[1].Mishchenko, I. M.; Travis, D. L.; Lacis, A. A. Scattering, Absorption, And Emission of Light by Small Particles, 1st ed., Cambridge University Press, 2002, ISBN: 052178252X.
[2].Maier, A. S. Plasmonics: Foundamentals and Applications, Springer, 2007, ISBN: 978-0-387-33150-8.
[3].Drude, P. Zur Geschichte der elektromagnetischen Dispersionsgleichungen, Ann. Phys. 1900, 48, 542.
[4].Maxwell Garnett, J. C. Colours in metal glasses, in metallic films and in metallic solutions. 1905,
[5].Wood, R. W. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proc. Phys. Soc. 1902, 18, 269–275.
[6].Zenneck, J. Uber die Fortpflanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie, Annalen Der Physik 1907, 846-866.
[7].Sommerfeld, A. Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie. Annalen Der Physik 1909, 4, 666-736.
[8].Ritchie, R. H. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1956, 106, 874–881.
[9].Stern, E. A.; Ferrell, R. A. Surface Plasma Oscillations of a Degenerate Electron Gas. Phys. Rev. 1960, 120 (1), 130–136.
[10].Otto, A. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. Zeitschrift für Phys. 1968, 216 (4), 398–410.
[11].Wang, Y.; Plummer, E. W.; Kempa, K. Foundations of Plasmonics. Adv. Phys. 2011, 60 (5), 799–898.
[12].Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface Plasmon Subwavelength Optics. Nature 2003, 424 (6950).
[13].Ndukaife, J. C.; Shalaev, V. M.; Boltasseva, A. Plasmonics—Turning Loss into Gain. Science 2016, 351 (6271), 334–335.
[14].Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary Optical Transmission through Sub-Wavelenght Hole Arrays. Nature 1998, 391 (6668), 667–669.
[15].Pendry, J. B. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 2000, 85 (18), 0–3.
[16].Yu, N.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J. P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science. 2011, 334 (6054), 333–337.
[17].Bouchal, P.; Bouchal, Z. Twisted Rainbow Light and Nature-Inspired Generation of Vector Vortex Beams. Laser Photonics Rev. 2022, 16 (7), 2200080.
[18].Davis, T. J.; Janoschka, D.; Dreher, P.; Frank, B.; Meyer zu Heringdorf, F. J.; Giessen, H. Ultrafast Vector Imaging of Plasmonic Skyrmion Dynamics with Deep Subwavelength Resolution. Science. 2020, 368 (6489).
[19].Tian, S.; Neumann, O.; McClain, M. J.; Yang, X.; Zhou, L.; Zhang, C.; Nordlander, P.; Halas, N. J. Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. Nano Lett. 2017, 17 (8), 5071–5077.
[20].Mcfarland, A. D.; Duyne, R. P. Van. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett. 2003, 3(8), 1057–1062.
[21].Qian, C.; Zheng, B.; Shen, Y.; Jing, L.; Li, E.; Shen, L.; Chen, H. Deep-Learning-Enabled Self-Adaptive Microwave Cloak without Human Intervention. Nat. Photonics 2020, 14 (6), 383–390.
[22].Zhang, S.; Fan, W.; Panoiu, N. C.; Malloy, K. J.; Osgood, R. M.; Brueck, S. R. J. Experimental Demonstration of Near-Infrared Negative-Index Metamaterials. Phys. Rev. Lett. 2005, 95 (13), 137404.
[23].Gómez-Castaño, M.; Garcia-Pomar, J. L.; Pérez, L. A.; Shanmugathasan, S.; Ravaine, S.; Mihi, A. Electrodeposited Negative Index Metamaterials with Visible and Near Infrared Response. Adv. Opt. Mater. 2020, 8, 200865.
[24].Kristensen, A.; Yang, J. K. W.; Bozhevolnyi, S. I.; Link, S.; Nordlander, P.; Halas, N. J.; Mortensen, N. A. Plasmonic Colour Generation. Nat. Rev. Mater. 2016, 2, 16088.
[25].Jiang, M.; Siew, S. Y.; Chan, J. Y. E.; Deng, J.; Wu, Q. Y. S.; Jin, L.; Yang, J. K. W.; Teng, J.; Danner, A.; Qiu, C. W. Patterned Resist on Flat Silver Achieving Saturated Plasmonic Colors with Sub-20-Nm Spectral Linewidth. Mater. Today 2020, 35, 1369-7021.
[26].Zheng, P.; Dai, Q.; Li, Z.; Ye, Z.; Xiong, J.; Liu, H. C.; Zheng, G.; Zhang, S. Metasurface-Based Key for Computational Imaging Encryption. Sci. Adv. 2021, 7, eabg0363.
[27].Yue, F.; Wen, D.; Zhang, C.; Gerardot, B. D.; Wang, W.; Zhang, S.; Chen, X. Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States. Adv. Mater. 2017, 29. 1603838.
[28].Freestone, I.; Meeks, N.; Sax, M.; Higgitt, C. The Lycurgus Cup–A Roman Nanotechnology. Gold Bulletin. 2007, 40 (4), 270–277.
[29].Stockman, M. I. Dark-Hot Resonances. Nature 2010, 467, 541–542.
[30].Xu, T.; Shi, H.; Wu, Y. K.; Kaplan, A. F.; Ok, J. G.; Guo, L. J. Structural Colors: From Plasmonic to Carbon Nanostructures. Small 2011, 7 (22), 3128–3136.
[31].Kang, L.; Jenkins, R. P.; Werner, D. H. Recent Progress in Active Optical Metasurfaces. Adv. Opt. Mater. 2019, 7 (14), 1801813.
[32].Lee, Y.; Park, M. K.; Kim, S.; Shin, J. H.; Moon, C.; Hwang, J. Y.; Choi, J. C.; Park, H.; Kim, H. R.; Jang, J. E. Electrical Broad Tuning of Plasmonic Color Filter Employing an Asymmetric-Lattice Nanohole Array of Metasurface Controlled by Polarization Rotator. ACS Photonics 2017, 4 (8), 1954–1966.
[33].Sharma, M.; Hendler, N.; Ellenbogen, T. Electrically Switchable Color Tags Based on Active Liquid-Crystal Plasmonic Metasurface Platform. Adv. Opt. Mater. 2020, 1901182.
[34].Shu, F. Z.; Yu, F. F.; Peng, R. W.; Zhu, Y. Y.; Xiong, B.; Fan, R. H.; Wang, Z. H.; Liu, Y.; Wang, M. Dynamic Plasmonic Color Generation Based on Phase Transition of Vanadium Dioxide. Adv. Opt. Mater. 2018, 1700939.
[35].Duan, X.; Liu, N. Scanning Plasmonic Color Display. ACS Nano 2018, 12 (8), 8817–8823.
[36].Huang, M.; Tan, A. J.; Büttner, F.; Liu, H.; Ruan, Q.; Hu, W.; Mazzoli, C.; Wilkins, S.; Duan, C.; Yang, J. K. W.; Beach, G. S. D. Voltage-gated Optics and Plasmonics Enabled by Solid-State Proton Pumping. Nat. Commun. 2019, 10, 5030.
[37].Wu, Y.; Yang, W.; Fan, Y.; Song, Q.; Xiao, S. TiO2 Metasurfaces: From Visible Planar Photonics to Photochemistry. Sci. Adv. 2019, 5 (11), eaax0939.
[38].Tseng, M. L.; Yang, J.; Semmlinger, M.; Zhang, C.; Nordlander, P.; Halas, N. J. Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response. Nano Lett. 2017, 17 (10), 6034–6039.
[39].Liu, Y. J.; Zheng, Y. B.; Liou, J.; Chiang, I. K.; Khoo, I. C.; Huang, T. J. All-Optical Modulation of Localized Surface Plasmon Coupling in a Hybrid System Composed of Photoswitchable Gratings and Au Nanodisk Arrays. J. Phys. Chem. C 2011, 115 (15), 7717–7722.
[40].Liu, Y. J.; Si, G. Y.; Leong, E. S. P.; Xiang, N.; Danner, A. J.; Teng, J. H. Light-Driven Plasmonic Color Filters by Overlaying Photoresponsive Liquid Crystals on Gold Annular Aperture Arrays. Adv. Mater. 2012, 24 (23), OP131–OP135.
[41].Franklin, D.; Chen, Y.; Vazquez-Guardado, A.; Modak, S.; Boroumand, J.; Xu, D.; Wu, S. T.; Chanda, D. Polarization-Independent Actively Tunable Colour Generation on Imprinted Plasmonic Surfaces. Nat. Commun. 2015, 6, 7337.
[42].Griffiths, D. J. Introduction to Electrodynamic, 3rd ed.; Prentice Hall, Inc., 1999, ISBN: 0-13-805326-X.
[43].Zhou, L.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H.; Henderson, L.; Dong, L.; Christopher, P.; Carter, E. A.; Nordlander, P.; Halas, N. J. Quantifying Hot Carrier and Thermal Contributions in Plasmonic Photocatalysis. Science. 2018, 362, 69–72.
[44].Mie G. Beitrage zur Optik turber medien, spezziell kolloidaler metallosungen, Anna. der Physik 1908, 3, 378-445.
[45].Murray, A. W.; Barnes, L. W. Plasmonic Materials. Adv. Mater. 2007, 19, 3771–3782.
[46].Zayats, V. A.; Smolyaninov, I. I.; Maradudin A. A. Nano-Optics of Surface Plasmon Polaritons. Phys. Rep. 2005, 5, 131–314.
[47].Liu, C.; Lü, J.; Liu, W.; Wang, F.; Chu, P. K. Overview of Refractive Index Sensors Comprising Photonic Crystal Fibers Based on the Surface Plasmon Resonance Effect [Invited]. Chinese Opt. Lett. 2021, 19 (10), 102202.
[48].Genet, C.; Ebbesen, T. W. Light in Tiny Holes. Nature 2007, 445, 39–46.
[49].Bravo-Abad, J.; Degiron, A.; Przybilla, F.; Genet, C.; García-Vidal, F. J.; Martín-Moreno, L.; Ebbesen, T. W. How Light Emerges from an Illuminated Array of Subwavelength Holes. Nat. Phys. 2006, 2 (2), 120–123.
[50].Martín-Moreno, L.; García-Vidal, F. J.; Lezec, H. J.; Pellerin, K. M.; Thio, T.; Pendry, J. B.; Ebbesen, T. W. Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays. Phys. Rev. Lett. 2001, 86 (6), 1114–1117.
[51].Drezet, A.; Genet, C.; Ebbesen, T. W. Miniature Plasmonic Wave Plates. Phys. Rev. Lett. 2008, 101 (4), 043902.
[52].Degiron, A.; Ebbesen, T. W. The Role of Localized Surface Plasmon Modes in the Enhanced Transmission of Periodic Subwavelength Apertures. J. Opt. A Pure Appl. Opt. 2005, 7 (2), S90-S96.
[53].Gordon, R.; Brolo, A. G.; McKinnon, A.; Rajora, A.; Leathem, B.; Kavanagh, K. L. Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays. Phys. Rev. Lett. 2004, 92 (3), 037401.
[54].Ren, X. F.; Zhang, P.; Guo, G. P.; Huang, Y. F.; Wang, Z. W.; Guo, G. C. Polarization Properties of Subwavelength Hole Arrays Consisting of Rectangular Holes. Appl. Phys. B Lasers Opt. 2008, 91, 601–604.
[55].Degiron, A.; Lezec, H. J.; Yamamoto, N.; Ebbesen, T. W. Optical Transmission Properties of a Single Subwavelength Aperture in a Real Metal. Opt. Commun. 2004, 239, 61–66.
[56].Treacy, M. M. J. Dynamical Diffraction Explanation of the Anomalous Transmission of Light through Metallic Gratings. Phys. Rev. B - Condens. Matter Mater. Phys. 2002, 66 (19), 195105.
[57].Ye, Y.-H.; Zhang, J.-Y. Enhanced Light Transmission through Cascaded Metal Films Perforated with Periodic Hole Arrays. Opt. Lett. 2005, 30 (12), 1521-1523.
[58].Chang, S.-H.; Gray, S. K.; Schatz, G. C. Surface Plasmon Generation and Light Transmission by Isolated Nanoholes and Arrays of Nanoholes in Thin Metal Films. Opt. Express 2005, 13 (8), 3150.
[59].Schäferling, M. Springer Series in Optical Sciences 205 Chiral Nanophotonics Chiral Optical Properties of Plasmonic Systems. 2017, ISBN 978-3-319-42263-3.
[60].Tang Y.; Cohen A. E. Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light. Science, 2011, 332, 6027.
[61].Ashalley, E.; Acheampong, K.; Besteiro, L. V.; Yu, P.; Neogi, A.; Govorov, A. O.; Wang, Z. M. Multitask Deep-Learning-Based Design of Chiral Plasmonic Metamaterials. Photonics Res. 2020, 8 (7), 1213–1225.
[62].Probst, P. T.; Mayer, M.; Gupta, V.; Steiner, A. M.; Zhou, Z.; Auernhammer, G. K.; König, T. A. F.; Fery, A. Mechano-Tunable Chiral Metasurfaces via Colloidal Assembly. Nat. Mater. 2021, 20 (7), 1024–1028.
[63].Zhao, Y.; Askarpour, A. N.; Sun, L.; Shi, J.; Li, X.; Alù, A. Chirality Detection of Enantiomers Using Twisted Optical Metamaterials. Nat. Commun. 2017, 8, 14180.
[64].Cen, M.; Wang, J.; Liu, J.; He, H.; Li, K.; Cai, W.; Cao, T.; Liu, Y. J. Ultrathin Suspended Chiral Metasurfaces for Enantiodiscrimination. Adv. Mater. 2022, 2203956.
[65].Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; Von Freymann, G.; Linden, S.; Wegener, M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science. 2009, 325 (5947), 1513–1515.
[66].Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-Acid- and Peptide-Directed Synthesis of Chiral Plasmonic Gold Nanoparticles. Nature 2018, 556 (7701), 360–364.
[67].Mokashi-Punekar, S.; Merg, A. D.; Rosi, N. L. Systematic Adjustment of Pitch and Particle Dimensions within a Family of Chiral Plasmonic Gold Nanoparticle Single Helices. J. Am. Chem. Soc. 2017, 139 (42), 15043–15048.
[68].Cao, T.; Wei, C.; Mao, L.; Li, Y. Extrinsic 2D Chirality: Giant Circular Conversion Dichroism from a Metal-Dielectric-Metal Square Array. Sci. Rep. 2014, 4, 7442.
[69].Horrer, A.; Zhang, Y.; Gérard, D.; Béal, J.; Kociak, M.; Plain, J.; Bachelot, R. Local Optical Chirality Induced by Near-Field Mode Interference in Achiral Plasmonic Metamolecules. Nano Lett. 2020, 20 (1), 509–516.
[70].Tamma, V. A.; Cui, Y.; Zhou, J.; Park, W. Nanorod Orientation Dependence of Tunable Fano Resonance in Plasmonic Nanorod Heptamers. Nanoscale 2013, 5 (4), 1592–1602.
[71].Liu, J.; Zeng, H.; Cheng, M.; Wang, Z.; Wang, J.; Cen, M.; Luo, D.; Priimagi, A.; Liu, Y. J. Photoelastic Plasmonic Metasurfaces with Ultra-Large near Infrared Spectral Tuning. Mater. horizons 2022, 9 (3), 942–951.
[72].Luo, Y.; Li, X.; Zhang, X.; Prybolsky, S.; Shepard, G. D.; Strauf, S. Tunable Multipole Resonances in Plasmonic Crystals Made by Four-Beam Holographic Lithography. Appl. Phys. Lett. 2016, 108 (5), 053105.
[73].Cao, T.; Zhang, X.; Dong, W.; Lu, L.; Zhou, X.; Zhuang, X.; Deng, J.; Cheng, X.; Li, G.; Simpson, R. E. Tuneable Thermal Emission Using Chalcogenide Metasurface. Adv. Opt. Mater. 2018, 6 (16), 1800169.
[74].Decker, M.; Kremers, C.; Minovich, A.; Staude, I.; Miroshnichenko, A. E.; Chigrin, D.; Neshev, D. N.; Jagadish, C.; Kivshar, Y. S. Electro-Optical Switching by Liquid-Crystal Controlled Metasurfaces. Opt. Express 2013, 21 (7), 8879.
[75].Kim, T. T.; Soon Oh, S.; Kim, H. D.; Sung Park, H.; Hess, O.; Min, B.; Zhang, S. Electrical Access to Critical Coupling of Circularly Polarized Waves in Graphene Chiral Metamaterials. Sci. Adv. 2017, 3 (9), e1701377.
[76].Li, J.; Kamin, S.; Zheng, G.; Neubrech, F.; Zhang, S.; Liu, N. Addressable Metasurfaces for Dynamic Holography and Optical Information Encryption. Sci. Adv. 2018, 4 (6), eaar6768.
[77].Kravets, V. G.; Kabashin, A. V.; Barnes, W. L.; Grigorenko, A. N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118 (12), 5912–5951.
[78].Mishra, S. K.; Gupta, B. D. Surface Plasmon Resonance Based Fiber Optic PH Sensor Utilizing Ag/ITO/Al/Hydrogel Layers. Analyst 2013, 138 (9), 2640–2646.
[79].Oh, D. K.; Lee, T.; Ko, B.; Badloe, T.; Ok, J. G.; Rho, J. Nanoimprint Lithography for High-Throughput Fabrication of Metasurfaces. Front. Optoelectron. 2021, 14 (2), 229–251.
[80].Hong F.; Blaikie R. Plasmonic Lithography: Recent Progress. Adv. Opt. Mater. 2019, 7(14), 1801653.
[81].Kelker, H. History of Liquid Crystals. 1973; 21, 1-48.
[82].Yang, D. K.; Wu, S. T. Fundamentals of Liquid Crystal Devices, 2nd ed., Wiley, 2006, ISBN 978-1-118-75200-5.
[83].Dierking, I. Textures of Liquid Crystals, 2003, Wiely-VCH, ISBN 3-527-30725-7.
[84].Woltman, S. J.; Jay, G. D.; Crawford, G. P. Liquid-Crystal Materials Find a New Order in Biomedical Applications. Nat. Mater. 2007, 6 (12), 929–938.
[85].Kim, S.; Kurihara, S. Photochemical On-off Switching of One-Dimensional Photonic Crystals Consisting of Azo-Functionalized Liquid Crystal Polymer and Polyvinyl Alcohol. Crystals 2019, 9 (12), 610.
[86].Ishihara S.; Mizusaki M. Alignment control technology of liquid crystal molecules. J. Soc. Inf. Disp. 2020, 28, 44-74.
[87].Ma, L. L.; Li, C. Y.; Pan, J. T.; Ji, Y. E.; Jiang, C.; Zheng, R.; Wang, Z. Y.; Wang, Y.; Li, B. X.; Lu, Y. Q. Self-Assembled Liquid Crystal Architectures for Soft Matter Photonics. Light Sci. Appl. 2022, 11 (1), 270.
[88].Seki, T. New Strategies and Implications for the Photoalignment of Liquid Crystalline Polymers. Polym. J. 2014, 46 (11), 751–768.
[89].Wang, J.; Li, K.; He, H.; Cai, W.; Liu, J.; Yin, Z.; Mu, Q.; Hisao, V. K. S.; Gérard, D.; Luo, D.; Li, G.; Liu, Y. J. Metasurface-Enabled High-Resolution Liquid-Crystal Alignment for Display and Modulator Applications. Laser Photonics Rev. 2022, 16, 2100396.
[90].Liu, S.; Li, Y.; Zhou, P.; Chen, Q.; Su, Y. Reverse-Mode PSLC Multi-Plane Optical See-through Display for AR Applications. Opt. Express 2018, 26 (3), 3394.
[91].Wu, L.; Wang, X.; He, X.; Huang, Z.; Huang, X.; Xiong, C. Arbitrary Multiple Beam Forming by Two Cascaded Liquid Crystal Optical Phased Arrays. Opt. Express 2018, 26 (13), 17066.
[92].Tzeng, Y.-Y.; Ke, S.-W.; Ting, C.-L.; Fuh, A. Y.-G.; Lin, T.-H. Axially Symmetric Polarization Converters Based on Photo-Aligned Liquid Crystal Films. Opt. Express 2008, 16 (6), 3768.
[93].Mao, P.; Liu, C.; Song, F.; Han, M.; Maier, S. A.; Zhang, S. Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection. Nat. Commun. 2020, 11, 1538.
[94].Ellenbogen, T.; Seo, K.; Crozier, K. B. Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry. Nano Lett. 2012, 12 (2), 1026–1031.
[95].Kumar, K.; Duan, H.; Hegde, R. S.; Koh, S. C. W.; Wei, J. N.; Yang, J. K. W. Printing Colour at the Optical Diffraction Limit. Nat. Nanotechnol. 2012, 7 (9), 557–561.
[96].Han, Z.; Frydendahl, C.; Mazurski, N.; Levy, U. MEMS Cantilever–Controlled Plasmonic Colors for Sustainable Optical Displays. Sci. Adv. 2022, 8 (16), eabn0889.
[97].Wen, Y.; Lin, J.; Chen, K.; Lin, Y. S.; Yang, B. R. Full Color Metasurface with High-Transmission and Omnidirectional Characteristics. Opt. Laser Technol. 2022, 150, 108004.
[98].Li, Z.; Clark, A. W.; Cooper, J. M. Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. ACS Nano 2016, 10 (1), 492–498.
[99].Franklin, D.; Frank, R.; Wu, S. T.; Chanda, D. Actively Addressed Single Pixel Full-Colour Plasmonic Display. Nat. Commun. 2017, 8, 15209.
[100].Tseng, A. A. Nanofabrication: Fundamentals and Applications, World Scientific Publishing Company, 2008, ISBN: 978-981-4476-77-5.
[101].Mao, P.; Liu, C.; Song, F.; Han, M.; Maier, S. A.; Zhang, S. Absorption To Recon Fi Gurable Re Fl Ection. Nat. Commun. 2020, 11, 1538.
[102].Gordon, R.; Brolo, A. G.; McKinnon, A.; Rajora, A.; Leathem, B.; Kavanagh, K. L. Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays. Phys. Rev. Lett. 2004, 92 (3), 037401.
[103].Koerkamp, K. J. K.; Enoch, S.; Segerink, F. B.; Van Hulst, N. F.; Kuipers, L. Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes. Phys. Rev. Lett. 2004, 92 (18), 183901.
[104].Chang, S.-H.; Gray, S. K.; Schatz, G. C. Surface Plasmon Generation and Light Transmission by Isolated Nanoholes and Arrays of Nanoholes in Thin Metal Films. Opt. Express 2005, 13 (8), 3150–3165.
[105].Nakanishi, T.; Tsutsumi, E.; Masunaga, K.; Fujimoto, A.; Asakawa, K. Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles. Appl. Phys. Express 2011, 4 (2), 025201.
[106].Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary Optical Transmission through Sub-Wavelenght Hole Arrays. Nature 1998, 391, 667–669.
[107].Genet, C.; Ebbesen, T. W. Light in Tiny Holes. Nature 2007, 445, 39–46.
[108].Wood, R. W. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proc. Phys. Soc. 1901, 18, 269–275.
[109].Maradudin, A. A.; Simonsen, I.; Polanco, J.; Fitzgerald, R. M. Rayleigh and Wood Anomalies in the Diffraction of Light from a Perfectly Conducting Reflection Grating. J. Opt. 2016 18, 024004.
[110].Khlopin, D.; Laux, F.; Wardley, W. P.; Martin, J.; Wurtz, G. A.; Plain, J.; Bonod, N.; Zayats, A. V.; Dickson, W.; Gérard, D. Lattice Modes and Plasmonic Linewidth Engineering in Gold and Aluminum Nanoparticle Arrays. J. Opt. Soc. Am. B 2017, 34 (3), 691–700.
[111].Kang, E. S. H.; Ekinge,nH.; Jonsson, M. P. “Plasmonic Fanoholes: on the Gradual Transition From Suppressed to Enhanced Optical Transmission Through Nanohole Arrays in Metal Films of Increasing Film Thickness,” Opt. Mater. Express 2019, 9, 1404–1415.
[112].Malekian, B.; Xiong, K.; Kang, E. S. H.; Andersson, J.; Emilsson, G.; Rommel, M.; Sannomiya, T.; Jonsson, M. P.; Dahlin, A. “Optical Properties of Plasmonic Nanopore Arrays Prepared by Electron Beam and Colloidal Lithography,” Nanoscale Adv. 2019, 1, 4282–4289.
[113].Adato, R.; Yanik, A. A.; Amsden, J. J.; Kaplan, D. L.; Omenetto, F. G.; Hong, M. K.; Erramilli, S.; Altug, H. Ultra-Sensitive Vibrational Spectroscopy of Protein Monolayers with Plasmonic Nanoantenna Arrays. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (46), 19227–19232.
[114].Laux, E.; Genet, C.; Skauli, T.; Ebbesen, T. W. Plasmonic Photon Sorters for Spectral and Polarimetric Imaging. Nat. Photonics 2008, 2 (3), 161–164.
[115].Wang, J. Li, K. He, H. Cai, W.; Liu, J.; Yin, Z.; Mu, Q.; Hsiao, V. K. S.; Gérard, D.; Luo, D.; Li, G.; Liu, Y. J. Metasurface-Enabled High-Resolution Liquid-Crystal Alignment for Display and Modulator Applications, Laser Photon. Rev. 2022, 16, 2100396.
[116].Yariv, A.; Yeh, P.; Optical Waves in Crystals: Propagation and Control of Laser Radiation, 1984. ISBN: 0-471-09142-1.
[117].Berreman, D. W. Liquid-Crystal Twist Cell Dynamics with Backflow. J. Appl. Phys. 1975, 46 (9), 3746–3751.
[118].Schadt, M. “Milestone in the History of Field-Effect Liquid Crystal Displays and Materials,” Jpn. J. Appl. Phys. 2009, 48, 03B001.
[119].Kim, Y. B.; Hur, I. K. “High Speed Response Time of Nematic Liquid Crystal Mixtures for LCD Monitor and TV Applications,” J. Inf. Disp. 2001, 2(3), 32–38.
[120].Kim, D. S. Hohng, S. C.; Malyarchuk, V.; Yoon, Y. C.; Ahn, Y. H.; Yee, K. J.; Park, J. W.; Kim, J.; Park, Q. H.; Lienau, C. “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 2003, 91(14), 143901.
[121].Przybilla, F.; Degiron, A.; Genet, C.; Ebbesen, T. W., Léon-Pérez, F. de; Bravo-Abad, J.; García-Vidal, F. J.; Martín-Moreno, L. “Efficiency and Finite Size Effects in Enhanced Transmission Through Subwavelength Apertures,” Opt. Express 2008, 16(13), 9571–9579.
[122].Huang, M.; Tan, A. J.; Büttner, F.; Liu, H.; Ruan, Q.; Hu, W.; Mazzoli, C.; Wilkins, S.; Duan, C.; Yang, J. K. W.; Beach, G. S. D. Voltage-Gated Optics and Plasmonics Enabled by Solid-State Proton Pumping. Nat. Commun. 2019, 10, 5030.
[123].Duan, X.; Liu, N. Scanning Plasmonic Color Display. ACS Nano 2018, 12(8), 8817–8823.
[124].Wu, Y.; Yang, W.; Fan, Y.; Song, Q.; Xiao, S. TiO2 Metasurfaces: From Visible Planar Photonics to Photochemistry. Sci. Adv. 2019, 5(11), eaaax0939.
[125].Zang, X.; Dong, F.; Yue, F.; Zhang, C.; Xu, L.; Song, Z.; Chen, M.; Chen, P. Y.; Buller, G. S.; Zhu, Y.; Zhuang, S.; Chu, W.; Zhang, S.; Chen, X. Polarization Encoded Color Image Embedded in a Dielectric Metasurface. Adv. Mater. 2018, 30, 1707499.
[126].Li, J.; Kamin, S.; Zheng, G.; Neubrech, F.; Zhang, S.; Liu, N. Addressable Metasurfaces for Dynamic Holography and Optical Information Encryption. Sci. Adv. 2018, 4, eaar6768.
[127].Song, M.; Wang, D.; Kudyshev, Z. A.; Xuan, Y.; Wang, Z.; Boltasseva, A.; Shalaev V. M.; Kildishev A. V. Enabling Optical Steganography, Data Storage, and Encryption with Plasmonic Colors. Laser Photon. Rev. 2021, 15, 2000343.
[128].Duempelmann, L.; Luu-Dinh, A.; Gallinet, B.; Novotny, L. Four-Fold Color Filter Based on Plasmonic Phase Retarder. ACS Photon. 2016, 3, 190–196.
[129].Li, Z.; Clark, A. W.; Cooper, J. M. Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. ACS Nano 2016, 10, 492–498.
[130].Chen, Y.; Yang, X.; Gao, J. 3D Janus Plasmonic Helical Nanoapertures for Polarization-Encrypted Data Storage. Light Sci. Appl. 2019, 8, 45.
[131].Goh, X. M.; Zheng, Y.; Tan, S. J.; Zhang, L.; Kumar, K.; Qiu, C. W.; Yang, J. K. W. Three-Dimensional Plasmonic Stereoscopic Prints in Full Colour. Nat. Commun. 2014, 5, 5361.
[132].Jang, J.; Jeong, H.; Hu, G.; Qiu, C. W.; Nam, K. T.; Rho, J. Kerker-Conditioned Dynamic Cryptographic Nanoprints. Adv. Opt. Mater. 2019, 7, 1801070.
[133].Jung, C.; Yang, Y.; Jang, J.; Badloe, T.; Lee, T.; Mun, J.; Moon, S. W.; Rho, J. Near-Zero Reflection of All-Dielectric Structural Coloration Enabling Polarization-Sensitive Optical Encryption with Enhanced Switchability. Nanophotonics 2020, 10, 919–926.
[134].Deng, J.; Deng, L.; Guan, Z.; Tao, J.; Li, G.; Li, Z.; Li, Z.; Yu, S.; Zheng, G. Multiplexed Anticounterfeiting Meta-Image Displays with Single-Sized Nanostructures. Nano Lett. 2020, 20, 1830–1838.
[135].Cai, J.; Zhang, C.; Li, W. Di. Dual-Color Flexible Metasurfaces with Polarization-Tunable Plasmons in Gold Nanorod Arrays. Adv. Opt. Mater. 2020, 2001401, 1–8.
[136].Kim, T.; Yu, E.-S.; Bae, Y.-G.; Lee, J.; Kim, I. S.; Chung, S.; Lee, S.-Y.; Ryu, Y.-S. Asymmetric Optical Camouflage: Tuneable Reflective Colour Accompanied by the Optical Janus Effect. Light Sci. Appl. 2020, 9, 175.
[137].Sharma, M.; Hendler, N.; Ellenbogen, T. Electrically Switchable Color Tags Based on Active Liquid-Crystal Plasmonic Metasurface Platform. Adv. Opt. Mater. 2020, 8, 1901182.
[138].Liu, Y. J.; Sun, X. W. Electrically Switchable Computer-Generated Hologram Recorded in Polymer-Dispersed Liquid Crystals. Appl. Phys. Lett. 2007, 90, 191118.
[139].Liu, Y. J.; Sun, X. W. Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications. Adv. Optoelectron. 2008, 684349.
[140].Li, K.; Jiang, H.; Cheng, M.; Li, Y.; Yin, Z.; Luo, D.; Sun, X. W.; Liu, Y. J. Controlling Morphological and Electro-Optical Properties via the Phase Separation in Polymer/Liquid-Crystal Composite Materials. Liq. Cryst. 2020, 47, 238–247.
[141].Wang, Q.-J.; Li, J.-Q.; Huang, C.-P.; Zhang, C.; Zhu, Y.-Y. Enhanced Optical Transmission through Metal Films with Rotation-Symmetrical Hole Arrays. Appl. Phys. Lett. 2005, 87, 091105.
[142].Drzaic, P. S. Droplet Density, Droplet Size, and Wavelength Effects in PDLC Light Scattering. Mol. Cryst. Liq. Cryst. 1995, 261, 383–392.
[143].Lee, G.; Kong, M.; Park, D.; Park, J.; Jeong, U. Electro-Photoluminescence Color Change for Deformable Visual Encryption. Adv. Mater. 2020, 32, 1907477.
[144].Du, W.; Wen, X.; Gerard, D.; Qiu, C.-W. ; Xiong, Q. Chiral Plasmonics and Enhanced Chiral Light-Matter Interactions. Sci China Pys Mech. 2020, 63(4), 244201.
[145].Collins, T. J.; Kuppe, C.; Hopper, C. D.; Sibilia, C.; Centini, M.; Valev, K. V. Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends. Adv. Optical. Mater. 2017, 5, 1700182.
[146].1Thiel, M.; Decker, M.; Deubel, M.; Wegener, M.; Linden, S.; Von Freymann, G. Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals. Adv. Mater. 2007, 19 (2), 207–210.
[147].3Bouchal, P.; Bouchal, Z. Twisted Rainbow Light and Nature-Inspired Generation of Vector Vortex Beams. Laser Photonics Rev. 2022, 16 (7), 2200080.
[148].4Singh, L.; Fox, M.; Sternklar, S.; Gorodetski, Y. Topological Diffraction from Grating with Space Variant Chirality. ACS Photonics 2022, 9 (4), 1395–1399.
[149].7Hou, Y.; Qiu, M.; Cao, Z.; Zhou, J.; Ong, H. C.; Jin, W.; Du, J.; Lei, D. High-Q Circular Dichroism Resonances in Plasmonic Lattices with Chiral Unit Cells. Adv. Funct. Mater. 2022, 32 (40), 2204095.
[150].2Jiang, Q.; Pham, A.; Berthel, M.; Huant, S.; Bellessa, J.; Genet, C.; Drezet, A. Directional and Singular Surface Plasmon Generation in Chiral and Achiral Nanostructures Demonstrated by Leakage Radiation Microscopy. ACS Photonics 2016, 3 (6), 1116–1124.
[151].5Zhou, S.; Bian, J.; Chen, P.; Xie, M.; Chao, J.; Hu, W.; Lu, Y.; Zhang, W. Polarization-Dispersive Imaging Spectrometer for Scattering Circular Dichroism Spectroscopy of Single Chiral Nanostructures. Light Sci. Appl. 2022, 11 (1), 64.
[152].6Chenqian Wang; Chinhua Wang. Dichroism Metalens Imaging Using Nested Dual Helical Surfaces. Optica 2021, 8 (4), 502–510.
[153].Feng, Z.; He, C.; Xie, Y.; Zhang, C.; Li, J.; Liu, D.; Jiang, Z.; Chen, X.; Zou, G. Chiral Biosensing at Both Interband Transition and Plasmonic Extinction Regions Using Twisted-Stacked Nanowire Arrays. Nanoscale 2022, 14 (29), 10524–10530.
[154].Nguyen, H. Q.; Hwang, D.; Park, S.; Nguyen, M. C. T.; Kang, S. S.; Tran, V. T.; Lee, J. One-Pot Synthesis of Magnetoplasmonic Au@FexOyNanowires: Bioinspired Bouligand Chiral Stack. ACS Nano 2022, 16 (4), 5795–5806.
[155].Ashalley, E.; Acheampong, K.; Besteiro, L. V.; Yu, P.; Neogi, A.; Govorov, A. O.; Wang, Z. M. Multitask Deep-Learning-Based Design of Chiral Plasmonic Metamaterials. Photonics Res. 2020, 8 (7), 1213–1225.
[156].Tullius, R.; Platt, G. W.; Khosravi Khorashad, L.; Gadegaard, N.; Lapthorn, A. J.; Rotello, V. M.; Cooke, G.; Barron, L. D.; Govorov, A. O.; Karimullah, A. S.; Kadodwala, M. Superchiral Plasmonic Phase Sensitivity for Fingerprinting of Protein Interface Structure. ACS Nano 2017, 11 (12), 12049–12056.
[157].Passaseo, A.; Esposito, M.; Cuscunà, M.; Tasco, V. Materials and 3D Designs of Helix Nanostructures for Chirality at Optical Frequencies. Adv. Opt. Mater. 2017, 5 (16), 1601079.
[158].Zhou, X.; Hou, Y.; Lin, J. A Review on the Processing Accuracy of Two-Photon Polymerization. AIP Adv. 2015, 5 (3), 030701.
[159].Powers, E. P.; Haus, J. W. Fundamentals of Nonlinear Optics, 1st ed.; CRC Press, 2019.
[160].Fischer, A.; Cremer, C.; Stelzer, E. H. K. Fluorescence of Coumarins and Xanthenes after Two-Photon Absorption with a Pulsed Titanium–Sapphire Laser. Appl. Opt. 1995, 34 (12), 1989–2003.
[161].Schafer, K. J.; Hales, J. M.; Balu, M.; Belfield, K. D.; Van Stryland, E. W.; Hagan, D. J. Two-Photon Absorption Cross-Sections of Common Photoinitiators. J. Photochem. Photobiol. A Chem. 2004, 162 (2–3), 497–502.
[162].Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.; Rebane, A. Two-Photon Absorption Properties of Fluorescent Proteins. Nat. Methods 2011, 8 (5), 393–399.
[163].Nanoscribe, Photonic Professional (GT): User Manual. Eggenstein-Leopoldshafen. 2017.
[164].Mau, A.; Dietlin, C.; Dumur, F.; Lalevée, J. Concomitant Initiation of Radical and Cationic Polymerisations Using New Copper Complexes as Photoinitiators: Synthesis and Characterisation of Acrylate/Epoxy Interpenetrated Polymer Networks. Eur. Polym. J. 2021, 152, 110457.
[165].Xiao, P.; Dumur, F.; Zhang, J.; Fouassier, J. P.; Gigmes, D.; Lalevée, J. Copper Complexes in Radical Photoinitiating Systems: Applications to Free Radical and Cationic Polymerization upon Visible Leds. Macromolecules 2014, 47 (12), 3837–3844.
[166].Issa, A.; Izquierdo, I.; Merheb, M.; Ge, D.; Broussier, A.; Ghabri, N.; Marguet, S.; Couteau, C.; Bachelot, R.; Jradi, S. One Strategy for Nanoparticle Assembly onto 1D, 2D, and 3D Polymer Micro and Nanostructures. ACS Appl. Mater. Interfaces 2021, 13 (35), 41846–41856.
[167].Axelevitch, A.; Apter, B.; Golan, G. Simulation and Experimental Investigation of Optical Transparency in Gold Island Films. Opt. Express 2013, 21 (4), 4126.
[168].Li, W.-D.; Hu, J.; Chou, S. Y. Extraordinary Light Transmission through Opaque Thin Metal Film with Subwavelength Holes Blocked by Metal Disks. Opt. Express 2011, 19 (21), 21098.
[169].Gao, H.; McMahon, J. M.; Lee, M. H.; Henzie, J.; Gray, S. K.; Schatz, G. C.; Odom, T. W. Rayleigh Anomaly-Surface Plasmon Polariton Resonances in Palladium and Gold Subwavelength Hole Arrays. Opt. Express 2009, 17 (4), 2334.
[170].Chang, S.-H.; Gray, S. K.; Schatz, G. C. Surface Plasmon Generation and Light Transmission by Isolated Nanoholes and Arrays of Nanoholes in Thin Metal Films. Opt. Express 2005, 13 (8), 3150.
[171].Peng, Y.; Jradi, S.; Yang, X.; Dupont, M.; Hamie, F.; Dinh, X. Q.; Sun, X. W.; Xu, T.; Bachelot, R. 3D Photoluminescent Nanostructures Containing Quantum Dots Fabricated by Two-Photon Polymerization: Influence of Quantum Dots on the Spatial Resolution of Laser Writing. Adv. Mater. Technol. 2019, 4 (2), 1800522.
[172].Yin, X.; Schäferling, M.; Metzger, B.; Giessen, H. Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born-Kuhn Model. Nano Lett. 2013, 13 (12), 6238–6243.
[173]. Li, Z.; Clark, A. W.; Cooper, J. M. Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. ACS Nano 2016, 10 (1), 492–498.
[174].Zhao, Y.; Askarpour, A. N.; Sun, L.; Shi, J.; Li, X.; Alù, A. Chirality Detection of Enantiomers Using Twisted Optical Metamaterials. Nat. Commun. 2017, 8, 6–13.
[175].Yang, D. K.; Wu, S. T. Fundamentals of Liquid Crystal Devices, 2nd ed., Wiley, 2006, ISBN 978-1-118-75200-5.
[176].Wang, L.; Ge, S.; Hu, W.; Nakajima, M.; Lu, Y. Graphene-Assisted High-Efficiency Liquid Crystal Tunable Terahertz Metamaterial Absorber. Opt. Express 2017, 25 (20), 23873.
[177].Probst, P. T.; Mayer, M.; Gupta, V.; Steiner, A. M.; Zhou, Z.; Auernhammer, G. K.; König, T. A. F.; Fery, A. Mechano-Tunable Chiral Metasurfaces via Colloidal Assembly. Nat. Mater. 2021, 20 (7), 1024–1028.
[178].Cen, M.; Wang, J.; Liu, J.; He, H.; Li, K.; Cai, W.; Cao, T.; Liu, Y. J. Ultrathin Suspended Chiral Metasurfaces for Enantiodiscrimination. Adv. Mater. 2022, 2203956, 1–11.
[179].Li, G.; Alshalalfeh, M.; Yang, Y.; Cheeseman, J. R.; Bouř, P.; Xu, Y. Can One Measure Resonance Raman Optical Activity? Angew. Chemie - Int. Ed. 2021, 60 (40), 22004–22009.
[180].Sun, M.; Zhang, Z.; Wang, P.; Li, Q.; Ma, F.; Xu, H. Remotely Excited Raman Optical Activity Using Chiral Plasmon Propagation in Ag Nanowires. Light Sci. Appl. 2013, 2, e112.
[181].Issa, A.; Izquierdo, I.; Merheb, M.; Ge, D.; Broussier, A.; Ghabri, N.; Marguet, S.; Couteau, C.; Bachelot, R.; Jradi, S. One Strategy for Nanoparticle Assembly onto 1D, 2D, and 3D Polymer Micro and Nanostructures. ACS Appl. Mater. Interfaces 2021, 13 (35), 41846–41856.
[182].Sakellari, I.; Yin, X.; Nesterov, M. L.; Terzaki, K.; Xomalis, A.; Farsari, M. 3D Chiral Plasmonic Metamaterials Fabricated by Direct Laser Writing: The Twisted Omega Particle. Adv. Opt. Mater. 2017, 5 (16), 1–6.
[183].Liu, L.; Yang, D.; Wan, W.; Yang, H.; Gong, Q.; Li, Y. Fast Fabrication of Silver Helical Metamaterial with Single-Exposure Femtosecond Laser Photoreduction. Nanophotonics 2019, 8 (6), 1087–1093.
[184].Esposito, M.; Manoccio, M.; Leo, A.; Cuscunà, M.; Sun, Y.; Ageev, E.; Zuev, D.; Benedetti, A.; Tarantini, I.; Passaseo, A.; Tasco, V. 3D Chiral MetaCrystals. Adv. Funct. Mater. 2022, 32 (12).
[185].Garcia-Santiago, X.; Hammerschmidt, M.; Sachs, J.; Burger, S.; Kwon, H.; Knöller, M.; Arens, T.; Fischer, P.; Fernandez-Corbaton, I.; Rockstuhl, C. Toward Maximally Electromagnetically Chiral Scatterers at Optical Frequencies. ACS Photonics 2022, 9 (6), 1954–1964.
修改评论