh, Potential Thermoelectric Performance from Optimization of Hole-Doped Bi2Se3, Phys. Rev. X 1 (2011) 021005.
[294] J. L. Cui, X. L. Liu, X. J. Zhang, Y. Y. Li, Y. Deng, Bandgap reduction responsible for the improved thermoelectric performance of bulk polycrystalline In2–xCuxSe3 (x = 0−0.2), J. Appl. Phys. 110 (2011) 023708.
[295] Y. Z. Pei, A. D. LaLonde, N. A. Heinz, X. Y. Shi, S. Iwanaga, H. Wang, L. D. Chen, G. J. Snyder, Stabilizing the optimal carrier concentration for high thermoelectric efficiency, Adv. Mater. 23 (2011) 5674-5678.
[296] X. Y. Zhou, Y. C. Yan, X. Lu, H. T. Zhu, X. D. Han, G. Chen, Z. F. Ren, Routes for high-performance thermoelectric materials, Mater. Today 21 (2018) 974-988.
[297] W.-S. Liu, B.-P. Zhang, J.-F. Li, H.-L. Zhang, L.-D. Zhao, Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering, J. Appl. Phys. 102 (2007) 103717.
[298] H. X. Qin, Y. Liu, Z. W. Zhang, Y. M. Wang, J. Cao, W. Cai, Q. Zhang, J. H. Sui, Improved thermoelectric performance of p-type Bi0.5Sb1.5Te3 through Mn doping at elevated temperature, Mater. Today Phys. 6 (2018) 31-37.
[299] H. Usui, K. Kuroki, Enhanced power factor and reduced Lorenz number in the Wiedemann–Franz law due to pudding mold type band structures, J. Appl. Phys. 121 (2017) 165101.
[300] T. Fang, X. Li, C. L. Hu, Q. Zhang, J. Yang, W. Q. Zhang, X. B. Zhao, D. J. Singh, T. J. Zhu, Complex Band Structures and Lattice Dynamics of Bi2Te3‐Based Compounds and Solid Solutions, Adv. Funct. Mater. 29 (2019) 1900677.
[301] G. F. Wang, T. Cagin, Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations, Phys. Rev. B 76 (2007) 075201.
[302] W.-S. Liu, L.-D. Zhao, B.-P. Zhang, H.-L. Zhang, J.-F. Li, Enhanced thermoelectric property originating from additional carrier pocket in skutterudite compounds, Appl. Phys. Lett. 93 (2008) 042109.
[303] J. J. Shen, L. P. Hu, T. J. Zhu, X. B. Zhao, The texture related anisotropy of thermoelectric properties in bismuth telluride based polycrystalline alloys, Appl. Phys. Lett. 99 (2011) 124102.
[304] T. Fang, F. Li, Y. H. Wu, Q. Zhang, X. B. Zhao, T. J. Zhu, Anisotropic Thermoelectric Properties of n-Type Te-Free (Bi, Sb)2Se3 with Orthorhombic Structure, ACS Appl. Energy Mater. 3 (2020) 2070-2077.
[305] T. J. Nian, Z. H. Wang, B. J. Dong, Thermoelectric properties of α-In2Se3 monolayer, Appl. Phys. Lett. 118 (2021) 033103.
[306] H. W. Ji, A. Reijnders, T. Liang, L. M. Schoop, K. S. Burch, N. P. Ong, R. J. Cava, Crystal structure and elementary electronic properties of Bi-stabilized α-In2Se3, Mater. Res. Bull. 48 (2013) 2517-2521.
[307] Z. Z. Zeng, S. S. Li, T. Tadano, Y. Chen, Anharmonic lattice dynamics and thermal transport of monolayer InSe under equibiaxial tensile strains, J. Phys.: Condens. Matter 32 (2020) 475702.
[308] Y. Xiao, H. J. Wu, J. Cui, D. Y. Wang, L. W. Fu, Y. Zhang, Y. Chen, J. Q. He, S. J. Pennycook, L.-D. Zhao, Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity, Energy Environ. Sci. 11 (2018) 2486-2495.
[309] H. J. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. L. Pei, L. Zheng, D. Wu, S. K. Gong, Y. Chen, J. Q. He, M. G. Kanatzidis, L.-D. Zhao, Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe, Energy Environ. Sci. 8 (2015) 3298-3312.
[310] B. C. Qin, D. Y. Wang, X. X. Liu, Y. X. Qin, J.-F. Dong, J. F. Luo, J.-W. Li, W. Liu, G. J. Tan, X. F. Tang, J.-F. Li, J. Q. He, L.-D. Zhao, Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments, Science 373 (2021) 556-561.
[311] J. Park, M. Dylla, Y. Xia, M. Wood, G. J. Snyder, A. Jain, When band convergence is not beneficial for thermoelectrics, Nat. Commun. 12 (2021) 3425.
[312] T.-R. Wei, M. Jin, Y. C. Wang, H. Y. Chen, Z. Q. Gao, K. P. Zhao, P. F. Qiu, Z. W. Shan, J. Jiang, R. B. Li, L. D. Chen, J. He, X. Shi, Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe, Science 369 (2020) 542-545.
[313] F. Liu, Y.-H. Wu, Q. Zhang, T.-J. Zhu, X.-B. Zhao, Enhancing room-temperature thermoelectric performance of n-type Bi2Te3-based alloys via sulfur alloying, Rare Met. 40 (2020) 513-520.
[314] W. S. Liu, J. W. Zhou, Q. Jie, Y. Li, H. S. Kim, J. M. Bao, G. Chen, Z. F. Ren, New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg2Sn1−x−yGexSby, Energy Environ. Sci. 9 (2016) 530-539.
[315] H. J. Goldsmid, J. W. Sharp, Estimation of the thermal band gap of a semiconductor from seebeck measurements, J. Electron. Mater. 28 (1999) 869-872.
[316] B. B. Jiang, W. Wang, S. X. Liu, Y. Wang, C. F. Wang, Y. N. Chen, L. Xie, M. Y. Huang, J. Q. He, High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics, Science 377 (2022) 208-213.
[317] J. Tang, Z. C. Yao, Y. X. Wu, S. Q. Lin, F. Xiong, W. Li, Y. Chen, T. J. Zhu, Y. Z. Pei, Atomic disordering advances thermoelectric group IV telluride alloys with a multiband transport, Mater. Today Phys. 15 (2020) 100247.
[318] C. Yu, T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, J. He, High-performance half-Heusler thermoelectric materials Hf1−xZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering, Acta Mater. 57 (2009) 2757-2764.
[319] N. Tsujii, A. Nishide, J. Hayakawa, T. Mori, Observation of enhanced thermopower due to spin fluctuation in weak itinerant ferromagnet, Sci. Adv. 5 (2019) 5935.
[320] H. H. Wang, X. G. Luo, W. W. Chen, N. Z. Wang, B. Lei, F. B. Meng, C. Shang, L. K. Ma, T. Wu, X. Dai, Magnetic-field enhanced high-thermoelectric performance in topological Dirac semimetal Cd3As2 crystal, Sci. Bull. 63 (2018) 411-418.
[321] P. J. Sun, K. R. Kumar, M. Lyu, Z. Wang, J. S. Xiang, W. Q. Zhang, Generic Seebeck effect from spin entropy, Innovation 2 (2021) 100101.
[322] I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B 56 (1997) 12685-12687.
[323] Y. Wang, G. F. Liu, M. Sheng, C. Yu, Y. Deng, Flexible thermopower generation over broad temperature range by PANI/nanorod hybrid-based p–n couples, J. Mater. Chem. A 7 (2019) 1718-1724.
[324] C. R. Bowen, H. A. Kim, P. M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy Environ. Sci. 7 (2014) 25-44.
[325] Y. Yang, W. X. Guo, K. C. Pradel, G. Zhu, Y. S. Zhou, Y. Zhang, Y. F. Hu, L. Lin, Z. L. Wang, Pyroelectric nanogenerators for harvesting thermoelectric energy, Nano Lett. 12 (2012) 2833-2838.
[326] A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen, F. Steglich, Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2, EPL 80 (2007) 17008.
[327] Y. H. Zheng, T. Q. Lu, M. M. Polash, M. Rasoulianboroujeni, N. Liu, M. E. Manley, Y. Deng, P. Sun, X. Chen, R. P. Hermann, D. Vashaee, J. P. Heremans, H. Zhao, Paramagnon drag in high thermoelectric figure of merit Li-doped MnTe, Sci. Adv. 5 (2019) 9461.
[328] J. Z. Wu, F. C. Liu, C. Liu, Y. Wang, C. C. Li, Y. F. Lu, S. Matsuishi, H. Hosono, Toward 2D Magnets in the (MnBi2Te4)(Bi2Te3)n Bulk Crystal, Adv. Mater. 32 (2020) 2001815.
[329] H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, T. Mori, Thermoelectric properties of a magnetic semiconductor CuFeS2, Mater. Today Phys. 3 (2017) 85-92.
[330] T. Okuda, N. Jufuku, S. Hidaka, N. Terada, Magnetic, transport, and thermoelectric properties of the delafossite oxides CuCr1−xMgxO2(0⩽x⩽0.04), Phys. Rev. B 72 (2005) 144403.
[331] Z. C. Wei, C. Y. Wang, J. Y. Zhang, J. Yang, Z. L. Li, Q. D. Zhang, P. F. Luo, W. Q. Zhang, E. K. Liu, J. Luo, Precise Regulation of Carrier Concentration in Thermoelectric BiSbTe Alloys via Magnetic Doping, ACS Appl. Mater. Interfaces 12 (2020) 20653-20663.
[332] F. Ahmed, N. Tsujii, T. Mori, Thermoelectric properties of CuGa1−xMnxTe2: power factor enhancement by incorporation of magnetic ions, J. Mater. Chem. A 5 (2017) 7545-7554.
[333] W. Y. Zhao, Z. Y. Liu, P. Wei, Q. J. Zhang, W. T. Zhu, X. L. Su, X. F. Tang, J. H. Yang, Y. Liu, J. Shi, Y. M. Chao, S. Q. Lin, Y. Z. Pei, Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials, Nat. Nanotechnol. 12 (2017) 55-60.
[334] G. Han, Z. G. Chen, J. Drennan, J. Zou, Indium selenides: structural characteristics, synthesis and their thermoelectric performances, Small 10 (2014) 2747-2765.
[335] T. P. Bailey, R. Lu, P. F. P. Poudeu, C. Uher, Mictomagnetic full-Heusler nanoprecipitates in (Ti, Zr, Hf)NiFexSn half-Heusler composites, Mater. Today Phys. 11 (2019) 100155.
[336] F. H. Sun, S. F. Ma, W. Y. Zhao, C. C. Li, X. H. Sang, P. Wei, Q. J. Zhang, Magnetically enhanced thermoelectrics: a comprehensive review, Rep. Prog. Phys. 84 (2021) 096501.
[337] T. Feng, L. P. Li, Q. Shi, Y. L. Zhang, G. S. Li, Heat capacity and thermodynamic functions of TiO2(H), J. Chem. Thermodyn. 145 (2020) 106040.
[338] T. Feng, L. P. Li, Q. Shi, X. L. Che, X. L. Xu, G. S. Li, Heat capacity and thermodynamic functions of TiO2(B) nanowires, J. Chem. Thermodyn. 119 (2018) 127-134.
[339] D. A. McQuarrie, 2000, Statistical mechanics,
[340] Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, Y. Iye, Filling dependence of electronic properties on the verge of metal-Mott-insulator transition in Sr1-xLaxTiO3, Phys. Rev. Lett. 70 (1993) 2126-2129.
[341] D. Pines, P. Nozières, H. Chang, 1967, The Theory of Quantum Liquids, Vol. 1: Normal Fermi Liquids, 99-101.
[342] R. Fortulan, S. Aminorroaya Yamini, C. Nwanebu, S. W. Li, T. Baba, M. J. Reece, T. Mori, Thermoelectric Performance of n-Type Magnetic Element Doped Bi2S3, ACS Appl. Energy Mater. 5 (2022) 3845-3853.
[343] T. Feng, P. Wang, Z. Han, L. Zhou, W. Zhang, Q. Liu, W. Liu, Large Transverse and Longitudinal Magneto-Thermoelectric Effect in Polycrystalline Nodal-Line Semimetal Mg3Bi2, Adv. Mater. (2022) e2200931.
[344] T. Teramoto, T. Komine, M. Kuraishi, R. Sugita, Y. Hasegawa, H. Nakamura, Numerical analysis of the magneto-Seebeck effect of bismuth with anisotropic band structure, J. Appl. Phys. 103 (2008) 043717.
[345] M. S. Akhanda, S. E. Rezaei, K. Esfarjani, S. Krylyuk, A. V. Davydov, M. Zebarjadi, Thermomagnetic properties of Bi2Te3 single crystal in the temperature range from 55 K to 380 K, Phys. Rev. Mater. 5 (2021) 015403.
[346] A. F. Ioffe, L. Stil'Bans, E. Iordanishvili, T. Stavitskaya, A. Gelbtuch, G. Vineyard, Semiconductor thermoelements and thermoelectric cooling, Phys. Today 12 (1959) 42.
[347] D. Greig, Thermoelectricity and Thermal Conductivity in the Lead Sulfide Group of Semiconductors, Phys. Rev. 120 (1960) 358-365.
[348] H. J. Goldsmid, R. W. Douglas, The use of semiconductors in thermoelectric refrigeration, Br. J. Appl. Phys. 5 (1954) 386-390.
[349] E. H. Putley, Thermoelectric and Galvanomagnetic effects in Lead Selenide and Telluride, Proc. Phys. Soc. B 68 (1955) 35-42.
[350] J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B 33 (1986) 8822-8824.
[351] J. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, G. Kotliar, Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals, Nature 459 (2009) 965-968.
[352] A. Belsky, M. Hellenbrandt, V. L. Karen, P. Luksch, New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design, Acta Cryst. B 58 (2002) 364-369.
[353] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1 (2013) 011002.
[354] D. Z. Xue, P. V. Balachandran, J. Hogden, J. Theiler, D. Q. Xue, T. Lookman, Accelerated search for materials with targeted properties by adaptive design, Nat. Commun. 7 (2016) 11241.
[355] L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, A general-purpose machine learning framework for predicting properties of inorganic materials, NPG Comput. Mater. 2 (2016) 16028.
[356] R. H. Yuan, Z. Liu, P. V. Balachandran, D. Q. Xue, Y. M. Zhou, X. D. Ding, J. Sun, D. Z. Xue, T. Lookman, Accelerated Discovery of Large Electrostrains in BaTiO3-Based Piezoelectrics Using Active Learning, Adv. Mater. 30 (2018) 1702884.
[357] L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, M. Scheffler, Big data of materials science: critical role of the descriptor, Phys. Rev. Lett. 114 (2015) 105503.
[358] V. Vapnik, E. Levin, Y. L. Cun, Measuring the VC-Dimension of a Learning Machine, Neural Comput. 6 (1994) 851-876.
[359] Y. Q. Mao, H. L. Yang, Y. Sheng, J. P. Wang, R. H. Ouyang, C. C. Ye, J. Yang, W. Q. Zhang, Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information, ACS Omega 6 (2021) 14533-14541.
[360] G. A. Slack, 1995, CRC Handbook of Thermoelectrics, 34.
[361] D. C. Grauer, Y. S. Hor, A. J. Williams, R. J. Cava, Thermoelectric properties of the tetradymite-type Bi2Te2S–Sb2Te2S solid solution, Mater. Res. Bull. 44 (2009) 1926-1929.
[362] F. Boschini, M. Zonno, E. da Silva Neto, S. Zhdanovich, M. Schneider, B. Zwartsenberg, G. Levy, A. Mills, D. Jones, A. Damascelli, Anisotropic ultrafast dynamics in BiSbTe2S topological insulator investigated by time-resolved photoemission spectroscopy, APS March Meeting Abstracts, 2016, http://meetings.aps.org/link/BAPS.2016.MAR.R29.14.
[363] T. V. Quang, M. Kim, Effect on the Electronic, Magnetic and Thermoelectric Properties of Bi2Te3 by the Cerium Substitution, IEEE Trans. Magn. 50 (2014) 1000904.
[364] J. F. Wang, Synthesis and thermoelectric properties of rare earth compound RXTe3 (X = Sb, Bi), Hang Zhou Dianzi University, Hang Zhou, 2012.
[365] H. von Wensierski, H. Bolwin, A. Zeppenfeld, V. Leute, Ordering phenomena and demixing in the quasiternary system Ga2Te3/Hg3Te3/In2Te3, J. Alloys Compd. 255 (1997) 169-177.
[366] Q. R. Wu, Y. B. Xu, T. G. Xi, Prediction and Relation of Thermal Conductivity with Average Relative Atomic Mass and Density for Semiconducting Compound Functional Crystal Materials, Jpn. J. Appl. Phys. 46 (2007) 1441-1443.
[367] M. J. Verstraete, M. Torrent, F. Jollet, G. Zérah, X. Gonze, Density functional perturbation theory with spin-orbit coupling: Phonon band structure of lead, Phys. Rev. B 78 (2008) 045119.
[368] H. L. Yu, X. H. Lin, K. Li, Y. Chen, Unveiling a Novel, Cation-Rich Compound in a High-Pressure Pb-Te Binary System, ACS Cent. Sci. 5 (2019) 683-687.
[369] Y. C. Wang, J. Lv, L. Zhu, Y. M. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183 (2012) 2063-2070.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536975
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Jiang F. Multi elements approach tuning defect, phase structure, and thermoelectric properties of M3Q2-formula thermoelectric materials[D]. 香港. 香港大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11850032-江峰-材料科学与工程系(17308KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[江峰]的文章
百度学术
百度学术中相似的文章
[江峰]的文章
必应学术
必应学术中相似的文章
[江峰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。