[1] BATLEVI Y, MARTIN D N, PANDEY U B, et al. Dynein light chain 1 is required for autophagy, protein clearance, and cell death in Drosophila[J]. Proc Natl Acad Sci U S A, 2010, 107(2): 742-747.
[2] MORTHORST T H, OLSEN A. Cell-nonautonomous inhibition of radiation-induced apoptosis by dynein light chain 1 in Caenorhabditis elegans[J]. Cell Death & Disease, 2013, 4(9): e799.
[3] LIU S, CHEN T, CHEN B, et al. Lrpap1 deficiency leads to myopia through TGF-beta-induced apoptosis in zebrafish[J]. Cell Commun Signal, 2022, 20(1): 162.
[4] CHEN F, HERSH B M, CONRADT B, et al. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death[J]. Science, 2000, 287(5457): 1485-1489.
[5] CHEN X, WANG Y, CHEN Y Z, et al. Regulation of CED-3 caspase localization and activation by C. elegans nuclear-membrane protein NPP-14[J]. Nat Struct Mol Biol, 2016, 23(11): 958-964.
[6] YAN N, GU L, KOKEL D, et al. Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4[J]. Mol Cell, 2004, 15(6): 999-1006.
[7] CHINNAIYAN A M, OROURKE K, LANE B R, et al. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death[J]. Science, 1997, 275(5303): 1122-1126.
[8] SESHAGIRI S, MILLER L K. Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis[J]. Curr Biol, 1997, 7(7): 455-460.
[9] TZUR Y B, MARGALIT A, MELAMED-BOOK N, et al. Matefin/SUN-1 is a nuclear envelope receptor for CED-4 during Caenorhabditis elegans apoptosis[J]. Proc Natl Acad Sci U S A, 2006, 103(36): 13397-13402.
[10] ELLIS H M, HORVITZ H R. Genetic control of programmed cell death in the nematode C. elegans[J]. Cell, 1986, 44(6): 817-829.
[11] HUANG W J, JIANG T Y, CHOI W Y, et al. Mechanistic insights into CED-4-mediated activation of CED-3[J]. Genes & Development, 2013, 27(18): 2039-2048.
[12] WANG M X, ITOH M, LI S, et al. CED-4 is an mRNA-binding protein that delivers ced-3 mRNA to ribosomes[J]. Biochemical and Biophysical Research Communications, 2016, 470(1): 48-53.
[13] KOFLER M M, FREUND C. The GYF domain[J]. Febs Journal, 2006, 273(2): 245-256.
[14] NISHIZAWA K, FREUND C, LI J, et al. Identification of a proline-binding motif regulating CD2-triggered T lymphocyte activation[J]. Proc Natl Acad Sci U S A, 1998, 95(25): 14897-14902.
[15] HALE V A, GUINEY E L, GOLDBERG L Y, et al. Notch signaling is antagonized by SAO-1, a novel GYF-domain protein that interacts with the E3 ubiquitin ligase SEL-10 in Caenorhabditis elegans[J]. Genetics, 2012, 190(3): 1043-1266.
[16] WORTH A, THRASHER A J, GASPAR H B. Autoimmune lymphoproliferative syndrome: molecular basis of disease and clinical phenotype[J]. British Journal of Haematology, 2006, 133(2): 124-140.
[17] ETHELL D W, BUHLER L A. Fas ligand-mediated apoptosis in degenerative disorders of the brain[J]. J Clin Immunol, 2003, 23(6): 439-446.
[18] NIJHAWAN D, HONARPOUR N, WANG X D. Apoptosis in neural development and disease[J]. Annual Review of Neuroscience, 2000, 23: 73-87.
[19] DENG G M, PIKE C J, COTMAN C W. Alzheimer-associated presenilin-2 confers increased sensitivity to apoptosis in PC12 cells[J]. Febs Letters, 1996, 397(1): 50-54.
[20] ZEITLIN S, LIU J P, CHAPMAN D L, et al. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue[J]. Nat Genet, 1995, 11(2): 155-163.
[21] ZAKERI Z F, AHUJA H S. Cell death/apoptosis: normal, chemically induced, and teratogenic effect[J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 396(1-2): 149-161.
[22] KERR J F, WYLLIE A H, CURRIE A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26(4): 239-257.
[23] SULSTON J E, HORVITZ H R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans[J]. Developmental Biology, 2019, 455(2): 177-223.
[24] HEDGECOCK E M, SULSTON J E, THOMSON J N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis Elegans[J]. Science, 1983, 220(4603): 1277-1279.
[25] SULSTON J E, SCHIERENBERG E, WHITE J G, et al. The embryonic cell lineage of the nematode Caenorhabditis elegans[J]. Developmental Biology, 1983, 100(1): 64-119.
[26] ELMORE S. Apoptosis: A review of programmed cell death[J]. Toxicologic Pathology, 2007, 35(4): 495-516.
[27] LOCKSLEY R M, KILLEEN N, LENARDO M J. The TNF and TNF receptor superfamilies: Integrating mammalian biology[J]. Cell, 2001, 104(4): 487-501.
[28] SCAFFIDI C, SCHMITZ I, KRAMMER P H, et al. The role of c-FLIP in modulation of CD95-induced apoptosis[J]. Journal of Biological Chemistry, 1999, 274(3): 1541-1548.
[29] PIETKIEWICZ S, WOLFE C, BUCHBINDER J H, et al. Measuring procaspase-8 and -10 processing upon apoptosis Induction[J]. Bio-Protocol, 2017, 7(1): e2081.
[30] HSU H L, XIONG J, GOEDDEL D V. The tnf receptor 1-associated protein tradd signals cell-death and nf-kappa-B activation[J]. Cell, 1995, 81(4): 495-504.
[31] PETER M E, KRAMMER P H. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis[J]. Current Opinion in Immunology, 1998, 10(5): 545-551.
[32] PETER M E, KRAMMER P H. The CD95(APO-1/Fas) DISC and beyond[J]. Cell Death Differ, 2003, 10(1): 26-35.
[33] CORY S, ADAMS J M. The Bcl2 family: regulators of the cellular life-or-death switch[J]. Nat Rev Cancer, 2002, 2(9): 647-656.
[34] YANG H, XIE Y, YANG D, et al. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma[J]. Oncotarget, 2017, 8(15): 25310-25322.
[35] DEGENHARDT K, SUNDARARAJAN R, LINDSTEN T, et al. Bax and Bak independently promote cytochrome C release from mitochondria[J]. J Biol Chem, 2002, 277(16): 14127-14134.
[36] HENRY H, THOMAS A, SHEN Y, et al. Regulation of the mitochondrial checkpoint in p53-mediated apoptosis confers resistance to cell death[J]. Oncogene, 2002, 21(5): 748-760.
[37] LI P, NIJHAWAN D, BUDIHARDJO I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade[J]. Cell, 1997, 91(4): 479-489.
[38] LI H L, ZHU H, XU C J, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis[J]. Cell, 1998, 94(4): 491-501.
[39] LIU H Y, DAI L Y, WANG M, et al. Tunicamycin induces hepatic stellate cell apoptosis through calpain-2/Ca2+-dependent Endoplasmic Reticulum stress pathway[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 684857.
[40] DIAZ-HORTA O, KAMAGATE A, HERCHUELZ A, et al. Na/Ca exchanger overexpression induces endoplasmic reticulum-related apoptosis and caspase-12 activation in insulin-releasing BRIN-BD11 cells[J]. Diabetes, 2002, 51(6): 1815-1824.
[41] NAH J, ZABLOCKI D, SADOSHIMA J. The role of autophagic cell death in cardiac disease[J]. J Mol Cell Cardiol, 2022, 173: 16-24.
[42] YU L, ALVA A, SU H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8[J]. Science, 2004, 304(5676): 1500-1502.
[43] PARZYCH K R, KLIONSKY D J. An overview of autophagy: morphology, mechanism, and regulation[J]. Antioxidants & Redox Signaling, 2014, 20(3): 460-473.
[44] SHIMIZU S, KANASEKI T, MIZUSHIMA N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes[J]. Nat Cell Biol, 2004, 6(12): 1221-1228.
[45] XU T, NICOLSON S, DENTON D, et al. Distinct requirements of autophagy-related genes in programmed cell death[J]. Cell Death Differ, 2015, 22(11): 1792-1802.
[46] MRAKOVCIC M, FROHLICH L F. p53-mediated molecular control of autophagy in tumor cells[J]. Biomolecules, 2018, 8(2): 14-31.
[47] GORES G J, HERMAN B, LEMASTERS J J. Plasma-membrane bleb formation and rupture - a common feature of hepatocellular injury[J]. Hepatology, 1990, 11(4): 690-698.
[48] DEGTEREV A, HUANG Z H, BOYCE M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nature Chemical Biology, 2005, 1(2): 112-119.
[49] KAISER W J, SRIDHARAN H, HUANG C Z, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL[J]. Journal of Biological Chemistry, 2013, 288(43): 31268-31279.
[50] ZHANG T, ZHANG Y, CUI M Y, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis[J]. Nature Medicine, 2016, 22(2): 175-182.
[51] GALLUZZI L, KEPP O, CHAN F K, et al. Necroptosis: mechanisms and relevance to disease[J]. Annu Rev Pathol, 2017, 12: 103-130.
[52] FESTJENS N, VANDEN BERGHE T, VANDENABEELE P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response[J]. Biochim Biophys Acta, 2006, 1757(9-10): 1371-1387.
[53] HOLLER N, ZARU R, MICHEAU O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule[J]. Nature Immunology, 2000, 1(6): 489-495.
[54] COOKSON B T, BRENNAN M A. Pro-inflammatory programmed cell death[J]. Trends in Microbiology, 2001, 9(3): 113-114.
[55] SHI J J, GAO W Q, SHAO F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends in Biochemical Sciences, 2017, 42(4): 245-254.
[56] YU P, ZHANG X, LIU N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 128-148.
[57] DING J J, WANG K, LIU W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family[J]. Nature, 2016, 535(7610): 111-116.
[58] WANG K, SUN Q, ZHONG X, et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis[J]. Cell, 2020, 180(5): 941-955.
[59] ZHANG Z B, ZHANG Y, XIA S Y, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity[J]. Nature, 2020, 579(7799): 415-420.
[60] WANG Q Y, WANG Y P, DING J J, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis[J]. Nature, 2020, 579(7799): 421-426.
[61] ZHOU Z W, HE H B, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(6494): 965-976.
[62] LIU X, ZHANG Z B, RUAN J B, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158.
[63] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
[64] YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317-331.
[65] ANGELI J P F, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nature Cell Biology, 2014, 16(12): 1180-1191.
[66] ZHOU B R, LIU J, KANG R, et al. Ferroptosis is a type of autophagy-dependent cell death[J]. Seminars in Cancer Biology, 2020, 66: 89-100.
[67] WANG Y Q, ZHANG L, ZHOU F F. Cuproptosis: a new form of programmed cell death[J]. Cellular & Molecular Immunology, 2022, 19(8): 867-868.
[68] TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261.
[69] TANG D L, CHEN X, KROEMER G. Cuproptosis: a copper-triggered modality of mitochondrial cell death[J]. Cell Research, 2022, 32(5): 417-418.
[70] GOSSETT L A, HECHT R M. A squash technique demonstrating embryonic Nuclear cleavage of the nematode Caenorbabditis-elegans[J]. Journal of Histochemistry & Cytochemistry, 1980, 28(6): 507-510.
[71] BERKS M. The C. elegans genome sequencing project. C. elegans genome mapping and sequencing consortium[J]. Genome Res, 1995, 5(2): 99-104.
[72] HALLOWS K R, ALZAMORA R, LI H, et al. AMP-activated protein kinase inhibits alkaline pH-and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells[J]. American Journal of Physiology-Cell Physiology, 2009, 296(2): C672-C681.
[73] GUMIENNY T L, LAMBIE E, HARTWIEG E, et al. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline[J]. Development, 1999, 126(5): 1011-1022.
[74] LIU W H, LIN Y L, WANG J P, et al. Restriction of vaccinia virus replication by a ced-3 and ced-4-dependent pathway in Caenorhabditis elegans[J]. Proc Natl Acad Sci U S A, 2006, 103(11): 4174-4179.
[75] ABALLAY A, AUSUBEL F M. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing[J]. Proc Natl Acad Sci U S A, 2001, 98(5): 2735-2739.
[76] DERRY W B, PUTZKE A P, ROTHMAN J H. Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance[J]. Science, 2001, 294(5542): 591-595.
[77] HA M, WEI L, GUAN X, et al. p53-dependent apoptosis contributes to di-(2-ethylhexyl) phthalate-induced hepatotoxicity[J]. Environ Pollut, 2016, 208(Pt B): 416-425.
[78] LETTRE G, KRITIKOU E A, JAEGGI M, et al. Genome-wide RNAi identifies p53-dependent and -independent regulators of germ cell apoptosis in C. elegans[J]. Cell Death Differ, 2004, 11(11): 1198-1203.
[79] OU H L, SCHUMACHER B. DNA damage responses and p53 in the aging process[J]. Blood, 2018, 131(5): 488-495.
[80] WU C W, WANG Y, CHOE K P. F-box protein XREP-4 is a new regulator of the oxidative stress response in Caenorhabditis elegans[J]. Genetics, 2017, 206(2): 859-871.
[81] JEONG J, VERHEYDEN J M, KIMBLE J. Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans[J]. Plos Genetics, 2011, 7(3): e1001348.
[82] WANG X, HU B, ZHAO Z, et al. From primordial germ cells to spermatids in Caenorhabditis elegans[J]. Seminars in Cell & Developmental Biology, 2022, 127: 110-120.
[83] ZHOU Z, HARTWIEG E, HORVITZ H R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C-elegans[J]. Cell, 2001, 104(1): 43-56.
[84] TIMMONS L, FIRE A. Specific interference by ingested dsRNA[J]. Nature, 1998, 395(6705): 854.
[85] VAUX D L. Toward an understanding of the molecular mechanisms of physiological cell death[J]. Proc Natl Acad Sci U S A, 1993, 90(3): 786-789.
[86] HENGARTNER M O, ELLIS R E, HORVITZ H R. Caenorhabditis-elegans gene ced-9 protects cells from programmed cell-death[J]. Nature, 1992, 356(6369): 494-499.
[87] MIURA M, ZHU H, ROTELLO R, et al. Induction of apoptosis in fibroblasts by Il-1-beta-converting enzyme, a mammalian homolog of the C-elegans cell-death gene ced-3[J]. Cell, 1993, 75(4): 653-660.
[88] SRINIVASULA S M, FERNANDES-ALNEMRI T, ZANGRILLI J, et al. The ced-3/interleukin 1beta converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2alpha are substrates for the apoptotic mediator CPP32[J]. J Biol Chem, 1996, 271(43): 27099-27106.
[89] ZOU H, HENZEL W J, LIU X, et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3[J]. Cell, 1997, 90(3): 405-413.
[90] YAN N, CHAI J J, LEE E S, et al. Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans[J]. Nature, 2005, 437(7060): 831-837.
[91] BLOSS T A, WITZE E S, ROTHMAN J H. Suppression of CED-3-independent apoptosis by mitochondrial betaNAC in Caenorhabditis elegans[J]. Nature, 2003, 424(6952): 1066-1071.
[92] HARDERS R H, MORTHORST T H, LANDE A D, et al. Dynein links engulfment and execution of apoptosis via CED-4/Apaf1 in C. elegans[J]. Cell Death & Disease, 2018, 9(10): 1012.
[93] BOAG P R, NAKAMURA A, BLACKWELL T K. A conserved RNA-protein complex component involved in physiological germline apoptosis regulation in C-elegans[J]. Development, 2005, 132(22): 4975-4986.
[94] SILVA-GARCIA C G, NAVARRO R E. The C. elegans TIA-1/TIAR homolog TIAR-1 is required to induce germ cell apoptosis[J]. Genesis, 2013, 51(10): 690-707.
[95] PARK D, JIA H, RAJAKUMAR V, et al. Pax2/5/8 proteins promote cell survival in C. elegans[J]. Development, 2006, 133(21): 4193-4202.
[96] SCHERTEL C, CONRADT B. C. elegans orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions[J]. Development, 2007, 134(20): 3691-3701.
[97] BOAG P R, NAKAMURA A, BLACKWELL T K. A conserved RNA-protein complex component involved in physiological germline apoptosis regulation in C. elegans[J]. Development, 2005, 132(22): 4975-4986.
[98] RAIDERS S A, EASTWOOD M D, BACHER M, et al. Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosis[J]. PLoS Genet, 2018, 14(7): e1007417.
[99] AUDHYA A, HYNDMAN F, MCLEOD I X, et al. A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans[J]. J Cell Biol, 2005, 171(2): 267-279.
[100] NAVARRO R E, SHIM E Y, KOHARA Y, et al. cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans[J]. Development, 2001, 128(17): 3221-3232.
[101] CHO S, ROGERS K W, FAY D S. The C. elegans glycopeptide hormone receptor ortholog, FSHR-1, regulates germline differentiation and survival[J]. Curr Biol, 2007, 17(3): 203-212.
[102] HASEGAWA E, KARASHIMA T, SUMIYOSHI E, et al. C. elegans CPB-3 interacts with DAZ-1 and functions in multiple steps of germline development[J]. Dev Biol, 2006, 295(2): 689-699.
[103] DERRY W B, BIERINGS R, VAN IERSEL M, et al. Regulation of developmental rate and germ cell proliferation in Caenorhabditis elegans by the p53 gene network[J]. Cell Death Differ, 2007, 14(4): 662-670.
[104] STERGIOU L, DOUKOUMETZIDIS K, SENDOEL A, et al. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans[J]. Cell Death Differ, 2007, 14(6): 1129-1138.
[105] HOLWAY A H, KIM S H, LA VOLPE A, et al. Checkpoint silencing during the DNA damage response in Caenorhabditis elegans embryos[J]. J Cell Biol, 2006, 172(7): 999-1008.
[106] CHEN B, CAO X, LU H, et al. N-(3-oxo-acyl) homoserine lactone induced germ cell apoptosis and suppressed the over-activated RAS/MAPK tumorigenesis via mitochondrial-dependent ROS in C. elegans[J]. Apoptosis, 2018, 23(11-12): 626-640.
[107] YIN J, LIU R, JIAN Z, et al. Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in dna damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans[J]. Ecotoxicol Environ Saf, 2018, 163: 298-306.
[108] AHMED S, HODGKIN J. MRT-2 checkpoint protein is required for germline immortality and telomere replication in C-elegans[J]. Nature, 2000, 403(6766): 159-164.
[109] BOERCKEL J, WALKER D, AHMED S. The Caenorhabditis elegans Rad17 homolog HPR-17 is required for telomere replication[J]. Genetics, 2007, 176(1): 703-709.
[110] SCHUMACHER B, HANAZAWA M, LEE M H, et al. Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis (vol 120, pg 357, 2005)[J]. Cell, 2005, 122(1): 145-145.
[111] D'AMORA D R, HU Q, PIZZARDI M, et al. BRAP-2 promotes DNA damage induced germline apoptosis in C. elegans through the regulation of SKN-1 and AKT-1[J]. Cell Death Differ, 2018, 25(7): 1276-1288.
[112] MIN H, LEE Y U, SHIM Y H, et al. Autophagy of germ-granule components, PGL-1 and PGL-3, contributes to DNA damage-induced germ cell apoptosis in C. elegans[J]. Plos Genetics, 2019, 15(5): e1008150.
[113] GAO M X, LIAO E H, YU B, et al. The SCFFSN-1 ubiquitin ligase controls germline apoptosis through CEP-1/p53 in C. elegans[J]. Cell Death Differ, 2008, 15(6): 1054-1062.
[114] SUNG M, KAWASAKI I, SHIM Y H. Depletion of cdc-25.3, a Caenorhabditis elegans orthologue of cdc25, increases physiological germline apoptosis[J]. Febs Letters, 2017, 591(14): 2131-2146.
[115] SCHUMACHER B, SCHERTEL C, WITTENBURG N, et al. C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage (vol 12, pg 153, 2005)[J]. Cell Death Differ, 2005, 12(5): 532-532.
[116] NEHME R, CONRADT B. egl-1: a key activator of apoptotic cell death in C. elegans[J]. Oncogene, 2008, 27 Suppl 1: S30-40.
[117] DERRY W B, PUTZKE A P, ROTHMAN J H. Caenorhabditis elegans p53: Role in apoptosis, meiosis, and stress resistance[J]. Science, 2001, 294(5542): 591-595.
[118] SCHUMACHER B, HOFMANN K, BOULTON S, et al. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis[J]. Current Biology, 2001, 11(21): 1722-1727.
[119] KASSAHUN H, SENGUPTA T, SCHIAVI A, et al. Constitutive MAP-kinase activation suppresses germline apoptosis in NTH-1 DNA glycosylase deficient C. elegans[J]. DNA Repair, 2018, 61: 46-55.
[120] WANG J, DU H, NIE Y, et al. Mitochondria and MAPK cascades modulate endosulfan-induced germline apoptosis in Caenorhabditis elegans[J]. Toxicol Res (Camb), 2017, 6(4): 412-419.
[121] DENG X, HOFMANN E R, VILLANUEVA A, et al. Caenorhabditis elegans ABL-1 antagonizes p53-mediated germline apoptosis after ionizing irradiation[J]. Nat Genet, 2004, 36(8): 906-912.
[122] HAHN W C, BIERER B E. Separable portions of the CD2 cytoplasmic domain involved in signaling and ligand avidity regulation[J]. J Exp Med, 1993, 178(5): 1831-1836.
[123] ZAISS D M W, STANDERA S, KLOETZEL P M, et al. PI31 is a modulator of proteasome formation and antigen processing[J]. Proc Natl Acad Sci U S A, 2002, 99(22): 14344-14349.
[124] KOFLER M, MOTZNY K, FREUND C. GYF domain proteomics reveals interaction sites in known and novel target proteins[J]. Mol Cell Proteomics, 2005, 4(11): 1797-1811.
[125] ALBERT T K, HANZAWA H, LEGTENBERG Y I A, et al. Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex[J]. Embo Journal, 2002, 21(3): 355-364.
[126] BIALKOWSKA A, KURLANDZKA A. Proteins interacting with Lin1p, a putative link between chromosome segregation, mRNA splicing and DNA replication in Saccharomyces cerevisiae[J]. Yeast, 2002, 19(15): 1323-1333.
[127] ARNING S, GRUTER P, BILBE G, et al. Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA[J]. Rna, 1996, 2(8): 794-810.
[128] LILLIE S H, BROWN S S. Suppression of a myosin defect by a kinesin-related gene[J]. Nature, 1992, 356(6367): 358-361.
[129] FREUND C, KUHNE R, YANG H, et al. Dynamic interaction of CD2 with the GYF and the SH3 domain of compartmentalized effector molecules[J]. Embo Journal, 2002, 21(22): 5985-5995.
[130] ABALLAY A, AUSUBEL F M. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing[J]. Proc Natl Acad Sci U S A, 2001, 98(5): 2735-2739.
[131] GU W, KOFLER M, ANTES I, et al. Alternative binding modes of proline-rich peptides binding to the GYF domain[J]. Biochemistry, 2005, 44(17): 6404-6415.
[132] KOFLER M, HEUER K, ZECH T, et al. Recognition sequences for the GYF domain reveal a possible spliceosomal function of CD2BP2[J]. J Biol Chem, 2004, 279(27): 28292-28297.
[133] MOLLIEX A, TEMIROV J, LEE J, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization[J]. Cell, 2015, 163(1): 123-133.
[134] BRODSKY S, JANA T, MITTELMAN K, et al. Intrinsically disordered regions direct transcription factor in vivo binding specificity[J]. Mol Cell, 2020, 79(3): 459-471 e454.
[135] PFISTER K K, SHAH P R, HUMMERICH H, et al. Genetic analysis of the cytoplasmic dynein subunit families[J]. Plos Genetics, 2006, 2(1): 11-26.
[136] NAGANO F, ORITA S, SASAKI T, et al. Interaction of Doc2 with tctex-1, a light chain of cytoplasmic dynein. Implication in dynein-dependent vesicle transport[J]. J Biol Chem, 1998, 273(46): 30065-30068.
[137] SHARIF S R, ISLAM A, MOON I S. N-Acetyl-D-glucosamine kinase interacts with dynein-lis1-nudE1 complex and regulates cell division[J]. Mol Cells, 2016, 39(9): 669-679.
[138] VADLAMUDI R K, BAGHERI-YARMAND R, YANG Z, et al. Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes[J]. Cancer Cell, 2004, 5(6): 575-585.
[139] DAHER W, PIERROT C, KALAMOU H, et al. Plasmodium falciparum dynein light chain 1 interacts with actin/myosin during blood stage development[J]. J Biol Chem, 2010, 285(26): 20180-20191.
[140] LO K W H, NAISBITT S, FAN J S, et al. The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif[J]. Journal of Biological Chemistry, 2001, 276(17): 14059-14066.
[141] BENISON G, KARPLUS P A, BARBAR E. Structure and dynamics of LC8 complexes with KXTOT-motif peptides: Swallow and dynein intermediate chain compete for a common site[J]. Journal of Molecular Biology, 2007, 371(2): 457-468.
[142] CREPIEUX P, KWON H, LECLERC N, et al. I kappa B alpha physically interacts with a cytoskeleton-associated protein through its signal response domain[J]. Molecular and Cellular Biology, 1997, 17(12): 7375-7385.
[143] SINGH P K, ROUKOUNAKIS A, WEBER A, et al. Dynein light chain binding determines complex formation and posttranslational stability of the Bcl-2 family members Bmf and Bim[J]. Cell Death Differ, 2020, 27(2): 434-450.
[144] LO K W H, KAN H M, CHAN L N, et al. The 8-kDa dynein light chain binds to p53-binding protein 1 and mediates DNA damage-induced p53 nuclear accumulation[J]. Journal of Biological Chemistry, 2005, 280(9): 8172-8179.
[145] NAISBITT S, VALTSCHANOFF J, ALLISON D W, et al. Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein[J]. Journal of Neuroscience, 2000, 20(12): 4524-4534.
[146] MAKOKHA M, HUANG Y P J, MONTELIONE G, et al. The solution structure of the pH-induced monomer of dynein light-chain LC8 from Drosophila[J]. Protein Science, 2004, 13(3): 727-734.
[147] LIANG J, JAFFREY S R, GUO W, et al. Structure of the PIN/LC8 dimer with a bound peptide[J]. Nat Struct Biol, 1999, 6(8): 735-740.
[148] SINGH P K, ROUKOUNAKIS A, FRANK D O, et al. Dynein light chain 1 induces assembly of large Bim complexes on mitochondria that stabilize Mcl-1 and regulate apoptosis[J]. Genes & Development, 2017, 31(17): 1754-1769.
[149] DICKINSON D J, PANI A M, HEPPERT J K, et al. Streamlined genome engineering with a self-excising drug selection cassette[J]. Genetics, 2015, 200(4): 1035-1049.
[150] WANG J, ZHANG X, SUN Z, et al. An efficient intensity-based ready-to-use X-ray image stitcher[J]. Int J Med Robot, 2018, 14(5): e1925.
[151] ZHANG H, JIANG S, LIAO J, et al. Near-field Fourier ptychography: super-resolution phase retrieval via speckle illumination[J]. Opt Express, 2019, 27(5): 7498-7512.
[152] OTWINOWSKI Z, MINOR W. Processing of X-ray diffraction data collected in oscillation mode[J]. Methods Enzymol, 1997, 276: 307-326.
[153] STORONI L C, MCCOY A J, READ R J. Likelihood-enhanced fast rotation functions[J]. Acta Crystallographica Section D-Structural Biology, 2004, 60: 432-438.
[154] ADAMS P D, AFONINE P V, BUNKOCZI G, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution[J]. Acta Crystallographica Section D-Structural Biology, 2010, 66: 213-221.
[155] EMSLEY P, COWTAN K. Coot: model-building tools for molecular graphics[J]. Acta Crystallogr D Biol Crystallogr, 2004, 60(Pt 12 Pt 1): 2126-2132.
[156] DAVIS I W, LEAVER-FAY A, CHEN V B, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids[J]. Nucleic Acids Research, 2007, 35: W375-W383.
[157] MOON S, HAN D, KIM Y, et al. Interactome analysis of AMP-activated protein kinase (AMPK)-alpha1 and -beta1 in INS-1 pancreatic beta-cells by affinity purification-mass spectrometry[J]. Sci Rep, 2014, 4: 4376.
[158] CHEN W, WANG S, ADHIKARI S, et al. Simple and integrated spintip-based technology applied for deep proteome profiling[J]. Anal Chem, 2016, 88(9): 4864-4871.
[159] MANEK R, NELSON T, TSENG E, et al. 5'UTR-mediated regulation of Ataxin-1 expression[J]. Neurobiol Dis, 2020, 134: 104564.
[160] ARAUJO P R, YOON K, KO D J, et al. Before it gets started: regulating translation at the 5 ' UTR[J]. Comparative and Functional Genomics, 2012
[161] LEE Y, SAMACO R C, GATCHEL J R, et al. miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis[J]. Nature Neuroscience, 2008, 11(10): 1137-1139.
修改评论