中文版 | English
题名

Forecasting Traffic Speed Based on Spatiotemporal Dependencies: A Sarimax Modeling Framework

作者
发表日期
2022
DOI
发表期刊
ISSN
1556-5068
摘要

Accurate traffic prediction can assist path planning, guide vehicle scheduling and alleviate traffic congestion. In this paper we propose a seasonal autoregressive integrated moving average model with exogenous variables and interaction variables to forecast road segment speed of complex urban road networks, in which the dynamic space-time dependent information of urban road networks is utilized. First, traffic information about spatial and temporal features from upstream intersections is fed into the model through two variable selections and divided into weekday and non-weekday modes. Then, the proposed method is compared with traditional time series methods and a deep learning-based method, Long Short-Term Memory (LSTM). Finally, we use the Ljung-Box test to check the randomness of the residuals and the significance of the model. The results show that the multivariate SARIMAX model with spatio-temporal interactions has a better performance than compared methods in terms of accuracy and residual results. The root mean square error (RMSE) of our model  is 0.62, and the mean absolute percentage error (MAPE) is 3.20, and the residuals of the 10 roads we studied are all white noise. The proposed method can capture useful information from data and improves prediction accuracy effectively.

相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
出版者
来源库
人工提交
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543792
专题理学院_统计与数据科学系
前沿与交叉科学研究院
作者单位
1.Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
2.Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
第一作者单位统计与数据科学系
第一作者的第一单位统计与数据科学系
推荐引用方式
GB/T 7714
Qianqian,Wang,Fanyu,Meng,Yiping,Zeng,et al. Forecasting Traffic Speed Based on Spatiotemporal Dependencies: A Sarimax Modeling Framework[J]. SSRN Electronic Journal,2022.
APA
Qianqian,Wang,Fanyu,Meng,Yiping,Zeng,Sibo,Li,Shiyi,Yang,&Lili,Yang.(2022).Forecasting Traffic Speed Based on Spatiotemporal Dependencies: A Sarimax Modeling Framework.SSRN Electronic Journal.
MLA
Qianqian,Wang,et al."Forecasting Traffic Speed Based on Spatiotemporal Dependencies: A Sarimax Modeling Framework".SSRN Electronic Journal (2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Forecasting Traffic (2885KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qianqian,Wang]的文章
[Fanyu,Meng]的文章
[Yiping,Zeng]的文章
百度学术
百度学术中相似的文章
[Qianqian,Wang]的文章
[Fanyu,Meng]的文章
[Yiping,Zeng]的文章
必应学术
必应学术中相似的文章
[Qianqian,Wang]的文章
[Fanyu,Meng]的文章
[Yiping,Zeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。