中文版 | English
题名

SAO-1 与 DLC-1 相互作用调控秀丽隐杆线虫生殖腺细胞凋亡的分子机制

其他题名
INTERACTION BETWEEN SAO-1 AND DLC-1 REGULATE APOPTOSIS IN THE CAENORHABDITIS ELEGANS GERMLINE
姓名
姓名拼音
ZHANG Dandan
学号
11849505
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
李妍
导师单位
系统生物学系
论文答辩日期
2023-04-13
论文提交日期
2023-06-15
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

细胞凋亡是可调控细胞死亡的主要形式之一,指当细胞受到内、外部环境因素刺激时由基因控制自发而有序的死亡。生物组织通过细胞凋亡可以维持内部环境的稳定性。细胞凋亡功能障碍涉及包括癌症在内的许多复杂疾病的病理过程。因此,对细胞凋亡的研究和理解对于凋亡相关疾病的治疗和预防有重要意义。细胞凋亡的核心机制在秀丽隐杆线虫和哺乳动物细胞中是高度保守的。在线虫中,当细胞凋亡信号启动时,上游BH3结构域(BH3-only)蛋白EGL-1转移到线粒体外膜,与CED-9/Bcl-2 结合,由此产生的CED-9/Bcl-2构象变化导致CED-4/Apaf-1从线粒体释放并易位至核膜,最后激活CED-3/Caspase,启动细胞凋亡。越来越多的研究表明CED-4/Apaf-1释放后转移到核膜是细胞凋亡至关重要的步骤,但是参与CED-4/Apaf-1易位的蛋白质和分子机制仍不清楚。本文以秀丽隐杆线虫为模式生物首次揭示了SAO-1通过C末端无序片段与动力蛋白轻链DLC-1相互作用,调控线虫生殖腺细胞中CED-4/Apaf-1的核膜定位,从而通过核心机制调控生殖腺细胞凋亡。

本文首先研究SAO-1的表达和定位及其在生殖腺细胞凋亡中的作用。SAO-1Suppressor of aph-1)含有一个高度保守的GYF结构域(glycine–tyrosine-phenylalanine)、两个低复杂度结构域以及C末端无序片段。通过观察荧光标记的SAO-1转基因线虫,揭示了SAO-1蛋白在原始生殖细胞和生殖腺细胞中的表达模式;通过RNA干扰敲减和CRISPR/Cas9敲除sao-1,发现了SAO-1促进生殖腺细胞凋亡的功能。SAO-1功能的丧失导致线虫生殖腺细胞凋亡减少。进一步研究发现,SAO-1通过核心细胞凋亡途径调控线虫生殖腺细胞凋亡,在核心凋亡蛋白CED-9/Bcl-2功能丧失突变体ced-9(n1653) 中敲减sao-1,可以显著抑制ced-9(n1653) 突变体生殖腺细胞的过度凋亡。

本研究进一步发现SAO-1和动力蛋白轻链1DLC-1)相互作用调控生殖腺细胞凋亡。本文首先通过蛋白质谱分析的方法获得了与SAO-1相互作用的蛋白数据库,进一步分析筛选和验证发现,SAO-1抑制DLC-1在生殖腺细胞质的降解。SAO-1功能的缺失导致线虫生殖腺细胞质的 DLC-1表达显著降低。通过荧光标签可视化蛋白的表达和定位,发现了SAO-1DLC-1在线虫生殖腺细胞质中共定位表达。进一步通过荧光寿命成像技术和蛋白质体外结合实验,揭示了SAO-1DLC-1在线虫生殖腺中存在直接相互作用。本研究还揭示了DLC-1通过核心凋亡途径调控生殖腺细胞凋亡。在功能丧失突变体ced-9(n1653) 中敲减dlc-1,可以显著抑制ced-9(n1653) 生殖腺细胞的过度凋亡。本文的遗传学研究进一步表明,SAO-1DLC-1促进核心通路中的促凋亡蛋白CED-4/Apaf-1在生殖腺细胞核膜的积累。SAO-1DLC-1缺失导致CED-4/Apaf-1在生殖腺细胞核膜上的聚集下降。

本文最后通过晶体学进一步解析了分辨率为2.4 ÅSAO-1(残基 182-205)和DLC-1复合物的晶体结构:SAO-1DLC-1在晶体结构中形成2:4复合物;每个SAO-1肽采用扩展构象与两个DLC-1二聚体相互作用,从而在 SAO-1中产生两个相似的 DLC-1结合位点(187 VAT 189199 CQT 201)。破坏SAO-1DLC-1的相互作用位点后,DLC-1在线虫生殖腺细胞质的表达显著降低,CED-4/Apaf-1生殖腺细胞核膜的聚集被抑制,且线虫生殖腺细胞凋亡减少。综上所述,本文首次发现了SAO-1通过C末端的保守位点(187 VAT 189)和(199 CQT 201)与DLC-1相互作用,调控DLC-1在线虫生殖腺细胞质中的表达、CED-4/Apaf-1在线虫生殖腺核膜定位,从而通过核心机制调控生殖腺细胞凋亡的分子机制。

其他摘要

Apoptosis, one of the major forms of regulated cell death, which refers to the spontaneous and orderly death of cells controlled by genes when stimulated by internal and external environmental factors. Biological tissues maintain the stability of the internal environment through apoptosis. Apoptotic dysfunction is involved in the pathological process of many complex diseases, including cancer. Therefore, the research and understanding of apoptosis are important for the treatment and prevention of apoptosis-related diseases. The core mechanism of apoptosis is highly conserved in Caenorhabditis elegans (C. elegans) and Mammalian cells. In C. elegans, when apoptosis is activated, the upstream BH3-only protein EGL-1 is transferred to the outer membrane of mitochondria and bound with CED-9/Bcl-2. The resultant conformational change in CED-9/Bcl-2 leads to the release of CED-4/Apaf-1 from mitochondria and its subsequent translocation to the nuclear membrane. Finally, the CED-3/Caspase protein is activated, and cell death ensues. An increasing number of studies have suggested that the translocation of CED-4/Apaf-1 from mitochondria to the nuclear membrane is a crucial step in apoptosis. However, the protein and molecular mechanisms involved in CED-4/Apaf-1 translocation remain unclear. This study uses C. elegans as the model organism and revealed that SAO-1 C-terminal interacts with dynein light chain (DLC-1) and regulates the accumulation of CED-4/Apaf-1 in the nuclear membrane, thus promoting germ cell apoptosis through the core apoptotic pathway.

This study first investigated the expression and localization of SAO-1 and its role in the apoptosis of germ cells. SAO-1 (Suppressor of aph-1) is a protein containing a highly conserved GYF (glycine–tyrosine-phenylalanine) domain, two low complexity domains, and C-terminal disordered fragments in C. elegans. The fluorescence-labeled SAO-1 transgenic worms created by CRISPR/Cas9 revealed the expression pattern of SAO-1 protein in primordial germ cells and germ cells. Knocking down SAO-1 using RNAi or knocking knock out sao-1 by CRISPR/Cas9, revealed that SAO-1 promotes apoptosis, and the loss function of SAO-1 resulted in reduced apoptosis in C. elegans germ cells. Further studies showed that SAO-1 regulated the apoptosis of C. elegans germline through the core apoptotic pathway. It was found that the number of apoptotic corpses were significantly reduced in the loss-of-function mutant ced-9(n1653) worms after knocked down of sao-1.

Further study suggested that SAO-1 interacts with DLC-1 to regulate germ cell apoptosis. Firstly, the protein database of proteins interacting with SAO-1 was obtained by protein mass spectrometry. Further analysis found that SAO-1 inhibits DLC-1 degradation, and loss of SAO-1 resulted in a significant reduction of DLC-1 expression in the cytoplasm of C. elegans germline. Subsequently, the expression and localization of the protein were visualized by fluorescence microscope, it was found that SAO-1 and DLC-1 co-localized in the cytoplasm of C. elegans germline. Fluorescence lifetime imaging and Pull down experiments showed that SAO-1 interacts with DLC-1 directly in C. elegans germline. Further studies showed that DLC-1 regulated the apoptosis of C. elegans germline through the core apoptotic pathway. it was found that the number of apoptotic corpses was significantly reduced in the loss-of-function mutant ced-9(n1653) worms after DLC-1 depletion. The genetic studies further showed that SAO-1 and DLC-1 regulate apoptosis by regulating the accumulation of CED-4/Apaf-1 in the nuclear envelope of germ cells. Inactivation of SAO-1 and DLC-1 lead to decreased CED-4/Apaf-1 accumulation on the nuclear membrane of germ cells.

Finally, the high-resolution crystal structure analysis further revealed that SAO-1 interacts with DLC-1 to form a 2:4 complex: each of the two β-sheets in the SAO-1 peptide interacted with two DLC-1 dimers. Each SAO-1 peptide adopts an extended conformation to interact with two DLC-1 dimers, resulting in two similar DLC-1 binding sites in SAO-1 (187 VAT 189 and 199 CQT 201). Destroying the interaction site of SAO-1 and DLC-1 leads to reduce of the DLC-1 expression in the cytoplasm, the CED-4/Apaf-1 accumulation in the nuclear membrane, and the apoptotic corpses of the germline. In summary, this study found that SAO-1 interacts with DLC-1 and regulates the expression of DLC-1 in the germline cytoplasm of C. elegans via its C-terminal (187 VAT 189) and (199 CQT 201) and regulates the accumulation of CED-4/Apaf-1 in the nuclear membrane, thus promoting germ cell apoptosis through the core apoptotic pathway for the first time.

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-06
参考文献列表

[1] BATLEVI Y, MARTIN D N, PANDEY U B, et al. Dynein light chain 1 is required for autophagy, protein clearance, and cell death in Drosophila[J]. Proc Natl Acad Sci U S A, 2010, 107(2): 742-747.
[2] MORTHORST T H, OLSEN A. Cell-nonautonomous inhibition of radiation-induced apoptosis by dynein light chain 1 in Caenorhabditis elegans[J]. Cell Death & Disease, 2013, 4(9): e799.
[3] LIU S, CHEN T, CHEN B, et al. Lrpap1 deficiency leads to myopia through TGF-beta-induced apoptosis in zebrafish[J]. Cell Commun Signal, 2022, 20(1): 162.
[4] CHEN F, HERSH B M, CONRADT B, et al. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death[J]. Science, 2000, 287(5457): 1485-1489.
[5] CHEN X, WANG Y, CHEN Y Z, et al. Regulation of CED-3 caspase localization and activation by C. elegans nuclear-membrane protein NPP-14[J]. Nat Struct Mol Biol, 2016, 23(11): 958-964.
[6] YAN N, GU L, KOKEL D, et al. Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4[J]. Mol Cell, 2004, 15(6): 999-1006.
[7] CHINNAIYAN A M, OROURKE K, LANE B R, et al. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death[J]. Science, 1997, 275(5303): 1122-1126.
[8] SESHAGIRI S, MILLER L K. Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis[J]. Curr Biol, 1997, 7(7): 455-460.
[9] TZUR Y B, MARGALIT A, MELAMED-BOOK N, et al. Matefin/SUN-1 is a nuclear envelope receptor for CED-4 during Caenorhabditis elegans apoptosis[J]. Proc Natl Acad Sci U S A, 2006, 103(36): 13397-13402.
[10] ELLIS H M, HORVITZ H R. Genetic control of programmed cell death in the nematode C. elegans[J]. Cell, 1986, 44(6): 817-829.
[11] HUANG W J, JIANG T Y, CHOI W Y, et al. Mechanistic insights into CED-4-mediated activation of CED-3[J]. Genes & Development, 2013, 27(18): 2039-2048.
[12] WANG M X, ITOH M, LI S, et al. CED-4 is an mRNA-binding protein that delivers ced-3 mRNA to ribosomes[J]. Biochemical and Biophysical Research Communications, 2016, 470(1): 48-53.
[13] KOFLER M M, FREUND C. The GYF domain[J]. Febs Journal, 2006, 273(2): 245-256.
[14] NISHIZAWA K, FREUND C, LI J, et al. Identification of a proline-binding motif regulating CD2-triggered T lymphocyte activation[J]. Proc Natl Acad Sci U S A, 1998, 95(25): 14897-14902.
[15] HALE V A, GUINEY E L, GOLDBERG L Y, et al. Notch signaling is antagonized by SAO-1, a novel GYF-domain protein that interacts with the E3 ubiquitin ligase SEL-10 in Caenorhabditis elegans[J]. Genetics, 2012, 190(3): 1043-1266.
[16] WORTH A, THRASHER A J, GASPAR H B. Autoimmune lymphoproliferative syndrome: molecular basis of disease and clinical phenotype[J]. British Journal of Haematology, 2006, 133(2): 124-140.
[17] ETHELL D W, BUHLER L A. Fas ligand-mediated apoptosis in degenerative disorders of the brain[J]. J Clin Immunol, 2003, 23(6): 439-446.
[18] NIJHAWAN D, HONARPOUR N, WANG X D. Apoptosis in neural development and disease[J]. Annual Review of Neuroscience, 2000, 23: 73-87.
[19] DENG G M, PIKE C J, COTMAN C W. Alzheimer-associated presenilin-2 confers increased sensitivity to apoptosis in PC12 cells[J]. Febs Letters, 1996, 397(1): 50-54.
[20] ZEITLIN S, LIU J P, CHAPMAN D L, et al. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue[J]. Nat Genet, 1995, 11(2): 155-163.
[21] ZAKERI Z F, AHUJA H S. Cell death/apoptosis: normal, chemically induced, and teratogenic effect[J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 396(1-2): 149-161.
[22] KERR J F, WYLLIE A H, CURRIE A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26(4): 239-257.
[23] SULSTON J E, HORVITZ H R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans[J]. Developmental Biology, 2019, 455(2): 177-223.
[24] HEDGECOCK E M, SULSTON J E, THOMSON J N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis Elegans[J]. Science, 1983, 220(4603): 1277-1279.
[25] SULSTON J E, SCHIERENBERG E, WHITE J G, et al. The embryonic cell lineage of the nematode Caenorhabditis elegans[J]. Developmental Biology, 1983, 100(1): 64-119.
[26] ELMORE S. Apoptosis: A review of programmed cell death[J]. Toxicologic Pathology, 2007, 35(4): 495-516.
[27] LOCKSLEY R M, KILLEEN N, LENARDO M J. The TNF and TNF receptor superfamilies: Integrating mammalian biology[J]. Cell, 2001, 104(4): 487-501.
[28] SCAFFIDI C, SCHMITZ I, KRAMMER P H, et al. The role of c-FLIP in modulation of CD95-induced apoptosis[J]. Journal of Biological Chemistry, 1999, 274(3): 1541-1548.
[29] PIETKIEWICZ S, WOLFE C, BUCHBINDER J H, et al. Measuring procaspase-8 and -10 processing upon apoptosis Induction[J]. Bio-Protocol, 2017, 7(1): e2081.
[30] HSU H L, XIONG J, GOEDDEL D V. The tnf receptor 1-associated protein tradd signals cell-death and nf-kappa-B activation[J]. Cell, 1995, 81(4): 495-504.
[31] PETER M E, KRAMMER P H. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis[J]. Current Opinion in Immunology, 1998, 10(5): 545-551.
[32] PETER M E, KRAMMER P H. The CD95(APO-1/Fas) DISC and beyond[J]. Cell Death Differ, 2003, 10(1): 26-35.
[33] CORY S, ADAMS J M. The Bcl2 family: regulators of the cellular life-or-death switch[J]. Nat Rev Cancer, 2002, 2(9): 647-656.
[34] YANG H, XIE Y, YANG D, et al. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma[J]. Oncotarget, 2017, 8(15): 25310-25322.
[35] DEGENHARDT K, SUNDARARAJAN R, LINDSTEN T, et al. Bax and Bak independently promote cytochrome C release from mitochondria[J]. J Biol Chem, 2002, 277(16): 14127-14134.
[36] HENRY H, THOMAS A, SHEN Y, et al. Regulation of the mitochondrial checkpoint in p53-mediated apoptosis confers resistance to cell death[J]. Oncogene, 2002, 21(5): 748-760.
[37] LI P, NIJHAWAN D, BUDIHARDJO I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade[J]. Cell, 1997, 91(4): 479-489.
[38] LI H L, ZHU H, XU C J, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis[J]. Cell, 1998, 94(4): 491-501.
[39] LIU H Y, DAI L Y, WANG M, et al. Tunicamycin induces hepatic stellate cell apoptosis through calpain-2/Ca2+-dependent Endoplasmic Reticulum stress pathway[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 684857.
[40] DIAZ-HORTA O, KAMAGATE A, HERCHUELZ A, et al. Na/Ca exchanger overexpression induces endoplasmic reticulum-related apoptosis and caspase-12 activation in insulin-releasing BRIN-BD11 cells[J]. Diabetes, 2002, 51(6): 1815-1824.
[41] NAH J, ZABLOCKI D, SADOSHIMA J. The role of autophagic cell death in cardiac disease[J]. J Mol Cell Cardiol, 2022, 173: 16-24.
[42] YU L, ALVA A, SU H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8[J]. Science, 2004, 304(5676): 1500-1502.
[43] PARZYCH K R, KLIONSKY D J. An overview of autophagy: morphology, mechanism, and regulation[J]. Antioxidants & Redox Signaling, 2014, 20(3): 460-473.
[44] SHIMIZU S, KANASEKI T, MIZUSHIMA N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes[J]. Nat Cell Biol, 2004, 6(12): 1221-1228.
[45] XU T, NICOLSON S, DENTON D, et al. Distinct requirements of autophagy-related genes in programmed cell death[J]. Cell Death Differ, 2015, 22(11): 1792-1802.
[46] MRAKOVCIC M, FROHLICH L F. p53-mediated molecular control of autophagy in tumor cells[J]. Biomolecules, 2018, 8(2): 14-31.
[47] GORES G J, HERMAN B, LEMASTERS J J. Plasma-membrane bleb formation and rupture - a common feature of hepatocellular injury[J]. Hepatology, 1990, 11(4): 690-698.
[48] DEGTEREV A, HUANG Z H, BOYCE M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nature Chemical Biology, 2005, 1(2): 112-119.
[49] KAISER W J, SRIDHARAN H, HUANG C Z, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL[J]. Journal of Biological Chemistry, 2013, 288(43): 31268-31279.
[50] ZHANG T, ZHANG Y, CUI M Y, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis[J]. Nature Medicine, 2016, 22(2): 175-182.
[51] GALLUZZI L, KEPP O, CHAN F K, et al. Necroptosis: mechanisms and relevance to disease[J]. Annu Rev Pathol, 2017, 12: 103-130.
[52] FESTJENS N, VANDEN BERGHE T, VANDENABEELE P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response[J]. Biochim Biophys Acta, 2006, 1757(9-10): 1371-1387.
[53] HOLLER N, ZARU R, MICHEAU O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule[J]. Nature Immunology, 2000, 1(6): 489-495.
[54] COOKSON B T, BRENNAN M A. Pro-inflammatory programmed cell death[J]. Trends in Microbiology, 2001, 9(3): 113-114.
[55] SHI J J, GAO W Q, SHAO F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends in Biochemical Sciences, 2017, 42(4): 245-254.
[56] YU P, ZHANG X, LIU N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 128-148.
[57] DING J J, WANG K, LIU W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family[J]. Nature, 2016, 535(7610): 111-116.
[58] WANG K, SUN Q, ZHONG X, et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis[J]. Cell, 2020, 180(5): 941-955.
[59] ZHANG Z B, ZHANG Y, XIA S Y, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity[J]. Nature, 2020, 579(7799): 415-420.
[60] WANG Q Y, WANG Y P, DING J J, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis[J]. Nature, 2020, 579(7799): 421-426.
[61] ZHOU Z W, HE H B, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(6494): 965-976.
[62] LIU X, ZHANG Z B, RUAN J B, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158.
[63] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
[64] YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317-331.
[65] ANGELI J P F, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nature Cell Biology, 2014, 16(12): 1180-1191.
[66] ZHOU B R, LIU J, KANG R, et al. Ferroptosis is a type of autophagy-dependent cell death[J]. Seminars in Cancer Biology, 2020, 66: 89-100.
[67] WANG Y Q, ZHANG L, ZHOU F F. Cuproptosis: a new form of programmed cell death[J]. Cellular & Molecular Immunology, 2022, 19(8): 867-868.
[68] TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261.
[69] TANG D L, CHEN X, KROEMER G. Cuproptosis: a copper-triggered modality of mitochondrial cell death[J]. Cell Research, 2022, 32(5): 417-418.
[70] GOSSETT L A, HECHT R M. A squash technique demonstrating embryonic Nuclear cleavage of the nematode Caenorbabditis-elegans[J]. Journal of Histochemistry & Cytochemistry, 1980, 28(6): 507-510.
[71] BERKS M. The C. elegans genome sequencing project. C. elegans genome mapping and sequencing consortium[J]. Genome Res, 1995, 5(2): 99-104.
[72] HALLOWS K R, ALZAMORA R, LI H, et al. AMP-activated protein kinase inhibits alkaline pH-and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells[J]. American Journal of Physiology-Cell Physiology, 2009, 296(2): C672-C681.
[73] GUMIENNY T L, LAMBIE E, HARTWIEG E, et al. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline[J]. Development, 1999, 126(5): 1011-1022.
[74] LIU W H, LIN Y L, WANG J P, et al. Restriction of vaccinia virus replication by a ced-3 and ced-4-dependent pathway in Caenorhabditis elegans[J]. Proc Natl Acad Sci U S A, 2006, 103(11): 4174-4179.
[75] ABALLAY A, AUSUBEL F M. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing[J]. Proc Natl Acad Sci U S A, 2001, 98(5): 2735-2739.
[76] DERRY W B, PUTZKE A P, ROTHMAN J H. Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance[J]. Science, 2001, 294(5542): 591-595.
[77] HA M, WEI L, GUAN X, et al. p53-dependent apoptosis contributes to di-(2-ethylhexyl) phthalate-induced hepatotoxicity[J]. Environ Pollut, 2016, 208(Pt B): 416-425.
[78] LETTRE G, KRITIKOU E A, JAEGGI M, et al. Genome-wide RNAi identifies p53-dependent and -independent regulators of germ cell apoptosis in C. elegans[J]. Cell Death Differ, 2004, 11(11): 1198-1203.
[79] OU H L, SCHUMACHER B. DNA damage responses and p53 in the aging process[J]. Blood, 2018, 131(5): 488-495.
[80] WU C W, WANG Y, CHOE K P. F-box protein XREP-4 is a new regulator of the oxidative stress response in Caenorhabditis elegans[J]. Genetics, 2017, 206(2): 859-871.
[81] JEONG J, VERHEYDEN J M, KIMBLE J. Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans[J]. Plos Genetics, 2011, 7(3): e1001348.
[82] WANG X, HU B, ZHAO Z, et al. From primordial germ cells to spermatids in Caenorhabditis elegans[J]. Seminars in Cell & Developmental Biology, 2022, 127: 110-120.
[83] ZHOU Z, HARTWIEG E, HORVITZ H R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C-elegans[J]. Cell, 2001, 104(1): 43-56.
[84] TIMMONS L, FIRE A. Specific interference by ingested dsRNA[J]. Nature, 1998, 395(6705): 854.
[85] VAUX D L. Toward an understanding of the molecular mechanisms of physiological cell death[J]. Proc Natl Acad Sci U S A, 1993, 90(3): 786-789.
[86] HENGARTNER M O, ELLIS R E, HORVITZ H R. Caenorhabditis-elegans gene ced-9 protects cells from programmed cell-death[J]. Nature, 1992, 356(6369): 494-499.
[87] MIURA M, ZHU H, ROTELLO R, et al. Induction of apoptosis in fibroblasts by Il-1-beta-converting enzyme, a mammalian homolog of the C-elegans cell-death gene ced-3[J]. Cell, 1993, 75(4): 653-660.
[88] SRINIVASULA S M, FERNANDES-ALNEMRI T, ZANGRILLI J, et al. The ced-3/interleukin 1beta converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2alpha are substrates for the apoptotic mediator CPP32[J]. J Biol Chem, 1996, 271(43): 27099-27106.
[89] ZOU H, HENZEL W J, LIU X, et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3[J]. Cell, 1997, 90(3): 405-413.
[90] YAN N, CHAI J J, LEE E S, et al. Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans[J]. Nature, 2005, 437(7060): 831-837.
[91] BLOSS T A, WITZE E S, ROTHMAN J H. Suppression of CED-3-independent apoptosis by mitochondrial betaNAC in Caenorhabditis elegans[J]. Nature, 2003, 424(6952): 1066-1071.
[92] HARDERS R H, MORTHORST T H, LANDE A D, et al. Dynein links engulfment and execution of apoptosis via CED-4/Apaf1 in C. elegans[J]. Cell Death & Disease, 2018, 9(10): 1012.
[93] BOAG P R, NAKAMURA A, BLACKWELL T K. A conserved RNA-protein complex component involved in physiological germline apoptosis regulation in C-elegans[J]. Development, 2005, 132(22): 4975-4986.
[94] SILVA-GARCIA C G, NAVARRO R E. The C. elegans TIA-1/TIAR homolog TIAR-1 is required to induce germ cell apoptosis[J]. Genesis, 2013, 51(10): 690-707.
[95] PARK D, JIA H, RAJAKUMAR V, et al. Pax2/5/8 proteins promote cell survival in C. elegans[J]. Development, 2006, 133(21): 4193-4202.
[96] SCHERTEL C, CONRADT B. C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions[J]. Development, 2007, 134(20): 3691-3701.
[97] BOAG P R, NAKAMURA A, BLACKWELL T K. A conserved RNA-protein complex component involved in physiological germline apoptosis regulation in C. elegans[J]. Development, 2005, 132(22): 4975-4986.
[98] RAIDERS S A, EASTWOOD M D, BACHER M, et al. Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosis[J]. PLoS Genet, 2018, 14(7): e1007417.
[99] AUDHYA A, HYNDMAN F, MCLEOD I X, et al. A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans[J]. J Cell Biol, 2005, 171(2): 267-279.
[100] NAVARRO R E, SHIM E Y, KOHARA Y, et al. cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans[J]. Development, 2001, 128(17): 3221-3232.
[101] CHO S, ROGERS K W, FAY D S. The C. elegans glycopeptide hormone receptor ortholog, FSHR-1, regulates germline differentiation and survival[J]. Curr Biol, 2007, 17(3): 203-212.
[102] HASEGAWA E, KARASHIMA T, SUMIYOSHI E, et al. C. elegans CPB-3 interacts with DAZ-1 and functions in multiple steps of germline development[J]. Dev Biol, 2006, 295(2): 689-699.
[103] DERRY W B, BIERINGS R, VAN IERSEL M, et al. Regulation of developmental rate and germ cell proliferation in Caenorhabditis elegans by the p53 gene network[J]. Cell Death Differ, 2007, 14(4): 662-670.
[104] STERGIOU L, DOUKOUMETZIDIS K, SENDOEL A, et al. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans[J]. Cell Death Differ, 2007, 14(6): 1129-1138.
[105] HOLWAY A H, KIM S H, LA VOLPE A, et al. Checkpoint silencing during the DNA damage response in Caenorhabditis elegans embryos[J]. J Cell Biol, 2006, 172(7): 999-1008.
[106] CHEN B, CAO X, LU H, et al. N-(3-oxo-acyl) homoserine lactone induced germ cell apoptosis and suppressed the over-activated RAS/MAPK tumorigenesis via mitochondrial-dependent ROS in C. elegans[J]. Apoptosis, 2018, 23(11-12): 626-640.
[107] YIN J, LIU R, JIAN Z, et al. Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in dna damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans[J]. Ecotoxicol Environ Saf, 2018, 163: 298-306.
[108] AHMED S, HODGKIN J. MRT-2 checkpoint protein is required for germline immortality and telomere replication in C-elegans[J]. Nature, 2000, 403(6766): 159-164.
[109] BOERCKEL J, WALKER D, AHMED S. The Caenorhabditis elegans Rad17 homolog HPR-17 is required for telomere replication[J]. Genetics, 2007, 176(1): 703-709.
[110] SCHUMACHER B, HANAZAWA M, LEE M H, et al. Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis (vol 120, pg 357, 2005)[J]. Cell, 2005, 122(1): 145-145.
[111] D'AMORA D R, HU Q, PIZZARDI M, et al. BRAP-2 promotes DNA damage induced germline apoptosis in C. elegans through the regulation of SKN-1 and AKT-1[J]. Cell Death Differ, 2018, 25(7): 1276-1288.
[112] MIN H, LEE Y U, SHIM Y H, et al. Autophagy of germ-granule components, PGL-1 and PGL-3, contributes to DNA damage-induced germ cell apoptosis in C. elegans[J]. Plos Genetics, 2019, 15(5): e1008150.
[113] GAO M X, LIAO E H, YU B, et al. The SCFFSN-1 ubiquitin ligase controls germline apoptosis through CEP-1/p53 in C. elegans[J]. Cell Death Differ, 2008, 15(6): 1054-1062.
[114] SUNG M, KAWASAKI I, SHIM Y H. Depletion of cdc-25.3, a Caenorhabditis elegans orthologue of cdc25, increases physiological germline apoptosis[J]. Febs Letters, 2017, 591(14): 2131-2146.
[115] SCHUMACHER B, SCHERTEL C, WITTENBURG N, et al. C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage (vol 12, pg 153, 2005)[J]. Cell Death Differ, 2005, 12(5): 532-532.
[116] NEHME R, CONRADT B. egl-1: a key activator of apoptotic cell death in C. elegans[J]. Oncogene, 2008, 27 Suppl 1: S30-40.
[117] DERRY W B, PUTZKE A P, ROTHMAN J H. Caenorhabditis elegans p53: Role in apoptosis, meiosis, and stress resistance[J]. Science, 2001, 294(5542): 591-595.
[118] SCHUMACHER B, HOFMANN K, BOULTON S, et al. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis[J]. Current Biology, 2001, 11(21): 1722-1727.
[119] KASSAHUN H, SENGUPTA T, SCHIAVI A, et al. Constitutive MAP-kinase activation suppresses germline apoptosis in NTH-1 DNA glycosylase deficient C. elegans[J]. DNA Repair, 2018, 61: 46-55.
[120] WANG J, DU H, NIE Y, et al. Mitochondria and MAPK cascades modulate endosulfan-induced germline apoptosis in Caenorhabditis elegans[J]. Toxicol Res (Camb), 2017, 6(4): 412-419.
[121] DENG X, HOFMANN E R, VILLANUEVA A, et al. Caenorhabditis elegans ABL-1 antagonizes p53-mediated germline apoptosis after ionizing irradiation[J]. Nat Genet, 2004, 36(8): 906-912.
[122] HAHN W C, BIERER B E. Separable portions of the CD2 cytoplasmic domain involved in signaling and ligand avidity regulation[J]. J Exp Med, 1993, 178(5): 1831-1836.
[123] ZAISS D M W, STANDERA S, KLOETZEL P M, et al. PI31 is a modulator of proteasome formation and antigen processing[J]. Proc Natl Acad Sci U S A, 2002, 99(22): 14344-14349.
[124] KOFLER M, MOTZNY K, FREUND C. GYF domain proteomics reveals interaction sites in known and novel target proteins[J]. Mol Cell Proteomics, 2005, 4(11): 1797-1811.
[125] ALBERT T K, HANZAWA H, LEGTENBERG Y I A, et al. Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex[J]. Embo Journal, 2002, 21(3): 355-364.
[126] BIALKOWSKA A, KURLANDZKA A. Proteins interacting with Lin1p, a putative link between chromosome segregation, mRNA splicing and DNA replication in Saccharomyces cerevisiae[J]. Yeast, 2002, 19(15): 1323-1333.
[127] ARNING S, GRUTER P, BILBE G, et al. Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA[J]. Rna, 1996, 2(8): 794-810.
[128] LILLIE S H, BROWN S S. Suppression of a myosin defect by a kinesin-related gene[J]. Nature, 1992, 356(6367): 358-361.
[129] FREUND C, KUHNE R, YANG H, et al. Dynamic interaction of CD2 with the GYF and the SH3 domain of compartmentalized effector molecules[J]. Embo Journal, 2002, 21(22): 5985-5995.
[130] ABALLAY A, AUSUBEL F M. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing[J]. Proc Natl Acad Sci U S A, 2001, 98(5): 2735-2739.
[131] GU W, KOFLER M, ANTES I, et al. Alternative binding modes of proline-rich peptides binding to the GYF domain[J]. Biochemistry, 2005, 44(17): 6404-6415.
[132] KOFLER M, HEUER K, ZECH T, et al. Recognition sequences for the GYF domain reveal a possible spliceosomal function of CD2BP2[J]. J Biol Chem, 2004, 279(27): 28292-28297.
[133] MOLLIEX A, TEMIROV J, LEE J, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization[J]. Cell, 2015, 163(1): 123-133.
[134] BRODSKY S, JANA T, MITTELMAN K, et al. Intrinsically disordered regions direct transcription factor in vivo binding specificity[J]. Mol Cell, 2020, 79(3): 459-471 e454.
[135] PFISTER K K, SHAH P R, HUMMERICH H, et al. Genetic analysis of the cytoplasmic dynein subunit families[J]. Plos Genetics, 2006, 2(1): 11-26.
[136] NAGANO F, ORITA S, SASAKI T, et al. Interaction of Doc2 with tctex-1, a light chain of cytoplasmic dynein. Implication in dynein-dependent vesicle transport[J]. J Biol Chem, 1998, 273(46): 30065-30068.
[137] SHARIF S R, ISLAM A, MOON I S. N-Acetyl-D-glucosamine kinase interacts with dynein-lis1-nudE1 complex and regulates cell division[J]. Mol Cells, 2016, 39(9): 669-679.
[138] VADLAMUDI R K, BAGHERI-YARMAND R, YANG Z, et al. Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes[J]. Cancer Cell, 2004, 5(6): 575-585.
[139] DAHER W, PIERROT C, KALAMOU H, et al. Plasmodium falciparum dynein light chain 1 interacts with actin/myosin during blood stage development[J]. J Biol Chem, 2010, 285(26): 20180-20191.
[140] LO K W H, NAISBITT S, FAN J S, et al. The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif[J]. Journal of Biological Chemistry, 2001, 276(17): 14059-14066.
[141] BENISON G, KARPLUS P A, BARBAR E. Structure and dynamics of LC8 complexes with KXTOT-motif peptides: Swallow and dynein intermediate chain compete for a common site[J]. Journal of Molecular Biology, 2007, 371(2): 457-468.
[142] CREPIEUX P, KWON H, LECLERC N, et al. I kappa B alpha physically interacts with a cytoskeleton-associated protein through its signal response domain[J]. Molecular and Cellular Biology, 1997, 17(12): 7375-7385.
[143] SINGH P K, ROUKOUNAKIS A, WEBER A, et al. Dynein light chain binding determines complex formation and posttranslational stability of the Bcl-2 family members Bmf and Bim[J]. Cell Death Differ, 2020, 27(2): 434-450.
[144] LO K W H, KAN H M, CHAN L N, et al. The 8-kDa dynein light chain binds to p53-binding protein 1 and mediates DNA damage-induced p53 nuclear accumulation[J]. Journal of Biological Chemistry, 2005, 280(9): 8172-8179.
[145] NAISBITT S, VALTSCHANOFF J, ALLISON D W, et al. Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein[J]. Journal of Neuroscience, 2000, 20(12): 4524-4534.
[146] MAKOKHA M, HUANG Y P J, MONTELIONE G, et al. The solution structure of the pH-induced monomer of dynein light-chain LC8 from Drosophila[J]. Protein Science, 2004, 13(3): 727-734.
[147] LIANG J, JAFFREY S R, GUO W, et al. Structure of the PIN/LC8 dimer with a bound peptide[J]. Nat Struct Biol, 1999, 6(8): 735-740.
[148] SINGH P K, ROUKOUNAKIS A, FRANK D O, et al. Dynein light chain 1 induces assembly of large Bim complexes on mitochondria that stabilize Mcl-1 and regulate apoptosis[J]. Genes & Development, 2017, 31(17): 1754-1769.
[149] DICKINSON D J, PANI A M, HEPPERT J K, et al. Streamlined genome engineering with a self-excising drug selection cassette[J]. Genetics, 2015, 200(4): 1035-1049.
[150] WANG J, ZHANG X, SUN Z, et al. An efficient intensity-based ready-to-use X-ray image stitcher[J]. Int J Med Robot, 2018, 14(5): e1925.
[151] ZHANG H, JIANG S, LIAO J, et al. Near-field Fourier ptychography: super-resolution phase retrieval via speckle illumination[J]. Opt Express, 2019, 27(5): 7498-7512.
[152] OTWINOWSKI Z, MINOR W. Processing of X-ray diffraction data collected in oscillation mode[J]. Methods Enzymol, 1997, 276: 307-326.
[153] STORONI L C, MCCOY A J, READ R J. Likelihood-enhanced fast rotation functions[J]. Acta Crystallographica Section D-Structural Biology, 2004, 60: 432-438.
[154] ADAMS P D, AFONINE P V, BUNKOCZI G, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution[J]. Acta Crystallographica Section D-Structural Biology, 2010, 66: 213-221.
[155] EMSLEY P, COWTAN K. Coot: model-building tools for molecular graphics[J]. Acta Crystallogr D Biol Crystallogr, 2004, 60(Pt 12 Pt 1): 2126-2132.
[156] DAVIS I W, LEAVER-FAY A, CHEN V B, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids[J]. Nucleic Acids Research, 2007, 35: W375-W383.
[157] MOON S, HAN D, KIM Y, et al. Interactome analysis of AMP-activated protein kinase (AMPK)-alpha1 and -beta1 in INS-1 pancreatic beta-cells by affinity purification-mass spectrometry[J]. Sci Rep, 2014, 4: 4376.
[158] CHEN W, WANG S, ADHIKARI S, et al. Simple and integrated spintip-based technology applied for deep proteome profiling[J]. Anal Chem, 2016, 88(9): 4864-4871.
[159] MANEK R, NELSON T, TSENG E, et al. 5'UTR-mediated regulation of Ataxin-1 expression[J]. Neurobiol Dis, 2020, 134: 104564.
[160] ARAUJO P R, YOON K, KO D J, et al. Before it gets started: regulating translation at the 5 ' UTR[J]. Comparative and Functional Genomics, 2012
[161] LEE Y, SAMACO R C, GATCHEL J R, et al. miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis[J]. Nature Neuroscience, 2008, 11(10): 1137-1139.

所在学位评定分委会
生物学
国内图书分类号
Q255
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543798
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
张丹丹. SAO-1 与 DLC-1 相互作用调控秀丽隐杆线虫生殖腺细胞凋亡的分子机制[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849505-张丹丹-生物系.pdf(12184KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张丹丹]的文章
百度学术
百度学术中相似的文章
[张丹丹]的文章
必应学术
必应学术中相似的文章
[张丹丹]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。