中文版 | English
题名

Tunable plasmonics based on metal dielectric hybrid nanostructures

姓名
姓名拼音
LI Ke
学号
11967001
学位类型
博士
学位专业
材料,机械,光学与纳米技术
导师
刘言军
导师单位
电子与电气工程系
论文答辩日期
2023-04-21
论文提交日期
2023-06-16
学位授予单位
特鲁瓦工程技术大学
学位授予地点
法国
摘要

The rapid development of nanostructures fabrication boosts the research on plasmonics, from bulk metamaterials to metasurfaces, enabling optical field manipulation (both in amplitude and phase) with compact devices as a result of the engineered light-matter interaction.

In this thesis, we use metal-dielectric hybrid nanostructures (namely, nanoapertures) integrated with an active material (liquid crystals) to demonstrate tunable plasmonic colors. With the help of surface plasmon polaritons, the nanoapertures exhibit single peak transmittance, creating additive colors covering the whole visible range via changing the dimensions of the structures. Asymmetrical nanoapertures could furtherly endow linearly polarization-sensitive colors.

Based on the polarization-dependent appearance, we integrated twisted nematic liquid crystals on an array of nanoapertures, demonstrating switchable patterns between a vivid image and a faded image, that are controlled by the applied electric field or the incident polarization. In addition, binary digital coding enables multichannel pattern encryption through the information carrier of QR codes. Among these, the degenerate coloring of nanoapertures with rectangular or square profiles takes the key role in polarization-dependent multiplexed imaging. The polymer-dispersed-liquid-crystal layer was introduced as a switch between a transparent state and scattering under an applied electric field.

A facile fabrication approach to achieve nanostructures with the capability of tunable circular dichroism was proved. The pulsed laser-induced two-photon polymerization can write an arbitrary geometry in a polymer by moving the laser focus. Here, we demonstrate a chiral structure consisting of two stacked gratings with a twist angle fabricated by the two-photon polymerization, which enables a high circular dichroism value originating from the coupling between the plasmonic resonance of metal in the first and second layers after covering a layer of gold.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2023-11
参考文献列表

[1].Mishchenko, I. M.; Travis, D. L.; Lacis, A. A. Scattering, Absorption, And Emission of Light by Small Particles, 1st ed., Cambridge University Press, 2002, ISBN: 052178252X.
[2].Maier, A. S. Plasmonics: Foundamentals and Applications, Springer, 2007, ISBN: 978-0-387-33150-8.
[3].Drude, P. Zur Geschichte der elektromagnetischen Dispersionsgleichungen, Ann. Phys. 1900, 48, 542.
[4].Maxwell Garnett, J. C. Colours in metal glasses, in metallic films and in metallic solutions. 1905,
[5].Wood, R. W. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proc. Phys. Soc. 1902, 18, 269–275.
[6].Zenneck, J. Uber die Fortpflanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache und ihre Beziehung zur drahtlosen Telegraphie, Annalen Der Physik 1907, 846-866.
[7].Sommerfeld, A. Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie. Annalen Der Physik 1909, 4, 666-736.
[8].Ritchie, R. H. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1956, 106, 874–881.
[9].Stern, E. A.; Ferrell, R. A. Surface Plasma Oscillations of a Degenerate Electron Gas. Phys. Rev. 1960, 120 (1), 130–136.
[10].Otto, A. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. Zeitschrift für Phys. 1968, 216 (4), 398–410.
[11].Wang, Y.; Plummer, E. W.; Kempa, K. Foundations of Plasmonics. Adv. Phys. 2011, 60 (5), 799–898.
[12].Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface Plasmon Subwavelength Optics. Nature 2003, 424 (6950).
[13].Ndukaife, J. C.; Shalaev, V. M.; Boltasseva, A. Plasmonics—Turning Loss into Gain. Science 2016, 351 (6271), 334–335.
[14].Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary Optical Transmission through Sub-Wavelenght Hole Arrays. Nature 1998, 391 (6668), 667–669.
[15].Pendry, J. B. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 2000, 85 (18), 0–3.
[16].Yu, N.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J. P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science. 2011, 334 (6054), 333–337.
[17].Bouchal, P.; Bouchal, Z. Twisted Rainbow Light and Nature-Inspired Generation of Vector Vortex Beams. Laser Photonics Rev. 2022, 16 (7), 2200080.
[18].Davis, T. J.; Janoschka, D.; Dreher, P.; Frank, B.; Meyer zu Heringdorf, F. J.; Giessen, H. Ultrafast Vector Imaging of Plasmonic Skyrmion Dynamics with Deep Subwavelength Resolution. Science. 2020, 368 (6489).
[19].Tian, S.; Neumann, O.; McClain, M. J.; Yang, X.; Zhou, L.; Zhang, C.; Nordlander, P.; Halas, N. J. Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. Nano Lett. 2017, 17 (8), 5071–5077.
[20].Mcfarland, A. D.; Duyne, R. P. Van. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett. 2003, 3(8), 1057–1062.
[21].Qian, C.; Zheng, B.; Shen, Y.; Jing, L.; Li, E.; Shen, L.; Chen, H. Deep-Learning-Enabled Self-Adaptive Microwave Cloak without Human Intervention. Nat. Photonics 2020, 14 (6), 383–390.
[22].Zhang, S.; Fan, W.; Panoiu, N. C.; Malloy, K. J.; Osgood, R. M.; Brueck, S. R. J. Experimental Demonstration of Near-Infrared Negative-Index Metamaterials. Phys. Rev. Lett. 2005, 95 (13), 137404.
[23].Gómez-Castaño, M.; Garcia-Pomar, J. L.; Pérez, L. A.; Shanmugathasan, S.; Ravaine, S.; Mihi, A. Electrodeposited Negative Index Metamaterials with Visible and Near Infrared Response. Adv. Opt. Mater. 2020, 8, 200865.
[24].Kristensen, A.; Yang, J. K. W.; Bozhevolnyi, S. I.; Link, S.; Nordlander, P.; Halas, N. J.; Mortensen, N. A. Plasmonic Colour Generation. Nat. Rev. Mater. 2016, 2, 16088.
[25].Jiang, M.; Siew, S. Y.; Chan, J. Y. E.; Deng, J.; Wu, Q. Y. S.; Jin, L.; Yang, J. K. W.; Teng, J.; Danner, A.; Qiu, C. W. Patterned Resist on Flat Silver Achieving Saturated Plasmonic Colors with Sub-20-Nm Spectral Linewidth. Mater. Today 2020, 35, 1369-7021.
[26].Zheng, P.; Dai, Q.; Li, Z.; Ye, Z.; Xiong, J.; Liu, H. C.; Zheng, G.; Zhang, S. Metasurface-Based Key for Computational Imaging Encryption. Sci. Adv. 2021, 7, eabg0363.
[27].Yue, F.; Wen, D.; Zhang, C.; Gerardot, B. D.; Wang, W.; Zhang, S.; Chen, X. Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States. Adv. Mater. 2017, 29. 1603838.
[28].Freestone, I.; Meeks, N.; Sax, M.; Higgitt, C. The Lycurgus Cup–A Roman Nanotechnology. Gold Bulletin. 2007, 40 (4), 270–277.
[29].Stockman, M. I. Dark-Hot Resonances. Nature 2010, 467, 541–542.
[30].Xu, T.; Shi, H.; Wu, Y. K.; Kaplan, A. F.; Ok, J. G.; Guo, L. J. Structural Colors: From Plasmonic to Carbon Nanostructures. Small 2011, 7 (22), 3128–3136.
[31].Kang, L.; Jenkins, R. P.; Werner, D. H. Recent Progress in Active Optical Metasurfaces. Adv. Opt. Mater. 2019, 7 (14), 1801813.
[32].Lee, Y.; Park, M. K.; Kim, S.; Shin, J. H.; Moon, C.; Hwang, J. Y.; Choi, J. C.; Park, H.; Kim, H. R.; Jang, J. E. Electrical Broad Tuning of Plasmonic Color Filter Employing an Asymmetric-Lattice Nanohole Array of Metasurface Controlled by Polarization Rotator. ACS Photonics 2017, 4 (8), 1954–1966.
[33].Sharma, M.; Hendler, N.; Ellenbogen, T. Electrically Switchable Color Tags Based on Active Liquid-Crystal Plasmonic Metasurface Platform. Adv. Opt. Mater. 2020, 1901182.
[34].Shu, F. Z.; Yu, F. F.; Peng, R. W.; Zhu, Y. Y.; Xiong, B.; Fan, R. H.; Wang, Z. H.; Liu, Y.; Wang, M. Dynamic Plasmonic Color Generation Based on Phase Transition of Vanadium Dioxide. Adv. Opt. Mater. 2018, 1700939.
[35].Duan, X.; Liu, N. Scanning Plasmonic Color Display. ACS Nano 2018, 12 (8), 8817–8823.
[36].Huang, M.; Tan, A. J.; Büttner, F.; Liu, H.; Ruan, Q.; Hu, W.; Mazzoli, C.; Wilkins, S.; Duan, C.; Yang, J. K. W.; Beach, G. S. D. Voltage-gated Optics and Plasmonics Enabled by Solid-State Proton Pumping. Nat. Commun. 2019, 10, 5030.
[37].Wu, Y.; Yang, W.; Fan, Y.; Song, Q.; Xiao, S. TiO2 Metasurfaces: From Visible Planar Photonics to Photochemistry. Sci. Adv. 2019, 5 (11), eaax0939.
[38].Tseng, M. L.; Yang, J.; Semmlinger, M.; Zhang, C.; Nordlander, P.; Halas, N. J. Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response. Nano Lett. 2017, 17 (10), 6034–6039.
[39].Liu, Y. J.; Zheng, Y. B.; Liou, J.; Chiang, I. K.; Khoo, I. C.; Huang, T. J. All-Optical Modulation of Localized Surface Plasmon Coupling in a Hybrid System Composed of Photoswitchable Gratings and Au Nanodisk Arrays. J. Phys. Chem. C 2011, 115 (15), 7717–7722.
[40].Liu, Y. J.; Si, G. Y.; Leong, E. S. P.; Xiang, N.; Danner, A. J.; Teng, J. H. Light-Driven Plasmonic Color Filters by Overlaying Photoresponsive Liquid Crystals on Gold Annular Aperture Arrays. Adv. Mater. 2012, 24 (23), OP131–OP135.
[41].Franklin, D.; Chen, Y.; Vazquez-Guardado, A.; Modak, S.; Boroumand, J.; Xu, D.; Wu, S. T.; Chanda, D. Polarization-Independent Actively Tunable Colour Generation on Imprinted Plasmonic Surfaces. Nat. Commun. 2015, 6, 7337.
[42].Griffiths, D. J. Introduction to Electrodynamic, 3rd ed.; Prentice Hall, Inc., 1999, ISBN: 0-13-805326-X.
[43].Zhou, L.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H.; Henderson, L.; Dong, L.; Christopher, P.; Carter, E. A.; Nordlander, P.; Halas, N. J. Quantifying Hot Carrier and Thermal Contributions in Plasmonic Photocatalysis. Science. 2018, 362, 69–72.
[44].Mie G. Beitrage zur Optik turber medien, spezziell kolloidaler metallosungen, Anna. der Physik 1908, 3, 378-445.
[45].Murray, A. W.; Barnes, L. W. Plasmonic Materials. Adv. Mater. 2007, 19, 3771–3782.
[46].Zayats, V. A.; Smolyaninov, I. I.; Maradudin A. A. Nano-Optics of Surface Plasmon Polaritons. Phys. Rep. 2005, 5, 131–314.
[47].Liu, C.; Lü, J.; Liu, W.; Wang, F.; Chu, P. K. Overview of Refractive Index Sensors Comprising Photonic Crystal Fibers Based on the Surface Plasmon Resonance Effect [Invited]. Chinese Opt. Lett. 2021, 19 (10), 102202.
[48].Genet, C.; Ebbesen, T. W. Light in Tiny Holes. Nature 2007, 445, 39–46.
[49].Bravo-Abad, J.; Degiron, A.; Przybilla, F.; Genet, C.; García-Vidal, F. J.; Martín-Moreno, L.; Ebbesen, T. W. How Light Emerges from an Illuminated Array of Subwavelength Holes. Nat. Phys. 2006, 2 (2), 120–123.
[50].Martín-Moreno, L.; García-Vidal, F. J.; Lezec, H. J.; Pellerin, K. M.; Thio, T.; Pendry, J. B.; Ebbesen, T. W. Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays. Phys. Rev. Lett. 2001, 86 (6), 1114–1117.
[51].Drezet, A.; Genet, C.; Ebbesen, T. W. Miniature Plasmonic Wave Plates. Phys. Rev. Lett. 2008, 101 (4), 043902.
[52].Degiron, A.; Ebbesen, T. W. The Role of Localized Surface Plasmon Modes in the Enhanced Transmission of Periodic Subwavelength Apertures. J. Opt. A Pure Appl. Opt. 2005, 7 (2), S90-S96.
[53].Gordon, R.; Brolo, A. G.; McKinnon, A.; Rajora, A.; Leathem, B.; Kavanagh, K. L. Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays. Phys. Rev. Lett. 2004, 92 (3), 037401.
[54].Ren, X. F.; Zhang, P.; Guo, G. P.; Huang, Y. F.; Wang, Z. W.; Guo, G. C. Polarization Properties of Subwavelength Hole Arrays Consisting of Rectangular Holes. Appl. Phys. B Lasers Opt. 2008, 91, 601–604.
[55].Degiron, A.; Lezec, H. J.; Yamamoto, N.; Ebbesen, T. W. Optical Transmission Properties of a Single Subwavelength Aperture in a Real Metal. Opt. Commun. 2004, 239, 61–66.
[56].Treacy, M. M. J. Dynamical Diffraction Explanation of the Anomalous Transmission of Light through Metallic Gratings. Phys. Rev. B - Condens. Matter Mater. Phys. 2002, 66 (19), 195105.
[57].Ye, Y.-H.; Zhang, J.-Y. Enhanced Light Transmission through Cascaded Metal Films Perforated with Periodic Hole Arrays. Opt. Lett. 2005, 30 (12), 1521-1523.
[58].Chang, S.-H.; Gray, S. K.; Schatz, G. C. Surface Plasmon Generation and Light Transmission by Isolated Nanoholes and Arrays of Nanoholes in Thin Metal Films. Opt. Express 2005, 13 (8), 3150.
[59].Schäferling, M. Springer Series in Optical Sciences 205 Chiral Nanophotonics Chiral Optical Properties of Plasmonic Systems. 2017, ISBN 978-3-319-42263-3.
[60].Tang Y.; Cohen A. E. Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light. Science, 2011, 332, 6027.
[61].Ashalley, E.; Acheampong, K.; Besteiro, L. V.; Yu, P.; Neogi, A.; Govorov, A. O.; Wang, Z. M. Multitask Deep-Learning-Based Design of Chiral Plasmonic Metamaterials. Photonics Res. 2020, 8 (7), 1213–1225.
[62].Probst, P. T.; Mayer, M.; Gupta, V.; Steiner, A. M.; Zhou, Z.; Auernhammer, G. K.; König, T. A. F.; Fery, A. Mechano-Tunable Chiral Metasurfaces via Colloidal Assembly. Nat. Mater. 2021, 20 (7), 1024–1028.
[63].Zhao, Y.; Askarpour, A. N.; Sun, L.; Shi, J.; Li, X.; Alù, A. Chirality Detection of Enantiomers Using Twisted Optical Metamaterials. Nat. Commun. 2017, 8, 14180.
[64].Cen, M.; Wang, J.; Liu, J.; He, H.; Li, K.; Cai, W.; Cao, T.; Liu, Y. J. Ultrathin Suspended Chiral Metasurfaces for Enantiodiscrimination. Adv. Mater. 2022, 2203956.
[65].Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; Von Freymann, G.; Linden, S.; Wegener, M. Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science. 2009, 325 (5947), 1513–1515.
[66].Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-Acid- and Peptide-Directed Synthesis of Chiral Plasmonic Gold Nanoparticles. Nature 2018, 556 (7701), 360–364.
[67].Mokashi-Punekar, S.; Merg, A. D.; Rosi, N. L. Systematic Adjustment of Pitch and Particle Dimensions within a Family of Chiral Plasmonic Gold Nanoparticle Single Helices. J. Am. Chem. Soc. 2017, 139 (42), 15043–15048.
[68].Cao, T.; Wei, C.; Mao, L.; Li, Y. Extrinsic 2D Chirality: Giant Circular Conversion Dichroism from a Metal-Dielectric-Metal Square Array. Sci. Rep. 2014, 4, 7442.
[69].Horrer, A.; Zhang, Y.; Gérard, D.; Béal, J.; Kociak, M.; Plain, J.; Bachelot, R. Local Optical Chirality Induced by Near-Field Mode Interference in Achiral Plasmonic Metamolecules. Nano Lett. 2020, 20 (1), 509–516.
[70].Tamma, V. A.; Cui, Y.; Zhou, J.; Park, W. Nanorod Orientation Dependence of Tunable Fano Resonance in Plasmonic Nanorod Heptamers. Nanoscale 2013, 5 (4), 1592–1602.
[71].Liu, J.; Zeng, H.; Cheng, M.; Wang, Z.; Wang, J.; Cen, M.; Luo, D.; Priimagi, A.; Liu, Y. J. Photoelastic Plasmonic Metasurfaces with Ultra-Large near Infrared Spectral Tuning. Mater. horizons 2022, 9 (3), 942–951.
[72].Luo, Y.; Li, X.; Zhang, X.; Prybolsky, S.; Shepard, G. D.; Strauf, S. Tunable Multipole Resonances in Plasmonic Crystals Made by Four-Beam Holographic Lithography. Appl. Phys. Lett. 2016, 108 (5), 053105.
[73].Cao, T.; Zhang, X.; Dong, W.; Lu, L.; Zhou, X.; Zhuang, X.; Deng, J.; Cheng, X.; Li, G.; Simpson, R. E. Tuneable Thermal Emission Using Chalcogenide Metasurface. Adv. Opt. Mater. 2018, 6 (16), 1800169.
[74].Decker, M.; Kremers, C.; Minovich, A.; Staude, I.; Miroshnichenko, A. E.; Chigrin, D.; Neshev, D. N.; Jagadish, C.; Kivshar, Y. S. Electro-Optical Switching by Liquid-Crystal Controlled Metasurfaces. Opt. Express 2013, 21 (7), 8879.
[75].Kim, T. T.; Soon Oh, S.; Kim, H. D.; Sung Park, H.; Hess, O.; Min, B.; Zhang, S. Electrical Access to Critical Coupling of Circularly Polarized Waves in Graphene Chiral Metamaterials. Sci. Adv. 2017, 3 (9), e1701377.
[76].Li, J.; Kamin, S.; Zheng, G.; Neubrech, F.; Zhang, S.; Liu, N. Addressable Metasurfaces for Dynamic Holography and Optical Information Encryption. Sci. Adv. 2018, 4 (6), eaar6768.
[77].Kravets, V. G.; Kabashin, A. V.; Barnes, W. L.; Grigorenko, A. N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118 (12), 5912–5951.
[78].Mishra, S. K.; Gupta, B. D. Surface Plasmon Resonance Based Fiber Optic PH Sensor Utilizing Ag/ITO/Al/Hydrogel Layers. Analyst 2013, 138 (9), 2640–2646.
[79].Oh, D. K.; Lee, T.; Ko, B.; Badloe, T.; Ok, J. G.; Rho, J. Nanoimprint Lithography for High-Throughput Fabrication of Metasurfaces. Front. Optoelectron. 2021, 14 (2), 229–251.
[80].Hong F.; Blaikie R. Plasmonic Lithography: Recent Progress. Adv. Opt. Mater. 2019, 7(14), 1801653.
[81].Kelker, H. History of Liquid Crystals. 1973; 21, 1-48.
[82].Yang, D. K.; Wu, S. T. Fundamentals of Liquid Crystal Devices, 2nd ed., Wiley, 2006, ISBN 978-1-118-75200-5.
[83].Dierking, I. Textures of Liquid Crystals, 2003, Wiely-VCH, ISBN 3-527-30725-7.
[84].Woltman, S. J.; Jay, G. D.; Crawford, G. P. Liquid-Crystal Materials Find a New Order in Biomedical Applications. Nat. Mater. 2007, 6 (12), 929–938.
[85].Kim, S.; Kurihara, S. Photochemical On-off Switching of One-Dimensional Photonic Crystals Consisting of Azo-Functionalized Liquid Crystal Polymer and Polyvinyl Alcohol. Crystals 2019, 9 (12), 610.
[86].Ishihara S.; Mizusaki M. Alignment control technology of liquid crystal molecules. J. Soc. Inf. Disp. 2020, 28, 44-74.
[87].Ma, L. L.; Li, C. Y.; Pan, J. T.; Ji, Y. E.; Jiang, C.; Zheng, R.; Wang, Z. Y.; Wang, Y.; Li, B. X.; Lu, Y. Q. Self-Assembled Liquid Crystal Architectures for Soft Matter Photonics. Light Sci. Appl. 2022, 11 (1), 270.
[88].Seki, T. New Strategies and Implications for the Photoalignment of Liquid Crystalline Polymers. Polym. J. 2014, 46 (11), 751–768.
[89].Wang, J.; Li, K.; He, H.; Cai, W.; Liu, J.; Yin, Z.; Mu, Q.; Hisao, V. K. S.; Gérard, D.; Luo, D.; Li, G.; Liu, Y. J. Metasurface-Enabled High-Resolution Liquid-Crystal Alignment for Display and Modulator Applications. Laser Photonics Rev. 2022, 16, 2100396.
[90].Liu, S.; Li, Y.; Zhou, P.; Chen, Q.; Su, Y. Reverse-Mode PSLC Multi-Plane Optical See-through Display for AR Applications. Opt. Express 2018, 26 (3), 3394.
[91].Wu, L.; Wang, X.; He, X.; Huang, Z.; Huang, X.; Xiong, C. Arbitrary Multiple Beam Forming by Two Cascaded Liquid Crystal Optical Phased Arrays. Opt. Express 2018, 26 (13), 17066.
[92].Tzeng, Y.-Y.; Ke, S.-W.; Ting, C.-L.; Fuh, A. Y.-G.; Lin, T.-H. Axially Symmetric Polarization Converters Based on Photo-Aligned Liquid Crystal Films. Opt. Express 2008, 16 (6), 3768.
[93].Mao, P.; Liu, C.; Song, F.; Han, M.; Maier, S. A.; Zhang, S. Manipulating disordered plasmonic systems by external cavity with transition from broadband absorption to reconfigurable reflection. Nat. Commun. 2020, 11, 1538.
[94].Ellenbogen, T.; Seo, K.; Crozier, K. B. Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry. Nano Lett. 2012, 12 (2), 1026–1031.
[95].Kumar, K.; Duan, H.; Hegde, R. S.; Koh, S. C. W.; Wei, J. N.; Yang, J. K. W. Printing Colour at the Optical Diffraction Limit. Nat. Nanotechnol. 2012, 7 (9), 557–561.
[96].Han, Z.; Frydendahl, C.; Mazurski, N.; Levy, U. MEMS Cantilever–Controlled Plasmonic Colors for Sustainable Optical Displays. Sci. Adv. 2022, 8 (16), eabn0889.
[97].Wen, Y.; Lin, J.; Chen, K.; Lin, Y. S.; Yang, B. R. Full Color Metasurface with High-Transmission and Omnidirectional Characteristics. Opt. Laser Technol. 2022, 150, 108004.
[98].Li, Z.; Clark, A. W.; Cooper, J. M. Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. ACS Nano 2016, 10 (1), 492–498.
[99].Franklin, D.; Frank, R.; Wu, S. T.; Chanda, D. Actively Addressed Single Pixel Full-Colour Plasmonic Display. Nat. Commun. 2017, 8, 15209.
[100].Tseng, A. A. Nanofabrication: Fundamentals and Applications, World Scientific Publishing Company, 2008, ISBN: 978-981-4476-77-5.
[101].Mao, P.; Liu, C.; Song, F.; Han, M.; Maier, S. A.; Zhang, S. Absorption To Recon Fi Gurable Re Fl Ection. Nat. Commun. 2020, 11, 1538.
[102].Gordon, R.; Brolo, A. G.; McKinnon, A.; Rajora, A.; Leathem, B.; Kavanagh, K. L. Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays. Phys. Rev. Lett. 2004, 92 (3), 037401.
[103].Koerkamp, K. J. K.; Enoch, S.; Segerink, F. B.; Van Hulst, N. F.; Kuipers, L. Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes. Phys. Rev. Lett. 2004, 92 (18), 183901.
[104].Chang, S.-H.; Gray, S. K.; Schatz, G. C. Surface Plasmon Generation and Light Transmission by Isolated Nanoholes and Arrays of Nanoholes in Thin Metal Films. Opt. Express 2005, 13 (8), 3150–3165.
[105].Nakanishi, T.; Tsutsumi, E.; Masunaga, K.; Fujimoto, A.; Asakawa, K. Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles. Appl. Phys. Express 2011, 4 (2), 025201.
[106].Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary Optical Transmission through Sub-Wavelenght Hole Arrays. Nature 1998, 391, 667–669.
[107].Genet, C.; Ebbesen, T. W. Light in Tiny Holes. Nature 2007, 445, 39–46.
[108].Wood, R. W. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proc. Phys. Soc. 1901, 18, 269–275.
[109].Maradudin, A. A.; Simonsen, I.; Polanco, J.; Fitzgerald, R. M. Rayleigh and Wood Anomalies in the Diffraction of Light from a Perfectly Conducting Reflection Grating. J. Opt. 2016 18, 024004.
[110].Khlopin, D.; Laux, F.; Wardley, W. P.; Martin, J.; Wurtz, G. A.; Plain, J.; Bonod, N.; Zayats, A. V.; Dickson, W.; Gérard, D. Lattice Modes and Plasmonic Linewidth Engineering in Gold and Aluminum Nanoparticle Arrays. J. Opt. Soc. Am. B 2017, 34 (3), 691–700.
[111].Kang, E. S. H.; Ekinge,nH.; Jonsson, M. P. “Plasmonic Fanoholes: on the Gradual Transition From Suppressed to Enhanced Optical Transmission Through Nanohole Arrays in Metal Films of Increasing Film Thickness,” Opt. Mater. Express 2019, 9, 1404–1415.
[112].Malekian, B.; Xiong, K.; Kang, E. S. H.; Andersson, J.; Emilsson, G.; Rommel, M.; Sannomiya, T.; Jonsson, M. P.; Dahlin, A. “Optical Properties of Plasmonic Nanopore Arrays Prepared by Electron Beam and Colloidal Lithography,” Nanoscale Adv. 2019, 1, 4282–4289.
[113].Adato, R.; Yanik, A. A.; Amsden, J. J.; Kaplan, D. L.; Omenetto, F. G.; Hong, M. K.; Erramilli, S.; Altug, H. Ultra-Sensitive Vibrational Spectroscopy of Protein Monolayers with Plasmonic Nanoantenna Arrays. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (46), 19227–19232.
[114].Laux, E.; Genet, C.; Skauli, T.; Ebbesen, T. W. Plasmonic Photon Sorters for Spectral and Polarimetric Imaging. Nat. Photonics 2008, 2 (3), 161–164.
[115].Wang, J. Li, K. He, H. Cai, W.; Liu, J.; Yin, Z.; Mu, Q.; Hsiao, V. K. S.; Gérard, D.; Luo, D.; Li, G.; Liu, Y. J. Metasurface-Enabled High-Resolution Liquid-Crystal Alignment for Display and Modulator Applications, Laser Photon. Rev. 2022, 16, 2100396.
[116].Yariv, A.; Yeh, P.; Optical Waves in Crystals: Propagation and Control of Laser Radiation, 1984. ISBN: 0-471-09142-1.
[117].Berreman, D. W. Liquid-Crystal Twist Cell Dynamics with Backflow. J. Appl. Phys. 1975, 46 (9), 3746–3751.
[118].Schadt, M. “Milestone in the History of Field-Effect Liquid Crystal Displays and Materials,” Jpn. J. Appl. Phys. 2009, 48, 03B001.
[119].Kim, Y. B.; Hur, I. K. “High Speed Response Time of Nematic Liquid Crystal Mixtures for LCD Monitor and TV Applications,” J. Inf. Disp. 2001, 2(3), 32–38.
[120].Kim, D. S. Hohng, S. C.; Malyarchuk, V.; Yoon, Y. C.; Ahn, Y. H.; Yee, K. J.; Park, J. W.; Kim, J.; Park, Q. H.; Lienau, C. “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 2003, 91(14), 143901.
[121].Przybilla, F.; Degiron, A.; Genet, C.; Ebbesen, T. W., Léon-Pérez, F. de; Bravo-Abad, J.; García-Vidal, F. J.; Martín-Moreno, L. “Efficiency and Finite Size Effects in Enhanced Transmission Through Subwavelength Apertures,” Opt. Express 2008, 16(13), 9571–9579.
[122].Huang, M.; Tan, A. J.; Büttner, F.; Liu, H.; Ruan, Q.; Hu, W.; Mazzoli, C.; Wilkins, S.; Duan, C.; Yang, J. K. W.; Beach, G. S. D. Voltage-Gated Optics and Plasmonics Enabled by Solid-State Proton Pumping. Nat. Commun. 2019, 10, 5030.
[123].Duan, X.; Liu, N. Scanning Plasmonic Color Display. ACS Nano 2018, 12(8), 8817–8823.
[124].Wu, Y.; Yang, W.; Fan, Y.; Song, Q.; Xiao, S. TiO2 Metasurfaces: From Visible Planar Photonics to Photochemistry. Sci. Adv. 2019, 5(11), eaaax0939.
[125].Zang, X.; Dong, F.; Yue, F.; Zhang, C.; Xu, L.; Song, Z.; Chen, M.; Chen, P. Y.; Buller, G. S.; Zhu, Y.; Zhuang, S.; Chu, W.; Zhang, S.; Chen, X. Polarization Encoded Color Image Embedded in a Dielectric Metasurface. Adv. Mater. 2018, 30, 1707499.
[126].Li, J.; Kamin, S.; Zheng, G.; Neubrech, F.; Zhang, S.; Liu, N. Addressable Metasurfaces for Dynamic Holography and Optical Information Encryption. Sci. Adv. 2018, 4, eaar6768.
[127].Song, M.; Wang, D.; Kudyshev, Z. A.; Xuan, Y.; Wang, Z.; Boltasseva, A.; Shalaev V. M.; Kildishev A. V. Enabling Optical Steganography, Data Storage, and Encryption with Plasmonic Colors. Laser Photon. Rev. 2021, 15, 2000343.
[128].Duempelmann, L.; Luu-Dinh, A.; Gallinet, B.; Novotny, L. Four-Fold Color Filter Based on Plasmonic Phase Retarder. ACS Photon. 2016, 3, 190–196.
[129].Li, Z.; Clark, A. W.; Cooper, J. M. Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. ACS Nano 2016, 10, 492–498.
[130].Chen, Y.; Yang, X.; Gao, J. 3D Janus Plasmonic Helical Nanoapertures for Polarization-Encrypted Data Storage. Light Sci. Appl. 2019, 8, 45.
[131].Goh, X. M.; Zheng, Y.; Tan, S. J.; Zhang, L.; Kumar, K.; Qiu, C. W.; Yang, J. K. W. Three-Dimensional Plasmonic Stereoscopic Prints in Full Colour. Nat. Commun. 2014, 5, 5361.
[132].Jang, J.; Jeong, H.; Hu, G.; Qiu, C. W.; Nam, K. T.; Rho, J. Kerker-Conditioned Dynamic Cryptographic Nanoprints. Adv. Opt. Mater. 2019, 7, 1801070.
[133].Jung, C.; Yang, Y.; Jang, J.; Badloe, T.; Lee, T.; Mun, J.; Moon, S. W.; Rho, J. Near-Zero Reflection of All-Dielectric Structural Coloration Enabling Polarization-Sensitive Optical Encryption with Enhanced Switchability. Nanophotonics 2020, 10, 919–926.
[134].Deng, J.; Deng, L.; Guan, Z.; Tao, J.; Li, G.; Li, Z.; Li, Z.; Yu, S.; Zheng, G. Multiplexed Anticounterfeiting Meta-Image Displays with Single-Sized Nanostructures. Nano Lett. 2020, 20, 1830–1838.
[135].Cai, J.; Zhang, C.; Li, W. Di. Dual-Color Flexible Metasurfaces with Polarization-Tunable Plasmons in Gold Nanorod Arrays. Adv. Opt. Mater. 2020, 2001401, 1–8.
[136].Kim, T.; Yu, E.-S.; Bae, Y.-G.; Lee, J.; Kim, I. S.; Chung, S.; Lee, S.-Y.; Ryu, Y.-S. Asymmetric Optical Camouflage: Tuneable Reflective Colour Accompanied by the Optical Janus Effect. Light Sci. Appl. 2020, 9, 175.
[137].Sharma, M.; Hendler, N.; Ellenbogen, T. Electrically Switchable Color Tags Based on Active Liquid-Crystal Plasmonic Metasurface Platform. Adv. Opt. Mater. 2020, 8, 1901182.
[138].Liu, Y. J.; Sun, X. W. Electrically Switchable Computer-Generated Hologram Recorded in Polymer-Dispersed Liquid Crystals. Appl. Phys. Lett. 2007, 90, 191118.
[139].Liu, Y. J.; Sun, X. W. Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications. Adv. Optoelectron. 2008, 684349.
[140].Li, K.; Jiang, H.; Cheng, M.; Li, Y.; Yin, Z.; Luo, D.; Sun, X. W.; Liu, Y. J. Controlling Morphological and Electro-Optical Properties via the Phase Separation in Polymer/Liquid-Crystal Composite Materials. Liq. Cryst. 2020, 47, 238–247.
[141].Wang, Q.-J.; Li, J.-Q.; Huang, C.-P.; Zhang, C.; Zhu, Y.-Y. Enhanced Optical Transmission through Metal Films with Rotation-Symmetrical Hole Arrays. Appl. Phys. Lett. 2005, 87, 091105.
[142].Drzaic, P. S. Droplet Density, Droplet Size, and Wavelength Effects in PDLC Light Scattering. Mol. Cryst. Liq. Cryst. 1995, 261, 383–392.
[143].Lee, G.; Kong, M.; Park, D.; Park, J.; Jeong, U. Electro-Photoluminescence Color Change for Deformable Visual Encryption. Adv. Mater. 2020, 32, 1907477.
[144].Du, W.; Wen, X.; Gerard, D.; Qiu, C.-W. ; Xiong, Q. Chiral Plasmonics and Enhanced Chiral Light-Matter Interactions. Sci China Pys Mech. 2020, 63(4), 244201.
[145].Collins, T. J.; Kuppe, C.; Hopper, C. D.; Sibilia, C.; Centini, M.; Valev, K. V. Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends. Adv. Optical. Mater. 2017, 5, 1700182.
[146].1Thiel, M.; Decker, M.; Deubel, M.; Wegener, M.; Linden, S.; Von Freymann, G. Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals. Adv. Mater. 2007, 19 (2), 207–210.
[147].3Bouchal, P.; Bouchal, Z. Twisted Rainbow Light and Nature-Inspired Generation of Vector Vortex Beams. Laser Photonics Rev. 2022, 16 (7), 2200080.
[148].4Singh, L.; Fox, M.; Sternklar, S.; Gorodetski, Y. Topological Diffraction from Grating with Space Variant Chirality. ACS Photonics 2022, 9 (4), 1395–1399.
[149].7Hou, Y.; Qiu, M.; Cao, Z.; Zhou, J.; Ong, H. C.; Jin, W.; Du, J.; Lei, D. High-Q Circular Dichroism Resonances in Plasmonic Lattices with Chiral Unit Cells. Adv. Funct. Mater. 2022, 32 (40), 2204095.
[150].2Jiang, Q.; Pham, A.; Berthel, M.; Huant, S.; Bellessa, J.; Genet, C.; Drezet, A. Directional and Singular Surface Plasmon Generation in Chiral and Achiral Nanostructures Demonstrated by Leakage Radiation Microscopy. ACS Photonics 2016, 3 (6), 1116–1124.
[151].5Zhou, S.; Bian, J.; Chen, P.; Xie, M.; Chao, J.; Hu, W.; Lu, Y.; Zhang, W. Polarization-Dispersive Imaging Spectrometer for Scattering Circular Dichroism Spectroscopy of Single Chiral Nanostructures. Light Sci. Appl. 2022, 11 (1), 64.
[152].6Chenqian Wang; Chinhua Wang. Dichroism Metalens Imaging Using Nested Dual Helical Surfaces. Optica 2021, 8 (4), 502–510.
[153].Feng, Z.; He, C.; Xie, Y.; Zhang, C.; Li, J.; Liu, D.; Jiang, Z.; Chen, X.; Zou, G. Chiral Biosensing at Both Interband Transition and Plasmonic Extinction Regions Using Twisted-Stacked Nanowire Arrays. Nanoscale 2022, 14 (29), 10524–10530.
[154].Nguyen, H. Q.; Hwang, D.; Park, S.; Nguyen, M. C. T.; Kang, S. S.; Tran, V. T.; Lee, J. One-Pot Synthesis of Magnetoplasmonic Au@FexOyNanowires: Bioinspired Bouligand Chiral Stack. ACS Nano 2022, 16 (4), 5795–5806.
[155].Ashalley, E.; Acheampong, K.; Besteiro, L. V.; Yu, P.; Neogi, A.; Govorov, A. O.; Wang, Z. M. Multitask Deep-Learning-Based Design of Chiral Plasmonic Metamaterials. Photonics Res. 2020, 8 (7), 1213–1225.
[156].Tullius, R.; Platt, G. W.; Khosravi Khorashad, L.; Gadegaard, N.; Lapthorn, A. J.; Rotello, V. M.; Cooke, G.; Barron, L. D.; Govorov, A. O.; Karimullah, A. S.; Kadodwala, M. Superchiral Plasmonic Phase Sensitivity for Fingerprinting of Protein Interface Structure. ACS Nano 2017, 11 (12), 12049–12056.
[157].Passaseo, A.; Esposito, M.; Cuscunà, M.; Tasco, V. Materials and 3D Designs of Helix Nanostructures for Chirality at Optical Frequencies. Adv. Opt. Mater. 2017, 5 (16), 1601079.
[158].Zhou, X.; Hou, Y.; Lin, J. A Review on the Processing Accuracy of Two-Photon Polymerization. AIP Adv. 2015, 5 (3), 030701.
[159].Powers, E. P.; Haus, J. W. Fundamentals of Nonlinear Optics, 1st ed.; CRC Press, 2019.
[160].Fischer, A.; Cremer, C.; Stelzer, E. H. K. Fluorescence of Coumarins and Xanthenes after Two-Photon Absorption with a Pulsed Titanium–Sapphire Laser. Appl. Opt. 1995, 34 (12), 1989–2003.
[161].Schafer, K. J.; Hales, J. M.; Balu, M.; Belfield, K. D.; Van Stryland, E. W.; Hagan, D. J. Two-Photon Absorption Cross-Sections of Common Photoinitiators. J. Photochem. Photobiol. A Chem. 2004, 162 (2–3), 497–502.
[162].Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.; Rebane, A. Two-Photon Absorption Properties of Fluorescent Proteins. Nat. Methods 2011, 8 (5), 393–399.
[163].Nanoscribe, Photonic Professional (GT): User Manual. Eggenstein-Leopoldshafen. 2017.
[164].Mau, A.; Dietlin, C.; Dumur, F.; Lalevée, J. Concomitant Initiation of Radical and Cationic Polymerisations Using New Copper Complexes as Photoinitiators: Synthesis and Characterisation of Acrylate/Epoxy Interpenetrated Polymer Networks. Eur. Polym. J. 2021, 152, 110457.
[165].Xiao, P.; Dumur, F.; Zhang, J.; Fouassier, J. P.; Gigmes, D.; Lalevée, J. Copper Complexes in Radical Photoinitiating Systems: Applications to Free Radical and Cationic Polymerization upon Visible Leds. Macromolecules 2014, 47 (12), 3837–3844.
[166].Issa, A.; Izquierdo, I.; Merheb, M.; Ge, D.; Broussier, A.; Ghabri, N.; Marguet, S.; Couteau, C.; Bachelot, R.; Jradi, S. One Strategy for Nanoparticle Assembly onto 1D, 2D, and 3D Polymer Micro and Nanostructures. ACS Appl. Mater. Interfaces 2021, 13 (35), 41846–41856.
[167].Axelevitch, A.; Apter, B.; Golan, G. Simulation and Experimental Investigation of Optical Transparency in Gold Island Films. Opt. Express 2013, 21 (4), 4126.
[168].Li, W.-D.; Hu, J.; Chou, S. Y. Extraordinary Light Transmission through Opaque Thin Metal Film with Subwavelength Holes Blocked by Metal Disks. Opt. Express 2011, 19 (21), 21098.
[169].Gao, H.; McMahon, J. M.; Lee, M. H.; Henzie, J.; Gray, S. K.; Schatz, G. C.; Odom, T. W. Rayleigh Anomaly-Surface Plasmon Polariton Resonances in Palladium and Gold Subwavelength Hole Arrays. Opt. Express 2009, 17 (4), 2334.
[170].Chang, S.-H.; Gray, S. K.; Schatz, G. C. Surface Plasmon Generation and Light Transmission by Isolated Nanoholes and Arrays of Nanoholes in Thin Metal Films. Opt. Express 2005, 13 (8), 3150.
[171].Peng, Y.; Jradi, S.; Yang, X.; Dupont, M.; Hamie, F.; Dinh, X. Q.; Sun, X. W.; Xu, T.; Bachelot, R. 3D Photoluminescent Nanostructures Containing Quantum Dots Fabricated by Two-Photon Polymerization: Influence of Quantum Dots on the Spatial Resolution of Laser Writing. Adv. Mater. Technol. 2019, 4 (2), 1800522.
[172].Yin, X.; Schäferling, M.; Metzger, B.; Giessen, H. Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born-Kuhn Model. Nano Lett. 2013, 13 (12), 6238–6243.
[173]. Li, Z.; Clark, A. W.; Cooper, J. M. Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. ACS Nano 2016, 10 (1), 492–498.
[174].Zhao, Y.; Askarpour, A. N.; Sun, L.; Shi, J.; Li, X.; Alù, A. Chirality Detection of Enantiomers Using Twisted Optical Metamaterials. Nat. Commun. 2017, 8, 6–13.
[175].Yang, D. K.; Wu, S. T. Fundamentals of Liquid Crystal Devices, 2nd ed., Wiley, 2006, ISBN 978-1-118-75200-5.
[176].Wang, L.; Ge, S.; Hu, W.; Nakajima, M.; Lu, Y. Graphene-Assisted High-Efficiency Liquid Crystal Tunable Terahertz Metamaterial Absorber. Opt. Express 2017, 25 (20), 23873.
[177].Probst, P. T.; Mayer, M.; Gupta, V.; Steiner, A. M.; Zhou, Z.; Auernhammer, G. K.; König, T. A. F.; Fery, A. Mechano-Tunable Chiral Metasurfaces via Colloidal Assembly. Nat. Mater. 2021, 20 (7), 1024–1028.
[178].Cen, M.; Wang, J.; Liu, J.; He, H.; Li, K.; Cai, W.; Cao, T.; Liu, Y. J. Ultrathin Suspended Chiral Metasurfaces for Enantiodiscrimination. Adv. Mater. 2022, 2203956, 1–11.
[179].Li, G.; Alshalalfeh, M.; Yang, Y.; Cheeseman, J. R.; Bouř, P.; Xu, Y. Can One Measure Resonance Raman Optical Activity? Angew. Chemie - Int. Ed. 2021, 60 (40), 22004–22009.
[180].Sun, M.; Zhang, Z.; Wang, P.; Li, Q.; Ma, F.; Xu, H. Remotely Excited Raman Optical Activity Using Chiral Plasmon Propagation in Ag Nanowires. Light Sci. Appl. 2013, 2, e112.
[181].Issa, A.; Izquierdo, I.; Merheb, M.; Ge, D.; Broussier, A.; Ghabri, N.; Marguet, S.; Couteau, C.; Bachelot, R.; Jradi, S. One Strategy for Nanoparticle Assembly onto 1D, 2D, and 3D Polymer Micro and Nanostructures. ACS Appl. Mater. Interfaces 2021, 13 (35), 41846–41856.
[182].Sakellari, I.; Yin, X.; Nesterov, M. L.; Terzaki, K.; Xomalis, A.; Farsari, M. 3D Chiral Plasmonic Metamaterials Fabricated by Direct Laser Writing: The Twisted Omega Particle. Adv. Opt. Mater. 2017, 5 (16), 1–6.
[183].Liu, L.; Yang, D.; Wan, W.; Yang, H.; Gong, Q.; Li, Y. Fast Fabrication of Silver Helical Metamaterial with Single-Exposure Femtosecond Laser Photoreduction. Nanophotonics 2019, 8 (6), 1087–1093.
[184].Esposito, M.; Manoccio, M.; Leo, A.; Cuscunà, M.; Sun, Y.; Ageev, E.; Zuev, D.; Benedetti, A.; Tarantini, I.; Passaseo, A.; Tasco, V. 3D Chiral MetaCrystals. Adv. Funct. Mater. 2022, 32 (12).
[185].Garcia-Santiago, X.; Hammerschmidt, M.; Sachs, J.; Burger, S.; Kwon, H.; Knöller, M.; Arens, T.; Fischer, P.; Fernandez-Corbaton, I.; Rockstuhl, C. Toward Maximally Electromagnetically Chiral Scatterers at Optical Frequencies. ACS Photonics 2022, 9 (6), 1954–1964.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543797
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
Li K. Tunable plasmonics based on metal dielectric hybrid nanostructures[D]. 法国. 特鲁瓦工程技术大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11967001-李珂-电子与电气工程系(6781KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李珂]的文章
百度学术
百度学术中相似的文章
[李珂]的文章
必应学术
必应学术中相似的文章
[李珂]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。