[1] RENFREY S, DOWNTON C, FEATHERSTONE J. The painful reality[J]. Nat Rev Drug Discov, 2003, 2(3): 175-176.
[2] BREIVIK H, EISENBERG E, O'BRIEN T, et al. The individual and societal burden of chronic pain in Europe: the case for strategic prioritisation and action to improve knowledge and availability of appropriate care[J]. BMC Public Health, 2013, 13: 1-14.
[3] MERCADANTE S, PORTENOY R K. Opioid poorly responsive cancer pain. Part 2: basic mechanisms that could shift dose response for analgesia[J]. J Pain Symptom Manage, 2001, 21(3): 255-264.
[4] PRIELIPP R C, FULESDI B, BRULL S J. Postoperative opioid-induced respiratory depression: 3 steps forward[J]. Anesth Analg, 2020, 131(4): 1007-1011.
[5] KHANNA A K, BERGESE S D, JUNGQUIST C R, et al. Prediction of opioid-induced respiratory depression on inpatient wards using continuous capnography and oximetry: an international prospective, observational trial[J]. Anesth Analg, 2020, 131(4): 1012-1024.
[6] SILVERMAN S M. Opioid induced hyperalgesia: clinical implications for the pain practitioner[J]. Pain Physician, 2009, 12(3): 679-684.
[7] KUM E, BUCKLEY N, DE LEON-CASASOLA O, et al. Attitudes towards and management of opioid-induced hyperalgesia: a survey of chronic pain practitioners[J]. Clin J Pain, 2020, 36(5): 359-364.
[8] CORDER G, TAWFIK V L, WANG D, et al. Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia[J]. Nat Med, 2017, 23(2): 164-173.
[9] VOLKOW N D, MCLELLAN A T. Opioid abuse in chronic pain-misconceptions and mitigation strategies[J]. N Engl J Med, 2016, 374(13): 1253-1263.
[10] MERCADANTE S, ARCURI E, SANTONI A. Opioid-induced tolerance and hyperalgesia[J]. CNS Drugs, 2019, 33(10): 943-955.
[11] HUTCHINSON M R, SHAVIT Y, GRACE P M, et al. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia[J]. Pharmacol Rev, 2011, 63(3): 772-810.
[12] CAHILL C M, WALWYN W, TAYLOR A M W, et al. Allostatic mechanisms of opioid tolerance beyond desensitization and downregulation[J]. Trends Pharmacol Sci, 2016, 37(11): 963-976.
[13] GULUR P, WILLIAMS L, CHAUDHARY S, et al. Opioid tolerance-a predictor of increased length of stay and higher readmission rates[J]. Pain Physician, 2014, 17(4): E503.
[14] DU F, YIN G, HAN L, et al. Targeting peripheral mu-opioid receptors or mu-opioid receptor-expressing neurons does not prevent morphine-induced mechanical allodynia and anti-allodynic tolerance[J]. Neurosci Bull, 2023,1-19.
[15] SIEGEL S, HINSON R E, KRANK M D, et al. Heroin ‘overdose’ death: contribution of drug-associated environmental cues[J]. Science, 1982, 216(4544): 436-437.
[16] VOON P, HAYASHI K, MILLOY M J, et al. Pain among high-risk patients on methadone maintenance treatment[J]. J Pain, 2015, 16(9): 887-894.
[17] MERCADANTE S. Portenoy RK opioid poorly-responsive cancer pain. Part 3. Clinical strategies to improve opioid responsiveness[J]. J Pain Symptom Manag, 2001, 21(4): 338-354.
[18] GUPTA S. Hyperalgesia induced by opioid drugs[J]. J Ration Pharmacother Res, 2018, 4: 22-30.
[19] MATTHES H W, MALDONADO R, SIMONIN F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene[J]. Nature, 1996, 383(6603): 819-823.
[20] MARTIN W R, EADES C G, THOMPSON J A, et al. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog[J]. J Pharmacol Exp Ther, 1976, 197(3): 517-532.
[21] MASSOTTE D. In vivo opioid receptor heteromerization: where do we stand?[J]. Br J Pharmacol, 2015, 172(2): 420-434.
[22] CHU L F, ANGST M S, CLARK D. Opioid-induced hyperalgesia in humans: molecular mechanisms and clinical considerations[J]. Clin J Pain, 2008, 24(6): 479-496.
[23] QUIRION R, ZAJAC J M, MORGAT J L, et al. Autoradiographic distribution of mu and delta opiate receptors in rat brain using highly selective ligands[J]. Life Sci, 1983, 33 Suppl 1: 227-230.
[24] IPPOLITO D L, TEMKIN P A, ROGALSKI S L, et al. N-terminal tyrosine residues within the potassium channel Kir3 modulate GTPase activity of Galphai[J]. J Biol Chem, 2002, 277.
[25] TORRECILLA M, MARKER C L, CINTORA S C, et al. G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons[J]. J Neurosci, 2002, 22(11): 4328-4334.
[26] GINTZLER A R, CHAKRABARTI S. Chronic morphine-induced plasticity among signalling molecules[J]. Novartis Found Symptom, 2004, 261:167-180.
[27] HULL L C, LLORENTE J, GABRA B H. The effect of protein kinase C and G protein-coupled receptor kinase inhibition on tolerance induced by mu-opioid agonists of different efficacy[J]. J Pharmacol Exp Ther, 2010, 332(3): 1127-1135.
[28] MELIEF E J, MIYATAKE M, BRUCHAS M R, et al. Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling[J]. Proc Natl Acad Sci USA, 2010, 107(25): 11608-11613.
[29] BOBECK E N, INGRAM S L, HERMES S M, et al. Ligand-biased activation of extracellular signal-regulated kinase 1/2 leads to differences in opioid induced antinociception and tolerance[J]. Behav Brain Res, 2016, 298: 17-24.
[30] MORGAN M M, BOBECK E N, INGRAM S L. Glutamate modulation of antinociception, but not tolerance, produced by morphine microinjection into the periaqueductal gray of the rat[J]. Brain Res, 2009, 1295: 59-66.
[31] LEE M, SILVERMAN S M, HANSEN H, et al. A comprehensive review of opioid-induced hyperalgesia[J]. Pain Physician, 2011, 14(2): 145-161.
[32] GRIS P, GAUTHIER J, CHENG P, et al. A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism[J]. Mol Pain, 2010, 6: 1744-8069-33.
[33] CONVERTINO M, SAMOSHKIN A, GAUTHIER J, et al. Mu-opioid receptor 6-transmembrane isoform: a potential therapeutic target for new effective opioids[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2015, 62: 61-67.
[34] OLADOSU F A, CONRAD M S, O'BUCKLEY S C, et al. Mu-opioid splice variant mor-1K contributes to the development of opioid-induced hyperalgesia[J]. Plos One, 2015, 10(8): e0135711.
[35] SAMOSHKIN A, CONVERTINO M, VIET C T, et al. Structural and functional interactions between six-transmembrane mu-opioid receptors and beta2-adrenoreceptors modulate opioid signaling[J]. Sci Rep, 2015, 5(1): 1-13.
[36] YAN X, JIANG E, GAO M, et al. Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain[J]. J Physiol, 2013, 591(7): 2001-2019.
[37] CHRISTIE J M, JAHR C E. Dendritic NMDA receptors activate axonal calcium channels[J]. Neuron, 2008, 60(2): 298-307.
[38] ULTENIUS C, LINDEROTH B, MEYERSON B A, et al. Spinal NMDA receptor phosphorylation correlates with the presence of neuropathic signs following peripheral nerve injury in the rat[J]. Neurosci Lett, 2006, 399(1-2): 85-90.
[39] RIVAT C, SEBAIHI S, VAN STEENWINCKEL J, et al. Src family kinases involved in CXCL12-induced loss of acute morphine analgesia[J]. Brain Behav Immun, 2014, 38: 38-52.
[40] LI T, WANG H, WANG J, et al. Annexin 1 inhibits remifentanil-induced hyperalgesia and NMDA receptor phosphorylation via regulating spinal CXCL12/CXCR4 in rats[J]. Neurosci Res, 2019, 144: 48-55.
[41] MANN A, ILLING S, MIESS E, et al. Different mechanisms of homologous and heterologous mu-opioid receptor phosphorylation[J]. Br J Pharmacol, 2015, 172(2): 311-316.
[42] MELIK PARSADANIANTZ S, RIVAT C, ROSTENE W, et al. Opioid and chemokine receptor crosstalk: a promising target for pain therapy?[J]. Nat Rev Neurosci, 2015, 16(2): 69-78.
[43] BEAUDRY H, GENDRON L, MORON J A. Implication of delta opioid receptor subtype 2 but not delta opioid receptor subtype 1 in the development of morphine analgesic tolerance in a rat model of chronic inflammatory pain[J]. Eur J Neurosci, 2015, 41(7): 901-907.
[44] SCHERRER G, IMAMACHI N, CAO Y Q, et al. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain[J]. Cell, 2009, 137(6): 1148-1159.
[45] MOSBERG H I, YEOMANS L, ANAND J P, et al. Development of a bioavailable mu opioid receptor (MOPr) agonist, delta opioid receptor (DOPr) antagonist peptide that evokes antinociception without development of acute tolerance[J]. J Med Chem, 2014, 57(7): 3148-3153.
[46] CORDER G, DOOLEN S, DONAHUE R R, et al. Constitutive mu-opioid receptor activity leads to long-term endogenous analgesia and dependence[J]. Science, 2013, 341(6152): 1394-1399.
[47] JUNI A, KLEIN G, KEST B. Morphine hyperalgesia in mice is unrelated to opioid activity, analgesia, or tolerance: evidence for multiple diverse hyperalgesic systems[J]. Brain Res, 2006, 1070(1): 35-44.
[48] NAKAMURA A, YASUFUKU K, SHIMADA S, et al. The antagonistic activity profile of naloxone in mu-opioid receptor agonist-induced psychological dependence[J]. Neurosci Lett, 2020, 735: 135177.
[49] LIANG D Y, LIAO G, WANG J, et al. A genetic analysis of opioid-induced hyperalgesia in mice[J]. Anesthesiology, 2006, 104(5): 1054-1062.
[50] DOVERTY M, WHITE J M, SOMOGYI A A, et al. Hyperalgesic responses in methadone maintenance patients[J]. Pain, 2001, 90(1-2): 91-96.
[51] ZHAO Y L, CHEN S R, CHEN H, et al. Chronic opioid potentiates presynaptic but impairs postsynaptic N-methyl-d-aspartic acid receptor activity in spinal cords: implications for opioid hyperalgesia and tolerance[J]. J Biol Chem, 2012, 287.
[52] PRICE D D, MAYER D J, MAO J, et al. NMDA-receptor antagonists and opioid receptor interactions as related to analgesia and tolerance[J]. J Pain Symptom Manag, 2000, 19(1): 7-11.
[53] LOTSCH J. Opioid metabolites[J]. J Pain Symptom Manage, 2005, 29(5 Suppl): S10-24.
[54] LAULIN J P, MAURETTE P, CORCUFF J B, et al. The role of ketamine in preventing fentanyl-induced hyperalgesia and subsequent acute morphine tolerance[J]. Anesth Analg, 2002, 94(5): 1263-1269, table of contents.
[55] GUIGNARD B, BOSSARD A E, COSTE C, et al. Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement[J]. Anesthesiology, 2000, 93(2): 409-417.
[56] KHOMULA E V, ARALDI D, LEVINE J D. In vitro nociceptor neuroplasticity associated with in vivo opioid-induced hyperalgesia[J]. J Neurosci, 2019, 39(36): 7061-7073.
[57] LI X, ANGST M S, CLARK J D. A murine model of opioid-induced hyperalgesia[J]. Brain Res Mol Brain Res, 2001, 86(1-2): 56-62.
[58] LI X, ANGST M S, CLARK J D. Opioid-induced hyperalgesia and incisional pain[J]. Anesth Analg, 2001, 93(1): 204-209.
[59] VANDERAH T W, SUENAGA N M, OSSIPOV M H, et al. Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance[J]. J Neurosci, 2001, 21(1): 279-286.
[60] CELERIER E, LAULIN J P, CORCUFF J B, et al. Progressive enhancement of delayed hyperalgesia induced by repeated heroin administration: a sensitization process[J]. J Neurosci, 2001, 21(11): 4074-4080.
[61] CELERIER E, LAULIN J, LARCHER A, et al. Evidence for opiate-activated NMDA processes masking opiate analgesia in rats[J]. Brain Res, 1999, 847(1): 18-25.
[62] MAO J, PRICE D D, MAYER D J. Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C[J]. J Neurosci, 1994, 14(4): 2301-2312.
[63] OHNESORGE H, FENG Z, ZITTA K, et al. Influence of clonidine and ketamine on mRNA expression in a model of opioid-induced hyperalgesia in mice[J]. Plos One, 2013, 8(11): e79567.
[64] LI G, MA F, GU Y, et al. Analgesic tolerance of opioid agonists in mutant mu-opioid receptors expressed in sensory neurons following intrathecal plasmid gene delivery[J]. Mol Pain, 2013, 9: 1744-8069- 8063.
[65] DEDEK A, HILDEBRAND ME. Advances and Barriers in Understanding Presynaptic N-Methyl-D-Aspartate Receptors in Spinal Pain Processing[J]. Front Mol Neurosci, 2022, 15: 864502.
[66] MAO J, SUNG B, JI R R, et al. Chronic morphine induces downregulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity[J]. J Neurosci, 2002, 22(18): 8312-8123.
[67] SANDKUHLER J, GRUBER-SCHOFFNEGGER D. Hyperalgesia by synaptic long-term potentiation (LTP): an update[J]. Curr Opin Pharmacol, 2012, 12(1): 18-27.
[68] TOGNOLI E, PROTO P L, MOTTA G, et al. Methadone for postoperative analgesia: contribution of N-methyl-D-aspartate receptor antagonism: a randomised controlled trial[J]. Eur J Anaesthesiol, 2020, 37(10): 934-943.
[69] LYONS P J, RIVOSECCHI R M, NERY J P, et al. Fentanyl-induced hyperalgesia in acute pain management[J]. J Pain Palliat Care Pharmacother, 2015, 29(2): 153-160.
[70] DRDLA-SCHUTTING R, BENRATH J, WUNDERBALDINGER G, et al. Erasure of a spinal memory trace of pain by a brief, high-dose opioid administration[J]. Science, 2012, 335(6065): 235-238.
[71] LIU X, SANDKUHLER J. Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors[J]. J Neurophysiol, 1997, 78(4): 1973-1982.
[72] KLEIN T, MAGERL W, NICKEL U, et al. Effects of the NMDA-receptor antagonist ketamine on perceptual correlates of long-term potentiation within the nociceptive system[J]. Neuropharmacology, 2007, 52(2): 655-661.
[73] GRUBER-SCHOFFNEGGER D, DRDLA-SCHUTTING R, HONIGSPERGER C, et al. Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-alpha and IL-1beta is mediated by glial cells[J]. J Neurosci, 2013, 33(15): 6540-6551.
[74] DONOVAN-RODRIGUEZ T, URCH C E, DICKENSON A H. Evidence of a role for descending serotonergic facilitation in a rat model of cancer-induced bone pain[J]. Neurosci Lett, 2006, 393(2-3): 237-242.
[75] DUAN B, CHENG L, BOURANE S, et al. Identification of spinal circuits transmitting and gating mechanical pain[J]. Cell, 2014, 159(6): 1417-1432.
[76] CHENG L, DUAN B, HUANG T, et al. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain[J]. Nat Neurosci, 2017, 20(6): 804-814.
[77] MA Q, SU D, HUO J, et al. Microglial depletion does not affect the laterality of mechanical allodynia in mice[J]. Neurosci Bull, 2023: 1-17.
[78] SVENSSON C I, TRAN T K, FITZSIMMONS B, et al. Descending serotonergic facilitation of spinal ERK activation and pain behavior[J]. FEBS Lett, 2006, 580(28-29): 6629-6634.
[79] DOGRUL A, OSSIPOV M H, PORRECA F. Differential mediation of descending pain facilitation and inhibition by spinal 5HT-3 and 5HT-7 receptors[J]. Brain Res, 2009, 1280: 52-59.
[80] MENG I D, HARASAWA I. Chronic morphine exposure increases the proportion of on-cells in the rostral ventromedial medulla in rats[J]. Life Sci, 2007, 80(20): 1915-1920.
[81] RIVAT C, VERA-PORTOCARRERO L P, IBRAHIM M M, et al. Spinal NK-1 receptor-expressing neurons and descending pathways support fentanyl-induced pain hypersensitivity in a rat model of postoperative pain[J]. Eur J Neurosci, 2009, 29(4): 727-737.
[82] WILSON-POE A R, LAU B K, VAUGHAN C W. Repeated morphine treatment alters cannabinoid modulation of GABAergic synaptic transmission within the rat periaqueductal grey[J]. Br J Pharmacol, 2015, 172(2): 681-690.
[83] LAU B K, VAUGHAN C W. Descending modulation of pain: the GABA disinhibition hypothesis of analgesia[J]. Curr Opin Neurobiol, 2014, 29: 159-164.
[84] CHIENG B, CHRISTIE M J. Inhibition by opioids acting on mu-receptors of GABAergic and glutamatergic postsynaptic potentials in single rat periaqueductal gray neurones in vitro[J]. Br J Pharmacol, 1994, 113(1): 303-309.
[85] VAUGHAN C W, CHRISTIE M J. Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro[J]. J Physiol, 1997, 498 ( Pt 2)(Pt 2): 463-472.
[86] CONNOR M, BAGLEY E E, CHIENG B C, et al. beta-Arrestin-2 knockout prevents development of cellular mu-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons[J]. Br J Pharmacol, 2015, 172(2): 492-500.
[87] VANEGAS H, SCHAIBLE HG. Descending control of persistent pain: inhibitory or facilitatory?[J]. Brain Res Brain Res Rev, 2004, 46(3): 295-309.
[88] TAKEUCHI H. Sensitivities of Achatina giant neurones to putative amino acid neurotransmitters[J]. Comp Biochem Physiol C Comp Pharmacol Toxicol, 1992, 103(1): 1-12.
[89] SHEN KZ, JOHNSON SW. Presynaptic modulation of synaptic transmission by opioid receptor in rat subthalamic nucleus in vitro[J]. J Physiol, 2002, 541(Pt 1): 219-230.
[90] DOUPNIK CA, JAEN C, ZHANG Q. Measuring the modulatory effects of RGS proteins on GIRK channels[J]. Methods Enzymol, 2004, 389: 131-154.
[91] HENDERSON G. The μ-opioid receptor: an electrophysiologist's perspective from the sharp end[J]. Br J Pharmacol, 2015, 172(2): 260-726.
[92] WILSON-POE A R, JEONG H I, VAUGHAN C W. Chronic morphine reduces the readily releasable pool of GABA, a presynaptic mechanism of opioid tolerance[J]. J Physiol, 2017, 595(20): 6541-6555.
[93] DOYLE T M, LARGENT-MILNES T M, CHEN Z, et al. Chronic morphine-induced changes in signaling at the a(3) adenosine receptor contribute to morphine-induced hyperalgesia, tolerance, and withdrawal[J]. J Pharmacol Exp Ther, 2020, 374(2): 331-341.
[94] XU J T, ZHAO J Y, ZHAO X, et al. Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia[J]. J Clin Invest, 2014, 124(2): 592-603.
[95] HARADA S, NAKAMOTO K, TOKUYAMA S. The involvement of midbrain astrocyte in the development of morphine tolerance[J]. Life Sci, 2013, 93(16): 573-578.
[96] COSTA A R, SOUSA M, WILSON S P, et al. Shift of micro-opioid receptor signaling in the dorsal reticular nucleus is implicated in morphine-induced hyperalgesia in male rats[J]. Anesthesiology, 2020, 133(3): 628-644.
[97] BEUTLER B, DU X, POLTORAK A. Identification of toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies[J]. J Endotoxin Res, 2001, 7(4): 277-280.
[98] EIDSON LN, MURPHY AZ. Inflammatory mediators of opioid tolerance: implications for dependency and addiction[J]. Peptides, 2019, 115: 51-58.
[99] BLASIUS AL, BEUTLER B. Intracellular toll-like receptors[J]. Immunity, 2010;32(3): 305-315.
[100] RAGHAVENDRA V, TANGA F Y, DELEO J A. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS[J]. Eur J Neurosci, 2004, 20(2): 467-473.
[101] LITTLE J W, CUZZOCREA S, BRYANT L, et al. Spinal mitochondrial-derived peroxynitrite enhances neuroimmune activation during morphine hyperalgesia and antinociceptive tolerance[J]. Pain, 2013, 154(7): 978-986.
[102] THOMAS J, MUSTAFA S, JOHNSON J, et al. The relationship between opioids and immune signaling in the spinal cord[J]. Handb Exp Pharmacol, 2015: 207-238.
[103] LEWIS S S, HUTCHINSON M R, REZVANI N, et al. Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta[J]. Neuroscience, 2010, 165(2): 569-583.
[104] YOU M H, KIM B M, CHEN C H, et al. Death-associated protein kinase 1 phosphorylates NDRG2 and induces neuronal cell death[J]. Cell Death Differ, 2017, 24(2): 238-250.
[105] MUSCOLI C, DOYLE T, DAGOSTINO C, et al. Counter-regulation of opioid analgesia by glial-derived bioactive sphingolipids[J]. J Neurosci, 2010, 30(46): 15400-15408.
[106] SALVEMINI D, NEUMANN W. Targeting peroxynitrite driven nitroxidative stress with synzymes: a novel therapeutic approach in chronic pain management[J]. Life Sci. 2010, 86(15-16): 604-614.
[107] SALVEMINI D, DOYLE T, KRESS M, et al. Therapeutic targeting of the ceramide-to-sphingosine 1-phosphate pathway in pain[J]. Trends Pharmacol Sci, 2013, 34(2): 110-118.
[108] GRACE P M, GAUDET A D, STAIKOPOULOS V, et al. Nitroxidative signaling mechanisms in pathological pain[J]. Trends Neurosci, 2016, 39(12): 862-879.
[109] O'CALLAGHAN JP, MILLER DB. Spinal glia and chronic pain[J]. Metabolism, 2010, 1: S21-26.
[110] AFANAS'EV I. Signaling of reactive oxygen and nitrogen species in Diabetes mellitus[J]. Oxid Med Cell Longev, 2010, 3(6): 361-373.
[111] WATKINS L R, HUTCHINSON M R, RICE K C, et al. The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia[J]. Trends Pharmacol Sci, 2009, 30(11): 581-591.
[112] HUTCHINSON M R, ZHANG Y, SHRIDHAR M, et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects [J]. Brain Behav Immun, 2010, 24(1): 83-95.
[113] EIDSON L N, INOUE K, YOUNG L J, et al. Toll-like receptor 4 mediates morphine-induced neuroinflammation and tolerance via soluble tumor necrosis factor signaling[J]. Neuropsychopharmacology, 2017, 42(3): 661-670.
[114] WATKINS L R, HUTCHINSON M R, JOHNSTON I N, et al. Glia: novel counter-regulators of opioid analgesia[J]. Trends Neurosci, 2005, 28(12): 661-669.
[115] EIDSON L N, MURPHY A Z. Blockade of toll-like receptor 4 attenuates morphine tolerance and facilitates the pain relieving properties of morphine[J]. J Neurosci, 2013, 33(40): 15952-15963.
[116] SHEN CH, TSAI RY, WONG CS. Role of neuroinflammation in morphine tolerance: effect of tumor necrosis factor-α[J]. Acta Anaesthesiol Twaiwan, 2012, 50(4): 178-182.
[117] ARALDI D, BOGEN O, GREEN P G, et al. Role of nociceptor toll-like receptor 4 (TLR4) in opioid-induced hyperalgesia and hyperalgesic priming[J]. J Neurosci, 2019, 39(33): 6414-6424.
[118] REISS D, MADUNA T, MAURIN H, et al. Mu opioid receptor in microglia contributes to morphine analgesic tolerance, hyperalgesia, and withdrawal in mice[J]. J Neurosci Res, 2022, 100(1): 203-219.
[119] HAMPTON S B, CAVALIER J, LANGFORD R. The influence of race and gender on pain management: A systematic literature review[J]. Pain Manag Nurs, 2015, 16(6): 968-977.
[120] LIN T T, QU J, WANG C Y, et al. Rescue of HSP70 in spinal neurons alleviates opioids-induced hyperalgesia via the suppression of endoplasmic reticulum stress in rodents[J]. Front Cell Dev Biol, 2020, 8: 269.
[121] HUTCHINSON M R, LEWIS S S, COATS B D, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast)[J]. Brain Behav Immun, 2009, 23(2): 240-250.
[122] LIU XG, ZHOU LJ. Long-term potentiation at spinal C-fiber synapses: a target for pathological pain[J]. Curr Pharm Des, 2015, 21(7): 895-905.
[123] SEHGAL N, SMITH HS, MANCHIKANTI L. Peripherally acting opioids and clinical implications for pain control[J]. Pain Physician, 2011, 14(3): 249-258.
[124] ZHANG N, ROGERS T J, CATERINA M, et al. Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize mu-opioid receptors on dorsal root ganglia neurons[J]. J Immunol, 2004, 173(1): 594-599.
[125] RIVAT C, SEBAIHI S, STEENWINCKEL J. Src family kinases involved in CXCL12-induced loss of acute morphine analgesia[J]. Brain Behav Immun, 2014, 38: 38-52.
[126] LIN C P, KANG K H, LIN T H. Role of spinal CXCL1 (GROalpha) in opioid tolerance: a human-to-rodent translational study[J]. Anesthesiology, 2015, 122(30): 666-676.
[127] LUO X, WANG X, XIA Z, et al. CXCL12/ CXCR61 axis: an emerging neuromodulator in pathological pain[J]. Rev Neurosci, 2016, 27(1): 82-93.
[128] DENK F, MCMAHON S B, TRACEY I. Pain vulnerability: a neurobiological perspective[J]. Nat Neurosci, 2014, 17(2): 192-200.
[129] HOLTMAN J R, JR., WALA E P. Characterization of morphine-induced hyperalgesia in male and female rats[J]. Pain, 2005, 114(1-2): 62-70.
[130] HOPKINS E, ROSSI G, KEST B. Sex differences in systemic morphine analgesic tolerance following intrathecal morphine injections[J]. Brain Res, 2004, 1014(1-2): 244-246.
[131] JUNI A, CAI M, STANKOVA M, et al. Sex-specific mediation of opioid-induced hyperalgesia by the melanocortin-1 receptor[J]. Anesthesiology, 2010, 112(1): 181-188.
[132] JUNI A, KLEIN G, KOWALCZYK B, et al. Sex differences in hyperalgesia during morphine infusion: effect of gonadectomy and estrogen treatment[J]. Neuropharmacology, 2008, 54(8): 1264-1270.
[133] SORGE R E, MAPPLEBECK J C, ROSEN S, et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice[J]. Nat Neurosci, 2015, 18(8): 1081-1083.
[134] MAPPLEBECK J C S, BEGGS S, SALTER M W. Sex differences in pain: a tale of two immune cells[J]. Pain, 2016, 157 Suppl 1: S2-S6.
[135] LIANG D, SHI X, QIAO Y, et al. Chronic morphine administration enhances nociceptive sensitivity and local cytokine production after incision[J]. Mol Pain, 2008, 4: 1744-8069-7.
[136] CHEN Y, MOUTAL A, NAVRATILOVA E, et al. The prolactin receptor long isoform regulates nociceptor sensitization and opioid-induced hyperalgesia selectively in females[J]. Sci Transl Med, 2020, 12(529): eaay7550.
[137] LIANG D Y, ZHENG M, SUN Y, et al. The Netrin-1 receptor DCC is a regulator of maladaptive responses to chronic morphine administration[J]. BMC Genomics, 2014, 15(1): 1-12.
[138] BIANCHI E, GALEOTTI N, MENICACCI C, et al. Contribution of G inhibitory protein alpha subunits in paradoxical hyperalgesia elicited by exceedingly low doses of morphine in mice[J]. Life Sci, 2011, 89(25-26): 918-925.
[139] MILNE B, JHAMANDAS K, SUTAK M, et al. Stereo-selective inhibition of spinal morphine tolerance and hyperalgesia by an ultra-low dose of the alpha-2-adrenoceptor antagonist efaroxan[J]. Eur J Pharmacol, 2013, 702(1-3): 227-234.
[140] ALIZADEH Z, FEREIDONI M, BEHNAM-RASSOULI M, et al. Role of C-fibers in pain and morphine induced analgesia/hyperalgesia in rats[J]. Iran J Neurol, 2014, 13(1): 19-27.
[141] HOLTMAN J R, JR., WALA E P. Characterization of the antinociceptive and pronociceptive effects of methadone in rats[J]. Anesthesiology, 2007, 106(3): 563-571.
[142] ANDERSEN G, CHRISTRUP L, SJOGREN P. Relationships among morphine metabolism, pain and side effects during long-term treatment: an update[J]. J Pain Symptom Manage, 2003, 25(1): 74-91.
[143] FROLICH N, DEES C, PAETZ C, et al. Distinct pharmacological properties of morphine metabolites at G(i)-protein and beta-arrestin signaling pathways activated by the human mu-opioid receptor[J]. Biochem Pharmacol, 2011, 81(10): 1248-1254.
[144] COLLER J K, CHRISTRUP L L, SOMOGYI A A. Role of active metabolites in the use of opioids[J]. Eur J Clin Pharmacol, 2009, 65(2): 121-139.
[145] LOTSCH J. Pleiotropic effects of morphine-6beta-glucuronide[J]. Anesthesiology, 2009, 110(6): 1209-1210.
[146] KOMATSU T, SAKURADA S, KATSUYAMA S, et al. Mechanism of allodynia evoked by intrathecal morphine-3-glucuronide in mice[J]. Int Rev Neurobiol, 2009, 85: 207-219.
[147] DUE M R, PIEKARZ A D, WILSON N, et al. Neuroexcitatory effects of morphine-3-glucuronide are dependent on toll-like receptor 4 signaling[J]. J Neuroinflammation, 2012, 9(1): 1-12.
[148] SWARTJES M, MOOREN R A, WAXMAN A R, et al. Morphine induces hyperalgesia without involvement of mu-opioid receptor or morphine-3-glucuronide[J]. Mol Med, 2012, 18(1): 1320-1326.
[149] LIANG D Y, LI X, CLARK J D. Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice[J]. J Pain, 2013, 14(1): 36-47.
[150] CHAO Y C, XIE F, LI X, et al. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats[J]. Neurochem Int, 2016, 97: 91-98.
[151] DOEHRING A, OERTEL B G, SITTL R, et al. Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain[J]. Pain, 2013, 154(1): 15-23.
[152] WU Q, ZHANG L, LAW P Y, et al. Long-term morphine treatment decreases the association of mu-opioid receptor (MOR1) mRNA with polysomes through miRNA23b[J]. Mol Pharmacol, 2009, 75(4): 744-750.
[153] TOLL L, BRUCHAS M R, CALO G, et al. Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems[J]. Pharmacol Rev, 2016, 68(2): 419-457.
[154] FARIS P L, KOMISARUK B R, WATKINS L R, et al. Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia[J]. Science, 1983, 219(4582): 310-312.
[155] ROTHMAN R B. A review of the role of anti-opioid peptides in morphine tolerance and dependence[J]. Synapse, 1992, 12(2): 129-138.
[156] MCNALLY G P. Pain facilitatory circuits in the mammalian central nervous system: their behavioral significance and role in morphine analgesic tolerance[J]. Neurosci Biobehav Rev, 1999, 23(8): 1059-1078.
[157] DOURISH C T, O’NEILL M F, SCHAFFER L W, et al. The cholecystokinin receptor antagonist devazepide enhances morphine-induced analgesia but not morphine-induced respiratory depression in the squirrel monkey[J]. J Pharmacol Exp Ther, 1990, 255(3): 1158-1165.
[158] SIMONIN F, SCHMITT M, LAULIN J P. RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia[J]. Proc Natl Acad Sci USA, 2006, 103(2): 466-471.
[159] ELHABAZI K, TRIGO J M, MOLLEREAU C. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments[J]. Br J Pharmacol, 2012, 165(2): 424-435.
[160] DEPNER U B, REINSCHEID R K, TAKESHIMA H, et al. Normal sensitivity to acute pain, but increased inflammatory hyperalgesia in mice lacking the nociception precursor polypeptide or the nociceptin receptor[J]. Eur J Neurosci, 2003, 17(11): 2381-2387.
[161] RIZZI A, NAZZARO C, MARZOLA G G. Endogenous nociceptin/orphanin FQ signalling produces opposite spinal antinociceptive and supraspinal pronociceptive effects in the mouse formalin test: pharmacological and genetic evidences[J]. Pain, 2006, 124(1-2): 100-108.
[162] GARCIA-RECIO S, GASCóN P. Biological and pharmacological aspects of the NK1-receptor[J]. Biomed Res Int, 2015, 2015.
[163] TUMATI S, LARGENT-MILNES T M, KERESZTES A I. Tachykinin NK(1) receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation[J]. Eur J Pharmacol, 2012, 684(1-3): 64-70.
[164] TAKAYAMA N, UEDA H. Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia[J]. J Neurosci, 2005, 25(2): 430-435.
[165] HORVATH R J, ROMERO-SANDOVAL E A, LEO J A. Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2[J]. Pain, 2010, 150(3): 401-413.
[166] ZHOU D, CHEN M L, ZHANG Y Q, et al. Involvement of spinal microglial P2X7 receptor in generation of tolerance to morphine analgesia in rats[J]. J Neurosci, 2010, 30(23): 8042-8047.
[167] CHEN M L, CAO H, CHU Y X. Role of P2X7 receptor-mediated IL-18/IL-18R signaling in morphine tolerance: Multiple glial-neuronal dialogues in the rat spinal cord[J]. J Pain, 2012, 13(10): 945-958.
[168] MATTIOLI T A, LEDUC-PESSAH H, SKELHORNE-GROSS G. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence[J]. Plos One, 2014, 9(5): e97361.
[169] GRACE P M, HUTCHINSON M R, MAIER S F, et al. Pathological pain and the neuroimmune interface[J]. Nat Rev Immunol, 2014, 14(4): 217-231.
[170] EDWARDS H L, MULVEY M R, BENNETT M I. Cancer-related neuropathic pain[J]. Cancers (Basel), 2019, 11(3): 373.
[171] MERCADANTE S, FULFARO F, CASUCCIO A. A randomized controlled study on the use of anti-inflammatory drugs in patients with cancer pain on morphine therapy: effects on dose escalation and a pharmacoeconomic analysis[J]. Eur J Cancer, 2002, 38(10): 1358-1363.
[172] BELGRADE M, HALL S. Dexmedetomidine infusion for the management of opioid-induced hyperalgesia[J]. Pain Med, 2010, 11(12): 1819-1826.
[173] CHABOT-DORé A J, SCHUSTER D J, STONE L S, et al. Analgesic synergy between opioid and α2-adrenoceptors[J]. Br J Pharmacol, 2015, 172(2): 388-42.
[174] MERCADANTE S. The patient with difficult cancer pain[J]. Cancers (Basel), 2019, 11(4): 565.
[175] MERCADANTE S, CARUSELLI A, CASUCCIO A. The use of ketamine in a palliative-supportive care unit: a retrospective analysis[J]. Ann Palliat Med, 2018, 7(2): 205-210.
[176] PASTERNAK G W. Molecular biology of opioid analgesia[J]. J Pain Symptom Manag, 2005, 19(5): 2-9.
[177] CONNOR M, OSBORNE P B, CHRISTIES M J. Mu-opioid receptor desensitization: is morphine different?[J]. Br J Pharmacol, 2004, 143(6): 685-696.
[178] HASHIMOTO T, SAITO Y, YAMADA K. Enhancement of morphine analgesic effect with induction of mu-opioid receptor endocytosis in rats[J]. Anesthesiology, 2006, 105(3): 574-580.
[179] MERCADANTE S, BRUERA E. Opioid switching in cancer pain: from the beginning to nowadays[J]. Crit Rev Oncol Hematol, 2016, 99: 241-248.
[180] MERCADANTE S. Managing difficult pain conditions in the cancer patient[J]. Curr Pain Headache Rep, 2014, 18: 1-7.
[181] CUI L, MIAO X, LIANG L, et al. Identification of early RET+ deep dorsal spinal cord interneurons in gating pain[J]. Neuron, 2016, 91(5): 1137-1153.
[182] BONIN R P, BORIES C, DE KONINCK Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments[J]. Mol Pain, 2014, 10: 1744-8069-26.
[183] LU Y, DONG H, GAO Y, et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia[J]. J Clin Invest, 2013, 123(9): 4050-4062.
[184] MARKS P W, ARAI M, BANDURA J L, et al. Advillin (p92): a new member of the gelsolin/villin family of actin regulatory proteins[J]. J Cell Sci, 1998, 111 ( Pt 15): 2129-2136.
[185] MARTYN J A J, MAO J, BITTNER E A. Opioid tolerance in critical illness[J]. N Engl J Med, 2019, 380(4): 365-738.
[186] BENYHE S. Morphine: new aspects in the study of an ancient compound[J]. Life Sci, 1994, 55(13): 969-979.
[187] COLVIN L A, BULL F, HALES T G. Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia[J]. Lancet, 2019, 393(10180): 1558-1568.
[188] SANDKUHLER J. Understanding LTP in pain pathways[J]. Mol Pain, 2007, 3: 1744-8069-3-9.
[189] RUSCHEWEYH R, WILDER-SMITH O, DRDLA R, et al. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy[J]. Mol Pain, 2011, 7: 1744-8069-7-20.
[190] FISHBAIN D A, COLE B, LEWIS J E, et al. Do opioids induce hyperalgesia in humans? An evidence-based structured review[J]. Pain Med, 2009, 10(5): 829-839.
[191] JOHNSON J L, ROLAN P E, JOHNSON M E, et al. Codeine-induced hyperalgesia and allodynia: investigating the role of glial activation[J]. Transl Psychiatry, 2014, 4(11): e482.
[192] MERCADANTE S, ARCURI E. Hyperalgesia and opioid switching[J]. Am J Hosp Palliat Care, 2005, 22(4): 291-294.
[193] MERCADANTE S. Opioid rotation for cancer pain: rationale and clinical aspects[J]. Cancer, 1999, 86(9): 1856-1866.
[194] ZHANG X Y, LI Q, DONG Y, et al. Mu-opioid receptors expressed in glutamatergic neurons are essential for morphine withdrawal[J]. Neurosci Bull, 2020, 36(10): 1095-1106.
[195] MANSOUR A, FOX C A, AKIL H, et al. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications[J]. Trends Neurosci, 1995, 18(1): 22-29.
[196] FERRINI F, TRANG T, MATTIOLI T A, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis[J]. Nat Neurosci, 2013, 16(2): 183-192.
[197] LIU X, LIU B L, YANG Q, et al. Microglial ablation does not affect opioid-induced hyperalgesia in rodents[J]. Pain, 2022, 163(3): 508-517.
[198] CHEN S R, PRUNEAN A, PAN H M, et al. Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons[J]. Neuroscience, 2007, 145(2): 676-685.
[199] GAVERIAUX-RUFF C. Opiate-induced analgesia: contributions from mu, delta and kappa opioid receptors mouse mutants[J]. Curr Pharm Des, 2013, 19(42): 7373-7381.
[200] ZHOU H Y, CHEN S R, CHEN H, et al. Opioid-induced long-term potentiation in the spinal cord is a presynaptic event[J]. J Neurosci, 2010, 30(12): 4460-4466.
[201] PEIRS C, WILLIAMS S G, ZHAO X, et al. Mechanical allodynia circuitry in the dorsal horn is defined by the nature of the injury[J]. Neuron, 2021, 109(1): 73-90 e7.
[202] FOSTER E, WILDNER H, TUDEAU L, et al. Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch[J]. Neuron, 2015, 85(6): 1289-1304.
[203] PETITJEAN H, PAWLOWSKI S A, FRAINE S L, et al. Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury[J]. Cell Rep, 2015, 13(6): 1246-1257.
[204] MA Q. A functional subdivision within the somatosensory system and its implications for pain research[J]. Neuron, 2022, 110(5): 749-769.
[205] ZHANG Y, LIU S, ZHANG Y Q, et al. Timing mechanisms underlying gate control by feedforward inhibition[J]. Neuron, 2018, 99(5): 941-55 e4.
[206] CHOI S, HACHISUKA J, BRETT M A, et al. Parallel ascending spinal pathways for affective touch and pain[J]. Nature, 2020, 587(7833): 258-263.
[207] CHANG G, CHEN L, MAO J. Opioid tolerance and hyperalgesia[J]. Med Clin North Am, 2007, 91(2): 199-211.
[208] SASAKI M, KAMIYA Y, BAMBA K, et al. Serotonin plays a key role in the development of opioid-induced hyperalgesia in mice[J]. J Pain, 2021, 22(6): 715-729.
[209] MADISEN L, ZWINGMAN T A, SUNKIN S M, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain[J]. Nat Neurosci, 2010, 13(1): 133-140.
[210] MENDELL L M. Constructing and deconstructing the gate theory of pain[J]. Pain, 2014, 155(2): 210-216.
[211] BRAZ J, SOLORZANO C, WANG X, et al. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control[J]. Neuron, 2014, 82(3): 522-536.
[212] BABA H, JI R R, KOHNO T, et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn[J]. Mol Cell Neurosci, 2003, 24(3): 818-830.
[213] JI R R, NACKLEY A, HUH Y, et al. Neuroinflammation and central sensitization in chronic and widespread pain[J]. Anesthesiology, 2018, 129(2): 343-366.
[214] WOOLF C J. Central sensitization: implications for the diagnosis and treatment of pain[J]. Pain, 2011, 152(3 Suppl): S2-S15.
[215] TODD A J. Neuronal circuitry for pain processing in the dorsal horn[J]. Nat Rev Neurosci, 2010, 11(12): 823-836.
[216] SADLER K E, MOGIL J S, STUCKY C L. Innovations and advances in modelling and measuring pain in animals[J]. Nat Rev Neurosci, 2022, 23(2): 70-85.
[217] PEIRS C, DALLEL R, TODD A J. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia[J]. J Neural Transm (Vienna), 2020, 127(4): 505-525.
[218] MELZACK R, WALL P D. Pain mechanisms: a new theory[J]. Science, 1965, 150(3699): 971-979.
[219] PEIRS C, WILLIAMS S P, ZHAO X, et al. Dorsal horn circuits for persistent mechanical pain[J]. Neuron, 2015, 87(4): 797-812.
[220] PETITJEAN H, BOUROJENI F B, TSAO D, et al. Recruitment of spinoparabrachial neurons by dorsal horn calretinin neurons[J]. Cell Rep, 2019, 28(6): 1429-38 e4.
[221] SUN L, LIU R, GUO F, et al. Parabrachial nucleus circuit governs neuropathic pain-like behavior[J]. Nat Commun, 2020, 11(1): 5974.
修改评论