中文版 | English
题名

钨-氮化合物的高温高压合成及其物性研究

其他题名
HIGH PRESSURE AND HIGH TEMPERATURE SYNTHESIS AND PHYSICAL PROPERTIES RESEARCH OF TUNGSTEN-NITROGEN COMPOUNDS
姓名
姓名拼音
ZHOU Xuefeng
学号
11849475
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
王善民
导师单位
物理系
论文答辩日期
2023-04-14
论文提交日期
2023-06-14
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

作为一类重要的材料体系,过渡金属氮化物(Transition-metal nitrides, TMNx)及其衍生的三元氮化物,兼具高熔点、高硬度、耐高温、耐腐蚀等特点,此外还展现出一系列丰富的光、电、磁和催化性能等。然而受限于样品制备的困难性,仍存在许多结构争议,同时关于普遍存在的空位如何影响此类材料的结构稳定性及物性的研究较少,其结构-物性的关联尚未被建立起来。本文基于钨-氮化合物为研究对象,利用高温高压法制备了hP2-WN0.76、cP6-WN0.94、cF8-W0.92N0.61、h-W0.70N0.88、层状氮化物MgWN2、钙钛矿氮化物LaWN2.6及CeWN3。结合实验与理论计算对它们的晶体结构、空位类型及含量、成键类型、基本物性及结构稳定性机制进行了研究。

首先开发了超高温高压腔体。通过选择适当的隔热材料,降低加热回路的接触电阻,提高了腔体的加热效率及加热回路的耐高电流能力,在厘米级压腔体内实现了4000 K的高温。利用金属熔点法对高温下的高压腔体进行了压力标定,发现腔内的热压仅与温度成正比,其存在可使腔体压力扩展到∼10 GPa。同时,基于新设计的高压腔体,成功地制备了高熔点材料Mo、Ta和WC的大单晶,验证了腔体的高温性能。

开展了二元氮化物hP2-WN0.76、cP6-WN0.94、cF8-W0.92N0.61及h-W0.70N0.88的结构、空位存在形式和物性研究。结合样品的XRD与NPD谱的Rietveld精修,以及TEM表征,发现了这一系列材料中普遍存在金属与非金属空位,解决了其中存在的结构争议。通过电子结构表征,发现hP2-WN0.76、cP6-WN0.94和cF8-W0.92N0.61中的W-N键以离子键为主导,而h-W0.70N0.88中的化学键则表现出显著的共价键性质。通过维氏硬度、超声、低温电阻率、变温XRD及热重-差热分析,系统地对它们的力学、电学、热膨胀及热稳定性进行了研究发现:hP2-WN0.76、cP6-WN0.94和cF8-W0.92N0.61具有优良的力学与热稳定性,都表现为金属行为,且具有较低的热膨胀率;h-W0.70N0.88的硬度与弹性模量发生了显著降低,同时相比前两者热膨胀率明显增大,但仍表现出优异的热稳定性。

结合第一性原理计算发现,空位对hP2-WN0.76、cP6-WN0.94、cF8-W0.92N0.61及h-W0.70N0.88的结构稳定性和基本物性具有显著影响。其中,hP2-WN0.76中的N空位削弱了pd反键态的填充,进而诱发了异常的结构硬化现象,使其维氏硬度高达20 GPa。cP6-WN0.94和cF8-W0.92N0.61中,W或N位点的空位分别以有序或无序的形式存在,都可使岩盐结构WN发生稳定。在3 GPa的压力下,高温可以驱动空位的无序化,实现cP6-WN0.94→cF8-W0.92N0.61的不可逆转变。h-W0.70N0.88中的阴阳离子空位含量极高,空位之间的协同效应可使其总能量进一步降低,但也造成其硬度与模量显著降低。

为了研究cP6-WN的超导电性及尺寸效应引起的磁滞现象,制备了高质量的单晶及其纳米样品。结合电学、磁学和比热分析确定了cP6-WN为第Ⅱ类常规超导体,超导温度为2.75 K,发现尺寸效应加剧了磁通钉扎进而导致磁滞现象产生。通过爱因斯坦模型与德拜模型对声子比热进行拟合,发现cP6-WN低温下存在低洼声子。结合金刚石对顶砧(DAC)对其进行了原位高压电输运的测量,发现其超导温度随着压力升高而增大,60 GPa时超导温度基本趋于3.4 K,压力对cP6-WN的电-声耦合系数或费米面上的态密度增加可能有着促进作用。

碱土金属的引入可促进W-N成键,一定程度上降低了N空位的含量。结合单晶XRD、粉末NPD谱精修及球差电镜,解析了MgWN2的WN6三棱柱与MgN6八面体配位的层状交替排列结构。通过紫外可见光谱发现,随合成温度的升高样品逐渐发生脱氮,进而造成带隙减小。基于高温与低温下合成的样品的XPS与低温电阻率测量,发现随着氮空位的形成其内部W-N键的P-d杂化程度降低,电输运则由半导体行为向反常金属转变。

最后设计了一种有效的高压化学反应,合成了高结晶度的钙钛矿氮化物LaWN3-δ及CeWN3。结合XRD、NPD谱精修及TEM表征对LaWN3的晶体结构进行了解析,确定了实验上得到的LaWN3-δ样品为具有极性结构的Pna21-LaWN2.6,其极化方向沿着c轴。通过电子结构表征,发现Pna21-LaWN2.6中La具有类似于碱金属和碱土金属的电正性,在反应中向近邻的N原子提供电子,通过诱导效应促进更多W和N之间发生杂化形成共价键。基于第一性原理计算,发现LaWN3通过二阶杨-泰勒(SOJT)效应形成强的W: t2g-N: p杂化驱使其结构产生极化畸变并打开带隙。通过对比引入氮空位后R3cPna21-LaWN3-δ的形成能,发现氮空位所引起的电子掺杂有利于LaWN3的结构由R3cPna21转变,从而使Pna21-LaWN2.6的结构发生稳定。同时,氮空位的存在也导致了LaWN3的带隙减小,铁电性受到压制,使Pna21-LaWN2.6具有良好的电导率且未表现出铁电性。

其他摘要

Transition-metal nitrides (TMNx) and the derived ternary nitrides are a significant family of material systems that exhibit properties such as high melting points, high hardness, resilience to high temperatures and corrode, etc., but also possess a multitude of optical, electrical, magnetic, and catalytic capabilities. However, limited by the difficulty of sample preparation, there are still many structural controversies and less research has been published on how the universal vacancies affect the structural stability and fundamental physical behavior of such materials, and the structure-property correlation has not yet been established. Here, hP2-WN0.76, cP6-WN0.94, cF8-W0.92N0.61, h-W0.70N0.88, and layered nitride MgWN2 as well as perovskite nitrides LaWN2.6 and CeWN3, were synthesized by using a high-temperature and high-pressure method. Combining with theoretical calculations, we investigated the crystal structures, vacancy types and concentrations, bonding forms, fundamental physical properties (e.g., mechanical, electrical, magnetic, and thermal expansion properties), and the formation mechanisms of these nitrides.

The ultra-high temperature and high-pressure cell assembly were developed first. The centimeter-level high-pressure cell was heated to a high temperature of 4000 K by using the proper insulating materials and lowering the contact resistance of the heating circuit. This boosted the heating efficiency of the cell and the high current resistance of the heating circuit. The metal melting point method was used to calibrate the pressure of the high-pressure cell at high temperatures. It proved that the thermal pressure inside the cell is only proportional to temperature and that its existence can increase the cell pressure to 10 GPa. Additionally, we succeeded in growing large single crystals of the high melting point materials Mo, Ta, and WC to evaluate the high-temperature performance of the newly developed high-pressure cell assembly.

Then, we carried out structural, vacancy presence forms, and physical properties studies of the binary nitrides hP2-WN0.76, cP6-WN0.94, cF8-W0.92N0.61, and h-W0.70N0.88. The prevalence of metallic and nonmetallic vacancies in this group of materials was identified, and the structural controversy that remained in them was determined by combining the refinements of XRD, NPD patterns, and TEM characterization of the samples. The electronic structure characterization revealed that the W-N bonds in hP2-WN0.76, cP6-WN0.94, and cF8-W0.92N0.61 are dominated by ionic bonds, while the chemical bonds in h-W0.70N0.88 exhibit a significant covalent bonding nature. Vickers hardness, ultrasonic, low-temperature resistivity, variable-temperature XRD, and thermogravimetric-differential thermal analysis were used to systematically examine their mechanical, electrical, thermal expansion, and thermal stability. We figured out that hP2-WN0.76, cP6-WN0.94, and cF8-W0.92N0.61 all exhibit metallic behavior, have excellent mechanical and thermal stability, and have low thermal expansion. In contrast, h-W0.70N0.88 experienced a significant decrease in hardness and modulus of elasticity, as well as a significant increase in thermal expansion, compared to cP6-WN0.94 and cF8-W0.92N0.61, but still exhibited excellent thermal stability.

Combined with first-principles calculations, it was uncovered that the vacancies significantly affected the structural stability and fundamental physical properties of hP2-WN0.76, cP6-WN0.94, cF8-W0.92N0.61, and h-W0.70N0.88. Among these, the N vacancies in hP2-WN0.76 release the antibonding state's filling, which in turn drives an anomalous structural hardening up to 20 GPa Vickers hardness. cP6-WN0.94 and cF8-W0.92N0.61, in which the vacancies in the W or N sites exist in ordered or disordered forms, respectively, both stabilize the rocksalt structure WN. Under the pressure of 3 GPa, high temperature can drive the disordering of vacancies to achieve the irreversible transformation of cP6-WN0.94cF8-W0.92N0.61. The anionic vacancy concentration of h-W0.70N0.88 is quite high, and the synergistic effect between vacancies can further reduce their total energy while also significantly lowering their hardness and modulus.

To investigate the superconductivity and size-induced hysteresis of cP6-WN, the authors prepared high-quality single crystals as well as nano-samples by high temperature and pressure. Based on the nano- and single-crystalized cP6-WN samples, the authors combined electrical, magnetic, and specific heat measurements to determine that cP6-WN is a type II conventional superconductor with a Tc of 2.75 K. The size effect enhances the flux pinning and thus leads to magnetic hysteresis. Fitting the phonon-specific heat with Einstein and Debye models reveals the existence of low-lying phonons in cP6-WN at low temperatures. To explore the response of pressure on the superconductivity of cP6-WN, the authors performed in situ high-pressure electrical transport measurements with a diamond anvil cell (DAC) and found that its superconductivity temperature gradually increased with increasing pressure, and basically tended to 3.4 K at 60 GPa. The pressure may have a facilitating effect on the increase of the electron-phonon coupling coefficient or the density of states on the Fermi surface of cP6-WN.

The introduction of alkali metals can effectively improve the stability of W-N compounds and reduce the N vacancy content to a certain extent. We determined the crystal structure of MgWN2 using a combination of refinements of single crystal XRD, powder NPD patterns, and spherical abbreviation electron microscopy observation and found that it is made up of WN6 trigonal and MgN6 octahedra in an alternate layer arrangement. The sample increasingly experienced denitrogenating with rising synthesis temperature, as shown by the UV-visible spectra, which in turn led to a gradually narrowing band gap. It came to light that the P-d hybridization of the internal W-N bond decreases with the formation of N vacancies and that the electrical transport changes from semiconductor to anomalous metal behavior based on XPS and low-temperature resistivity measurements of the samples synthesized at high and low temperatures.

Finally, in order to address the structural issues of the novel nitride perovskite LaWN3 and to conduct an in-depth study of its basic physical properties and formation mechanism of this class of perovskites, the authors employed an effective high-pressure synthetic route to prepare well-crystallized oxygen-free nitride perovskites LaWN3 and CeWN3. The crystal structure of LaWN3 was resolved by combining Rietveld refinement of XRD and NPD patterns as well as TEM observation, and the experimentally available LaWN3-δ were determined to be polar structured Pna21-LaWN2.6 with the polarization direction along the c-axis. From the electronic structure characterization, La in Pna21-LaWN2.6 was found to have electropositivity similar to that of alkali and alkaline earth metals, providing electrons to the neighboring N atoms and promoting more hybridization between W and N to form covalent bonds through an inductive effect. The strong W: t2g-N: p hybridization formed in LaWN3 was revealed by the SOJT effect as the driving force for the polar distortion and gap opening of its band structure. In comparison with the formation energy of R3c and Pna21 structures, the N vacancies and electron doping both favor the structural transition of LaWN3 from R3c to Pna21, thus explaining the mechanism of structural stability of Pna21-LaWN2.6. Also, the presence of N vacancies leads to the reduction of the band gap and destruction of the ferroelectricity of LaWN3, explaining the good electrical conductivity as well as the absence of ferroelectricity in Pna21-LaWN2.6.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-04
参考文献列表

[1] 刘志国, 千正男. 高压技术 : High pressure technology [M]. 哈尔滨: 哈尔滨工业大学出版社, 2012: 1-11.
[2] Mao H-K, Chen X-J, Ding Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90(1): 015007.
[3] Millot M, Coppari F, Rygg J R, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice [J]. Nature, 2019, 569(7755): 251-5.
[4] Mishima O, Calvert L D, Whalley E. ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids [J]. Nature, 1984, 310(5976): 393-5.
[5] Wang L, Liu B, Li H, et al. Long-Range Ordered Carbon Clusters: A Crystalline Material with Amorphous Building Blocks [J]. Science, 2012, 337(6096): 825-8.
[6] Sheng H W, Liu H Z, Cheng Y Q, et al. Polyamorphism in a metallic glass [J]. Nature Materials, 2007, 6(3): 192-7.
[7] Mao W L, Wang L, Ding Y, et al. Distortions and stabilization of simple-cubic calcium at high pressure and low temperature [J]. Proceedings of the National Academy of Sciences, 2010, 107(22): 9965-8.
[8] Zeng Q-s, Ding Y, Mao W L, et al. Origin of Pressure-Induced Polyamorphism in Ce75Al25 Metallic Glass [J]. Physical Review Letters, 2010, 104(10): 105702.
[9] Zeng Q, Sheng H, Ding Y, et al. Long-Range Topological Order in Metallic Glass [J]. Science, 2011, 332(6036): 1404-6.
[10] McMahon J M, Morales M A, Pierleoni C, et al. The properties of hydrogen and helium under extreme conditions [J]. Reviews of Modern Physics, 2012, 84(4): 1607-53.
[11] Ma Y, Eremets M, Oganov A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182-5.
[12] Millot M, Coppari F, Rygg J, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice [J]. Nature, 2019, 569: 251-5.
[13] 冯端, 金国钧. 凝聚态物理学 (上卷) [M]. 北京: 高等教育出版社 2003: 27-78.
[14] Schilling A, Cantoni M, Guo J D, et al. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system [J]. Nature, 1993, 363(6424): 56-8.
[15] Chu C W, Gao L, Chen F, et al. Superconductivity above 150 K in HgBa2Ca2Cu3O8+δ at high pressures [J]. Nature, 1993, 365(6444): 323-5.
[16] Zhang L, Wang Y, Lv J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005.
[17] Mujica A, Rubio A, Muñoz A, et al. High-pressure phases of group-IV, III-V, and II-VI compounds [J]. Reviews of Modern Physics, 2003, 75(3): 863-912.
[18] Markopoulos G, Kroll P, Hoffmann R. Compressing the Most Hydrogen-Rich Inorganic Ion [J]. Journal of the American Chemical Society, 2010, 132(2): 748-55.
[19] Somayazulu M, Dera P, Goncharov A F, et al. Pressure-induced bonding and compound formation in xenon–hydrogen solids [J]. Nature Chemistry, 2010, 2(1): 50-3.
[20] Li B, Ding Y, Kim D Y, et al. Rhodium dihydride (RhH2) with high volumetric hydrogen density [J]. Proceedings of the National Academy of Sciences, 2011, 108(46): 18618-21.
[21] Zhang W, Oganov A R, Goncharov A F, et al. Unexpected Stable Stoichiometries of Sodium Chlorides [J]. Science, 2013, 342(6165): 1502-5.
[22] Holzapfel W B. Physics of solids under strong compression [J]. Reports on Progress in Physics, 1996, 59(1): 29.
[23] Rueff J P, Kao C C, Struzhkin V V, et al. Pressure-Induced High-Spin to Low-Spin Transition in FeS Evidenced by X-Ray Emission Spectroscopy [J]. Physical Review Letters, 1999, 82(16): 3284-7.
[24] Buzea C, Robbie K. Assembling the puzzle of superconducting elements: a review [J]. Superconductor Science and Technology, 2005, 18(1): R1.
[25] Miao M-S, Hoffmann R. High Pressure Electrides: A Predictive Chemical and Physical Theory [J]. Accounts of Chemical Research, 2014, 47(4): 1311-7.
[26] Friedrich A, Winkler B, Bayarjargal L, et al. Novel Rhenium Nitrides [J]. Physical Review Letters, 2010, 105(8).
[27] Crowhurst J C, Goncharov A F, Sadigh B, et al. Synthesis and characterization of the nitrides of platinum and iridium [J]. Science, 2006, 311(5765): 1275-8.
[28] Young A F, Sanloup C, Gregoryanz E, et al. Synthesis of novel transition metal nitrides IrN2 and OsN2 [J]. Physical Review Letters, 2006, 96(15).
[29] Gregoryanz E, Sanloup C, Somayazulu M, et al. Synthesis and characterization of a binary noble metal nitride [J]. Nature Materials, 2004, 3(5): 294-7.
[30] Marchand R, Laurent Y, Guyader J, et al. Nitrides and oxynitrides: Preparation, crystal chemistry and properties [J]. Journal of the European Ceramic Society, 1991, 8(4): 197-213.
[31] Schnick W, Schlieper T, Huppertz H, et al. Nitridosilicates - A Significant Extension of Silicate Chemistry [J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 1997, 124(1): 163-72.
[32] Sun W, Holder A, Orvañanos B, et al. Thermodynamic routes to novel metastable nitrogen-rich nitrides [J]. Chemistry of Materials, 2017, 29(16): 6936-46.
[33] Sun W, Dacek S T, Ong S P, et al. The thermodynamic scale of inorganic crystalline metastability [J]. Science Advances, 2016, 2(11): e1600225.
[34] Niewa R, DiSalvo F J. Recent Developments in Nitride Chemistry [J]. Chemistry of Materials, 1998, 10(10): 2733-52.
[35] Tareen A K, Priyanga G S, Behara S, et al. Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance [J]. Progress in Solid State Chemistry, 2019, 53: 1-26.
[36] Zakutayev A. Design of nitride semiconductors for solar energy conversion [J]. Journal of Materials Chemistry, 2016, 4: 6742-54.
[37] De La Cruz W, Dı́az J A, Mancera L, et al. Yttrium nitride thin films grown by reactive laser ablation [J]. Journal of Physics and Chemistry of Solids, 2003, 64(11): 2273-9.
[38] Gregoire J M, Kirby S D, Scopelianos G E, et al. High mobility single crystalline ScN and single-orientation epitaxial YN on sapphire via magnetron sputtering [J]. Journal of Applied Physics, 2008, 104(7): 074913.
[39] Häglund J, Fernández Guillermet A, Grimvall G, et al. Theory of bonding in transition-metal carbides and nitrides [J]. Physical Review B, 1993, 48(16): 11685-91.
[40] Kaner R B, Gilman J J, Tolbert S H. Designing Superhard Materials [J]. Science, 2005, 308(5726): 1268.
[41] Yu R, Zhan Q, Zhang X F. Elastic stability and electronic structure of pyrite type PtN2: A hard semiconductor [J]. Applied Physics Letters, 2006, 88(5): 051913.
[42] Friedrich A, Winkler B, Bayarjargal L, et al. Novel Rhenium Nitrides [J]. Physical Review Letters, 2010, 105(8): 085504.
[43] Young A F, Sanloup C, Gregoryanz E, et al. Synthesis of Novel Transition Metal Nitrides IrN2 and OsN2 [J]. Physical Review Letters, 2006, 96(15): 155501.
[44] Hones P, Sanjinés R, Lévy F, et al. Electronic structure and mechanical properties of resistant coatings: The chromium molybdenum nitride system [J]. Journal of Vacuum Science & Technology A, 1999, 17(3): 1024-30.
[45] Claesson Y, Georgson M, Roos A, et al. Optical characterisation of titanium-nitride-based solar control coatings [J]. Solar Energy Materials, 1990, 20(5): 455-65.
[46] Khan S, Mahmood A, Shah A, et al. Structural and optical analysis of Cr2N thin films prepared by DC magnetron sputtering [J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(2): 197-202.
[47] Zhao B, Sun K, Song Z, et al. Ultrathin Mo/MoN bilayer nanostructure for diffusion barrier application of advanced Cu metallization [J]. Applied Surface Science, 2010, 256(20): 6003-6.
[48] Hones P, Martin N, Regula M, et al. Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films [J]. Journal of Physics D, 2003, 36(8): 1023-9.
[49] Zhou Y, Guo W, Li T. A review on transition metal nitrides as electrode materials for supercapacitors [J]. Ceramics International, 2019.
[50] Peng X, Pi C, Zhang X, et al. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting [J]. Sustainable Energy Fuels, 2019, 3(2): 366-81.
[51] Deis D W, Gavaler J R, Hulm J K, et al. High Field Properties of Pure Niobium Nitride Thin Films [J]. Journal of Applied Physics, 1969, 40(5): 2153-6.
[52] Kim S, Terai H, Yamashita T, et al. Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate [J]. Communications Materials, 2021, 2(1): 98.
[53] Chen X-J, Struzhkin V V, Wu Z, et al. Hard superconducting nitrides [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(9): 3198.
[54] Wang S, Antonio D, Yu X, et al. The Hardest Superconducting Metal Nitride [J]. Scientific Reports, 2015, 5(1): 13733.
[55] Saha B, Sands T D, Waghmare U V. Electronic structure, vibrational spectrum, and thermal properties of yttrium nitride: A first-principles study [J]. Journal of Applied Physics, 2011, 109(7).
[56] Gall D, Petrov I, Madsen L D, et al. Microstructure and electronic properties of the refractory semiconductor ScN grown on MgO(001) by ultra-high-vacuum reactive magnetron sputter deposition [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998, 16(4): 2411-7.
[57] Abe H, Cheung T K, Bell A T. The activity of transition metal nitrides for hydrotreating quinoline and thiophene [J]. Catalysis Letters, 1993, 21(1-2): 11-8.
[58] Neylon M K, Choi S, Kwon H, et al. Catalytic properties of early transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenation and isomerization [J]. Applied Catalysis a-General, 1999, 183(2): 253-63.
[59] Shi C, Zhu A M, Yang X F, et al. On the catalytic nature of VN, Mo2N, and W2N nitrides for NO reduction with hydrogen [J]. Applied Catalysis a-General, 2004, 276(1-2): 223-30.
[60] Tabata M, Maeda K, Higashi M, et al. Modified Ta3N5 Powder as a Photocatalyst for O2 Evolution in a Two-Step Water Splitting System with an Iodate/Iodide Shuttle Redox Mediator under Visible Light [J]. Langmuir, 2010, 26(12): 9161-5.
[61] Frisk K. A thermodynamic evaluation of the Cr-N, Fe-N, Mo-N and Cr-Mo-N systems [J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 1991, 15(1): 79-106.
[62] Bhobe P A, Chainani A, Taguchi M, et al. Evidence for a Correlated Insulator to Antiferromagnetic Metal Transition in CrN [J]. Physical Review Letters, 2010, 104(23): 236404.
[63] O'Loughlin J L, Wallace C H, Knox M S, et al. Rapid Solid-State Synthesis of Tantalum, Chromium, and Molybdenum Nitrides [J]. Inorganic Chemistry, 2001, 40(10): 2240-5.
[64] Gillan E G, Kaner R B. Rapid Solid-State Synthesis of Refractory Nitrides [J]. Inorganic Chemistry, 1994, 33(25): 5693-700.
[65] Zhang X Y, Chawla J S, Deng R P, et al. Epitaxial suppression of the metal-insulator transition in CrN [J]. Physical Review B, 2011, 84(7): 073101.
[66] Kimura S, Emura S, Yamauchi Y, et al. Low temperature molecular beam epitaxy growth of cubic GaCrN [J]. Journal of Crystal Growth, 2008, 310(1): 40-6.
[67] Gall D, Shin C S, Haasch R T, et al. Band gap in epitaxial NaCl-structure CrN(001) layers [J]. Journal of Applied Physics, 2002, 91(9): 5882-6.
[68] Lerch M, Füglein E, Wrba J. Synthesis, Crystal Structure, and High Temperature Behavior of Zr3N4 [J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 1996, 622: 367-72.
[69] Brauer G, Weidlein J, Strahle J. Über das Tantalnitrid Ta3N5 und das Tantaloxidnitrid TaON [J]. Zeitschrift fuer Anorganische und Allgemeine Chemie, 1966, 348(5-6): 298-308.
[70] Browne J D, Liddell P R, Street R, et al. An investigation of the antiferromagnetic transition of CrN [J]. Phys State Sol (a) 1970, 1(4): 715.
[71] Tsuchiya Y, Kosuge K, Ikeda Y, et al. Non-stoichiometry and antiferromagnetic phase transition of NaCl-type CrN thin films prepared by reactive sputtering [J]. Materials Transactions Jim, 1996, 37(2): 121-9.
[72] Rivadulla F, Banobre-Lopez M, Quintela C X, et al. Reduction of the bulk modulus at high pressure in CrN [J]. Nature Materials, 2009, 8(12): 947-51.
[73] Chen M, Wang S, Zhang J, et al. Synthesis of Stoichiometric and Bulk CrN through a Solid-State Ion-Exchange Reaction [J]. Chemistry – A European Journal, 2012, 18(48): 15459-63.
[74] Zerr A, Miehe G, Riedel R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure [J]. Nature Materials, 2003, 2(3): 185-9.
[75] Zerr A, Miehe G, Li J, et al. High-pressure synthesis of tantalum nitride having orthorhombic U2S3-type structure [J]. Advanced Functional Materials, 2009, 19(14): 2282-8.
[76] Tsai M H, Sun S C, Chiu H T, et al. Metalorganic chemical vapor deposition of tungsten nitride for advanced metallization [J]. Applied Physics Letters, 1996, 68(10): 1412-4.
[77] Lee C W, Kim Y T. High temperature thermal stability of plasma-deposited tungsten nitride Schottky contacts to GaAs [J]. Solid-State Electronics, 1995, 38(3): 679-82.
[78] Misra V. Issues in Metal Gate Electrode Selection for Bulk CMOS Devices [M]//HUFF, GILMER. High Dielectric Constant Materials: VLSI MOSFET Applications. Berlin, Heidelberg; Springer Berlin Heidelberg. 2005: 415-34.
[79] Claflin B, Binger M, Lucovsky G, et al. Investigation of the Growth and Chemical Stability of Composite Metal Gates on Ultra-thin Gate Dielectrics [J]. MRS Proceedings, 1998, 532: 171.
[80] Jiang P-C, Lai Y-S, Chen J S. Dependence of crystal structure and work function of WNx films on the nitrogen content [J]. Applied Physics Letters, 2006, 89(12): 122107.
[81] Anwar S, Anwar S. Thermal stability studies of tungsten nitride thin films [J]. Surface Engineering, 2016, 33(4): 276-81.
[82] Wen M, Meng Q N, Yu W X, et al. Growth, stress and hardness of reactively sputtered tungsten nitride thin films [J]. Surface and Coatings Technology, 2010, 205(7): 1953-61.
[83] Polcar T, Parreira N, Cavaleiro A. Structural and tribological characterization of tungsten nitride coatings at elevated temperature [J]. Wear, 2008, 265(3-4): 319-26.
[84] Wang H, Sandoz‐Rosado E J, Tsang S H, et al. Elastic Properties of 2D Ultrathin Tungsten Nitride Crystals Grown by Chemical Vapor Deposition [J]. Advanced Functional Materials, 2019: 1902663.
[85] Nagai M, Suda T, Oshikawa K, et al. CVD preparation of alumina-supported tungsten nitride and its activity for thiophene hydrodesulfurization [J]. Catalysis Today, 1999, 50(1): 29-37.
[86] Bull S K, Mcneary W W, Adkins C A, et al. Atomic layer deposition of tungsten nitride films as protective barriers to hydrogen [J]. Applied Surface Science, 2020, 507: 145019.
[87] Ju H, Ding N, Xu J, et al. Crystal structure and the improvement of the mechanical and tribological properties of tungsten nitride films by addition of titanium [J]. Surface and Coatings Technology, 2018, 345: 132-9.
[88] Buchinger J, Koutná N, Chen Z, et al. Toughness enhancement in TiN/WN superlattice thin films [J]. Acta Materialia, 2019, 172: 18-29.
[89] Klaus J W, Ferro S J, George S M. Atomic Layer Deposition of Tungsten Nitride Films Using Sequential Surface Reactions [J]. Journal of the Electrochemical Society, 2000, 147(3): 1175-81.
[90] Becker J, Gordon R G. Diffusion barrier properties of tungsten nitride films grown by atomic layer deposition from bis(tert-butylimido)bis(dimethylamido)tungsten and ammonia [J]. Applied Physics Letters, 2003, 82(14): 2239-41.
[91] Sim H S, Kim S-I, Kim Y T. Method to enhance atomic-layer deposition of tungsten–nitride diffusion barrier for Cu interconnect [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003, 21(4): 1411-4.
[92] Mcneary W W, Zaccarine S F, Lai A, et al. Improved durability and activity of Pt/C catalysts through atomic layer deposition of tungsten nitride and subsequent thermal treatment [J]. Applied Catalysis B-environmental, 2019, 254: 587-93.
[93] Chakrapani V, Thangala J, Sunkara M K. WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production [J]. International Journal of Hydrogen Energy, 2009, 34(22): 9050-9.
[94] Ko A-R, Han S-B, Lee Y-W, et al. Template-free synthesis and characterization of mesoporous tungsten nitride nanoplates [J]. Physical Chemistry Chemical Physics, 2011, 13(28): 12705-7.
[95] Yan H, Tian C, Wang L, et al. Phosphorus‐Modified Tungsten Nitride/Reduced Graphene Oxide as a High‐Performance, Non‐Noble‐Metal Electrocatalyst for the Hydrogen Evolution Reaction [J]. Angewandte Chemie International Edition, 2015, 54(21): 6325-9.
[96] Wang Y L, Nie T, Li Y H, et al. Black tungsten nitride as a metallic photocatalyst for overall water splitting operable at up to 765 nm [J]. Angewandte Chemie International Edition, 2017, 56(26): 7430-4.
[97] Dubal D P, Chodankar N R, Qiao S. Tungsten nitride nanodots embedded phosphorous modified carbon fabric as flexible and robust electrode for asymmetric pseudocapacitor [J]. Small, 2019, 15(1): 1804104.
[98] Zhu Y, Chen G, Zhong Y, et al. Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogen‐Rich Graphene‐Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst [J]. Advanced Science, 2018, 5(2): 1700603.
[99] Yu H, Yang X, Xiao X, et al. Atmospheric-Pressure Synthesis of 2D Nitrogen-Rich Tungsten Nitride [J]. Adv Mater, 2018, 30(51): e1805655.
[100] Patil S K R, Mangale N S, Khare S V, et al. Super hard cubic phases of period VI transition metal nitrides: First principles investigation [J]. Thin Solid Films, 2008, 517(2): 824-7.
[101] Benhai Y, Chunlei W, Xuanyu S, et al. Structural stability and mechanical property of WN from first-principles calculations [J]. Journal of Alloys and Compounds, 2009, 487(1-2): 556-9.
[102] Mehl M J, Finkenstadt D, Dane C, et al. Finding the stable structures of N1-XWX with an ab initio high-throughput approach [J]. Physical Review B, 2015, 91(18): 184110.
[103] Balasubramanian K, Khare S, Gall D. Vacancy-induced mechanical stabilization of cubic tungsten nitride [J]. Physical Review B, 2016, 94(17): 174111.
[104] Jhi S-H, Louie S G, Cohen M L, et al. Vacancy Hardening and Softening in Transition Metal Carbides and Nitrides [J]. Physical Review Letters, 2001, 86(15): 3348-51.
[105] Cai L, Feng C. Effect of Vacancy Defects on the Electronic Structure and Optical Properties of GaN [J]. Journal of Nanotechnology, 2017, 2017: 6987430.
[106] Efimenko A K, Hollmann N, Hoefer K, et al. Electronic signature of the vacancy ordering in NbO (Nb3O3) [J]. Physical Review B, 2017, 96(19): 195112.
[107] Wang H, Li Q, Li Y, et al. Ultra-incompressible phases of tungsten dinitride predicted from first principles [J]. Physical Review B, 2009, 79(13): 132109.
[108] Zhao Z, Bao K, Duan D, et al. The low coordination number of nitrogen in hard tungsten nitrides: a first-principles study [J]. Physical Chemistry Chemical Physics, 2015, 17(20): 13397-402.
[109] Wang S, Yu X, Lin Z, et al. Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides [J]. Chemistry of Materials, 2012, 24(15): 3023-8.
[110] Kawamura F, Yusa H, Taniguchi T. Synthesis of hexagonal phases of WN and W2.25N3 by high-pressure metathesis reaction [J]. Journal of the American Ceramic Society, 2018, 101(2): 949-56.
[111] Campi D, Kumari S, Marzari N. Prediction of Phonon-Mediated Superconductivity with High Critical Temperature in the Two-Dimensional Topological Semimetal W2N3 [J]. Nano Letters, 2021, 21(8): 3435-42.
[112] Chen J, Ge Y. Emergence of intrinsic superconductivity in monolayer W2N3 [J]. Physical Review B, 2021, 103(6): 064510.
[113] You J-Y, Gu B, Su G, et al. Two-dimensional topological superconductivity candidate in a van der Waals layered material [J]. Physical Review B, 2021, 103(10): 104503.
[114] Wang C, Tao Q, Dong S, et al. Synthesis and Mechanical Character of Hexagonal Phase δ−WN [J]. Inorganic Chemistry, 2017, 56(7): 3970-5.
[115] Lu C, Li Q, Ma Y, et al. Extraordinary Indentation Strain Stiffening Produces Superhard Tungsten Nitrides [J]. Physical Review Letters, 2017, 119(11): 115503.
[116] Metaxa C, Ozsdolay B D, Zorba T, et al. Electronic and optical properties of rocksalt-phase tungsten nitride (B1-WN) [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2017, 35(3): 031501.
[117] Xing W, Zhang Y, Meng F, et al. Structure stabilization effect of configuration entropy in cubic WN [J]. Physical Chemistry Chemical Physics, 2018, 20(46): 29243-8.
[118] Xia K, Gao H, Liu C, et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search [J]. Science Bulletin, 2018, 63(13): 817-24.
[119] Salke N P, Xia K, Fu S, et al. Tungsten Hexanitride with Single-Bonded Armchairlike Hexazine Structure at High Pressure [J]. Physical Review Letters, 2021, 126(6): 065702.
[120] Li Q, Sha L, Zhu C, et al. New multifunctional tungsten nitride with energetic N6 and extreme hardness predicted from first principles [J]. EPL (Europhysics Letters), 2017, 118(4): 46001.
[121] Wang C, Tao Q, Li Y, et al. Excellent mechanical properties of metastable c-WN fabricated at high pressure and high temperature [J]. International Journal of Refractory Metals and Hard Materials, 2017, 66: 63-7.
[122] Xing W, Miao X, Meng F, et al. Crystal structure of and displacive phase transition in tungsten nitride WN [J]. Journal of Alloys and Compounds, 2017, 722: 517-24.
[123] Bem D S, Lampe-Önnerud C M, Olsen H P, et al. Synthesis and Structure of Two New Ternary Nitrides:  FeWN2 and MnMoN2 [J]. Inorganic Chemistry, 1996, 35(3): 581-5.
[124] Brese N E, DiSalvo F J. Synthesis of the First Thorium-Containing Nitride Perovskite, TaThN3 [J]. Journal of Solid State Chemistry, 1995, 120(2): 378-80.
[125] Jackson S K, Layland R C, zur Loye H-C. The simultaneous powder X-ray and neutron diffraction refinement of two η-carbide type nitrides, Fe3Mo3N and Co3Mo3N, prepared by ammonolysis and by plasma nitridation of oxide precursors [J]. Journal of Alloys and Compounds, 1999, 291(1): 94-101.
[126] Javaid K, Yu J, Wu W, et al. Thin Film Solar Cell Based on ZnSnN2/SnO Heterojunction [J]. physica status solidi (RRL) – Rapid Research Letters, 2018, 12(1): 1700332.
[127] Langmi H W, McGrady G S. Ternary nitrides for hydrogen storage: Li–B–N, Li–Al–N and Li–Ga–N systems [J]. Journal of Alloys and Compounds, 2008, 466(1): 287-92.
[128] Tellekamp M B, Melamed C L, Norman A G, et al. Heteroepitaxial Integration of ZnGeN2 on GaN Buffers Using Molecular Beam Epitaxy [J]. Crystal Growth & Design, 2020, 20(3): 1868-75.
[129] Sun W, Bartel C J, Arca E, et al. A map of the inorganic ternary metal nitrides [J]. Nature Materials, 2019, 18(7): 732-9.
[130] Greenaway A L, Melamed C L, Tellekamp M B, et al. Ternary Nitride Materials: Fundamentals and Emerging Device Applications [J]. Annual Review of Materials Research, 2021, 51(1): 591-618.
[131] H. Gregory D. Structural families in nitride chemistry [J]. Journal of the Chemical Society, Dalton Transactions, 1999, (3): 259-70.
[132] Xia Z, Poeppelmeier K R. Chemistry-Inspired Adaptable Framework Structures [J]. Accounts of Chemical Research, 2017, 50(5): 1222-30.
[133] Martinez A D, Fioretti A N, Toberer E S, et al. Synthesis, structure, and optoelectronic properties of II–IV–V2 materials [J]. Journal of Materials Chemistry A, 2017, 5(23): 11418-35.
[134] Heinselman K N, Lany S, Perkins J D, et al. Thin Film Synthesis of Semiconductors in the Mg–Sb–N Materials System [J]. Chemistry of Materials, 2019, 31(21): 8717-24.
[135] Sarmiento-Perez R, Cerqueira T F T, Koerbel S, et al. ChemInform Abstract: Prediction of Stable Nitride Perovskites [J]. ChemInform, 2015, 46(45).
[136] Flores-Livas J A, Sarmiento-Pérez R, Botti S, et al. Rare-earth magnetic nitride perovskites [J]. Journal of Physics: Materials, 2019, 2(2): 025003.
[137] Kevin R T, Craig L P, David R D, et al. Synthesis of LaWN3 nitride perovskite with polar symmetry [J]. Science, 2021, 374(6574): 1488–91
[138] Kloß S D, Weidemann M L, Attfield J P. Preparation of Bulk-Phase Nitride Perovskite LaReN3 and Topotactic Reduction to LaNiO2-Type LaReN2 [J]. Angewandte Chemie International Edition, 2021, 60(41): 22260-4.
[139] Ha V-A, Lee H, Giustino F. CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps [J]. Chemistry of Materials, 2022, 34(5): 2107-22.
[140] Sherbondy R, Smaha R W, Bartel C J, et al. High-Throughput Selection and Experimental Realization of Two New Ce-Based Nitride Perovskites: CeMoN3 and CeWN3 [J]. Chemistry of Materials, 2022.
[141] Schnick W, Huppertz H. Nitridosilicates-A Significant Extension of Silicate Chemistry [J]. Chemistry – A European Journal, 1997, 3(5): 679-83.
[142] Szymanski N J, Adhikari V, Willard M A, et al. Prediction of improved magnetization and stability in Fe16N2 through alloying [J]. Journal of Applied Physics, 2019, 126(9): 093903.
[143] Verrelli R, Arroyo-de-Dompablo M E, Tchitchekova D, et al. On the viability of Mg extraction in MgMoN2: a combined experimental and theoretical approach [J]. Physical Chemistry Chemical Physics, 2017, 19(38): 26435-41.
[144] Fang Y-W, Fisher C A J, Kuwabara A, et al. Lattice dynamics and ferroelectric properties of the nitride perovskite LaWN3 [J]. Physical Review B, 2017, 95(1): 014111.
[145] Xia H. Nitride perovskite becomes polar [J]. Science, 2021, 374(6574): 1445-6.
[146] Kroll P, Schroter T, Peters M. Prediction of novel phases of tantalum(V) nitride and tungsten(VI) nitride that can be synthesized under high pressure and high temperature [J]. Angewandte Chemie-International Edition, 2005, 44(27): 4249-54.
[147] Alling B, Marten T, Abrikosov I A. Questionable collapse of the bulk modulus in CrN [J]. Nature Materials, 2010, 9(4): 283-4.
[148] Alling B, Marten T, Abrikosov I A. Effect of magnetic disorder and strong electron correlations on the thermodynamics of CrN [J]. Physical Review B, 2010, 82(18): 184430.
[149] Balasubramanian K, Khare S V, Gall D. Energetics of point defects in rocksalt structure transition metal nitrides: Thermodynamic reasons for deviations from stoichiometry [J]. Acta Materialia, 2018, 159: 77-88.
[150] Wang S, Yu X, Zhang J, et al. Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN [J]. Crystal Growth & Design, 2016, 16(1): 351-8.
[151] Lengauer W, Ettmayer P. Physical and mechanical properties of cubic δ-VN1-x [J]. Journal of the Less Common Metals, 1985, 109(2): 351-9.
[152] Lu C, Chen C. Indentation-strain stiffening in tungsten nitrides: Mechanisms and implications [J]. Physical Review Materials, 2020, 4(4): 043402.
[153] Talley K R, Sherbondy R, Zakutayev A, et al. Review of high-throughput approaches to search for piezoelectric nitrides [J]. Journal of Vacuum Science & Technology A, 2019, 37(6): 060803.
[154] Ningthoujam R S, Gajbhiye N S. Synthesis, electron transport properties of transition metal nitrides and applications [J]. Progress in Materials Science, 2015, 70: 50-154.
[155] Tonkov E, Ponyatovsky E G. Phase Transformations of Elements Under High Pressure [M]. 2004: 1-377.
[156] Cannon J F. Behavior of the elements at high pressures [J]. Journal of Physical and Chemical Reference Data, 1974, 3(3): 781-824.
[157] McMahon M I, Nelmes R J. High-pressure structures and phase transformations in elemental metals [J]. Chemical Society Reviews, 2006, 35(10): 943-63.
[158] Mirwald P W, Kennedy G C. Melting temperature of lead and sodium at high pressures [J]. Journal of Physics and Chemistry of Solids, 1976, 37(8): 795-7.
[159] Lees J, Williamson B. Combined very high pressure/high temperature calibration of the tetrahedral anvil apparatus, fusion curves of zinc, aluminium, germanium and silicon to 60 kilobars [J]. Nature, 1965, 208(5007): 278.
[160] Akella J, Kennedy G C. Melting of gold, silver, and copper-proposal for a new high‐pressure calibration scale [J]. Journal of Geophysical Research, 1971, 76(20): 4969-77.
[161] Hieu H K, Ha N N. High pressure melting curves of silver, gold and copper [J]. AIP Advances, 2013, 3(11): 112125.
[162] Errandonea D. High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt [J]. Physical Review B, 2013, 87(5): 054108.
[163] Wang S, He D, Wang W, et al. Pressure calibration for the cubic press by differential thermal analysis and the high-pressure fusion curve of aluminum [J]. High Pressure Research, 2009, 29(4): 806-14.
[164] Liebermann R C. Multi-anvil, high pressure apparatus: a half-century of development and progress [J]. High Pressure Research, 2011, 31(4): 493-532.
[165] Hai-Kuo W, Ying R, Duan-Wei H, et al. Force analysis and pressure quantitative measurement for the high pressure cubic cell [J]. Acta Physica Sinica, 2017, 66(9): 090702.
[166] Bundy F P. Melting Point of Graphite at High Pressure: Heat of Fusion [J]. Science, 1962, 137(3535): 1055-7.
[167] Bouvier P, Djurado E, Lucazeau G, et al. High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia [J]. Physical Review B, 2000, 62(13): 8731-7.
[168] Latta R E, Duderstadt E C, Fryxell R E. The melting point of pure zirconia [J]. Journal of Nuclear Materials, 1970, 35(3): 345-6.
[169] Zhao Y, Lawson A C, Zhang J, et al. Thermoelastic equation of state of molybdenum [J]. Physical Review B, 2000, 62(13): 8766-76.
[170] Mirwald P W, Kennedy G C. The melting curve of gold, silver, and copper to 60‐Kbar pressure: A reinvestigation [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B12): 6750-6.
[171] Zhao Y, Dreele R B V, Weidner D J, et al. P- V- T Data of hexagonal boron nitride h BN and determination of pressure and temperature using thermoelastic equations of state of multiple phases [J]. High Pressure Research, 1997, 15: 369-86.
[172] Ross M, Errandonea D, Boehler R. Melting of transition metals at high pressure and the influence of liquid frustration: The early metals Ta and Mo [J]. Physical Review B, 2007, 76(18): 184118.
[173] Dewaele A, Mezouar M, Guignot N, et al. High Melting Points of Tantalum in a Laser-Heated Diamond Anvil Cell [J]. Physical Review Letters, 2010, 104(25): 255701.
[174] Kolopus J A, Boatner L A. Single-Crystal Tungsten Carbide in High-Temperature In-Situ Additive Manufacturing Characterization [J]. Technical Report No NFE-16-06110,, 2017.
[175] Utsumi W, Saitoh H, Kaneko H, et al. Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth [J]. Nature Materials, 2003, 2(11): 735-8.
[176] Bassett W A. Diamond anvil cell, 50th birthday [J]. High Pressure Research, 2009, 29(2): 163-86.
[177] Han Q-G, Yang W-K, Jia X-P, et al. Hybrid-toroidal anvil: a replacement for the conventional WC anvil used for the large volume cubic high pressure apparatus [J]. High Pressure Research, 2014, 34(4): 404-11.
[178] Ekimov E, Sadykov R, Gierlotka S, et al. A high-pressure cell for high-temperature experiments in a toroid-type chamber [J]. Instruments and Experimental Techniques, 2004, 47(2): 276-8.
[179] Ekimov E A, Sadykov R A, Gierlotka S, et al. A High-Pressure Cell for High-Temperature Experiments in a Toroid-Type Chamber [J]. Instruments and Experimental Techniques, 2004, 47(2): 276-8.
[180] Bhaumik S K, Divakar C, Mohan M, et al. A modified high‐temperature cell (up to 3300 K) for use with a cubic press [J]. Review of Scientific Instruments, 1996, 67(10): 3679-82.
[181] Xie L, Yoneda A, Yoshino T, et al. Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus [J]. Review of Scientific Instruments, 2017, 88(9): 093904.
[182] Shatskiy A, Yamazaki D, Morard G, et al. Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments [J]. Review of Scientific Instruments, 2009, 80(2): 023907.
[183] Andrault D, Fiquet G, Itie J-P, et al. Thermal pressure in the laser-heated diamond-anvil cell; an X-ray diffraction study [J]. European Journal of Mineralogy, 1998, 10(5): 931-40.
[184] Lord O T, Wood I G, Dobson D P, et al. The melting curve of Ni to 1 Mbar [J]. Earth and Planetary Science Letters, 2014, 408: 226-36.
[185] Brey G P, KÖHler T. Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers [J]. Journal of Petrology, 1990, 31(6): 1353-78.
[186] Zhang J, Li B, Utsumi W, et al. In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics [J]. Physics and Chemistry of Minerals, 1996, 23(1): 1-10.
[187] Chiu C-K, Teo J C Y, Schnyder A P, et al. Classification of topological quantum matter with symmetries [J]. Reviews of Modern Physics, 2016, 88(3): 035005.
[188] Weng H, Dai X, Fang Z. Topological semimetals predicted from first-principles calculations [J]. Journal of Physics: Condensed Matter, 2016, 28(30): 303001.
[189] Yan B, Felser C. Topological Materials: Weyl Semimetals [J]. Annual Review of Condensed Matter Physics, 2016, 8(1): 337-54..
[190] Mourik V, Zuo K, Frolov S M, et al. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices [J]. Science, 2012, 336(6084): 1003-7.
[191] Nadj-Perge S, Drozdov I K, Li J, et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor [J]. Science, 2014, 346(6209): 602-7.
[192] Liu Z K, Zhou B, Zhang Y, et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi [J]. Science, 2014, 343(6173): 864-7.
[193] Soluyanov A A, Gresch D, Wang Z, et al. Type-II Weyl semimetals [J]. Nature, 2015, 527(7579): 495-8.
[194] Su-Yang, Xu, Ilya, et al. TOPOLOGICAL MATTER. Discovery of a Weyl fermion semimetal and topological Fermi arcs [J]. Science, 2015, 349(6248): 613-7.
[195] Chen, Y., L., et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs [J]. Nature physics, 2015, 11(9): 728-32.
[196] Gang X, Weng H, Wang Z, et al. Chern semi-metal and Quantized Anomalous Hall Effect in HgCr2Se4 [J]. Physical Review Letters, 2011, 107(18): 186806.
[197] Young S M, Zaheer S, Teo J C Y, et al. Dirac Semimetal in Three Dimensions [J]. Physical Review Letters, 2012, 108(14): 140405.
[198] Weng H, Fang C, Fang Z, et al. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides [J]. Physical Review X, 2015, 5(1): 011029.
[199] Lv B Q, Weng H M, Fu B B, et al. Experimental Discovery of Weyl Semimetal TaAs [J]. Physical Review X, 2015, 5(3): 031013.
[200] Wieder B J, Kim Y, Rappe A M, et al. Double Dirac Semimetals in Three Dimensions [J]. Physical Review Letters, 2016, 116(18): 186402.
[201] Winkler G W, Wu Q, Troyer M, et al. Topological Phases in InAs1−xSbx: From Novel Topological Semimetal to Majorana Wire [J]. Physical Review Letters, 2016, 117(7): 076403.
[202] Weng H, Fang C, Fang Z, et al. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride [J]. Physical Review B, 2016, 93(24): 241202.
[203] Zhu Z, Winkler G W, Wu Q, et al. Triple Point Topological Metals [J]. Physical Review X, 2016, 6(3): 031003.
[204] Weng H, Fang C, Fang Z, et al. Coexistence of Weyl fermion and massless triply degenerate nodal points [J]. Physical Review B, 2016, 94(16): 165201.
[205] Chang G, Xu S-Y, Huang S-M, et al. Nexus fermions in topological symmorphic crystalline metals [J]. Scientific Reports, 2017, 7(1): 1688.
[206] Lv B Q, Feng Z L, Xu Q N, et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide [J]. Nature, 2017, 546(7660): 627-31.
[207] Ma J Z, He J B, Xu Y F, et al. Three-component fermions with surface Fermi arcs in tungsten carbide [J]. Nature Physics, 2018, 14(4): 349-54.
[208] Wang C, Tao Q, Dong S, et al. Synthesis and Mechanical Character of Hexagonal Phase δ-WN [J]. Inorganic chemistry, 2017, 56(7): 3970-5.
[209] Lu C, Li Q, Ma Y, et al. Extraordinary Indentation Strain Stiffening Produces Superhard Tungsten Nitrides [J]. Physical Review Letters, 2017, 119(11): 115503.
[210] Kanoun M B, Goumri-Said S, Jaouen M. Structure and mechanical stability of molybdenum nitrides: A first-principles study [J]. Physical Review B, 2007, 76(13): 134109.
[211] Ganin A Y, Kienle L, Vajenine G V. Synthesis and characterisation of hexagonal molybdenum nitrides [J]. Journal of Solid State Chemistry, 2006, 179(8): 2339-48.
[212] Soignard E, Shebanova O, McMillan P F. Compressibility measurements and phonon spectra of hexagonal transition-metal nitrides at high pressure: ε−TaN, δ−MoN, and Cr2N [J]. Physical Review B, 2007, 75(1): 014104.
[213] Liang Y, Wei X-F, Gu C, et al. Enhanced Hardness in Transition-Metal Monocarbides via Optimal Occupancy of Bonding Orbitals [J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14365-76.
[214] Kaner R B, Gilman J J, Tolbert S H. Designing Superhard Materials [J]. Science, 2005, 308: 1268 - 9.
[215] Crowhurst J C, Goncharov A F, Sadigh B, et al. Synthesis and Characterization of the Nitrides of Platinum and Iridium [J]. Science, 2006, 311(5765): 1275-8.
[216] Cumberland R W, Weinberger M B, Gilman J J, et al. Osmium Diboride, An Ultra-Incompressible, Hard Material [J]. Journal of the American Chemical Society, 2005, 127(20): 7264-5.
[217] Chung H-Y, Weinberger M B, Levine J B, et al. Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure [J]. Science, 2007, 316: 436.
[218] Teter, David M. Computational Alchemy: The Search for New Superhard Materials [J]. Mrs Bulletin, 1998, 23(January): 22-7.
[219] Sears V F. Neutron scattering lengths and cross sections [J]. Neutron News, 1992, 3(3): 26-37.
[220] Ganbavle V V, Agawane G L, Moholkar A V, et al. Structural, Optical, Electrical, and Dielectric Properties of the Spray-Deposited WO3 Thin Films [J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1204-13.
[221] Gu C, Liang Y, Zhou X, et al. Crystal structures and formation mechanisms of boron-rich tungsten borides [J]. Physical Review B, 2021, 104(1): 014110.
[222] Kang Z, He H Y, Ding R, et al. Structures of WxNy Crystals and Their Intrinsic Properties: First-Principles Calculations [J]. Crystal Growth & Design, 2018, 18(4): 2270-8.
[223] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169-86.
[224] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Physical Review Letters, 1996, 77(18): 3865-8.
[225] Oba F, Togo A, Tanaka I, et al. Defect energetics in ZnO: A hybrid Hartree-Fock density functional study [J]. Physical Review B, 2008, 77(24): 245202.
[226] Hill R. The Elastic Behaviour of a Crystalline Aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349.
[227] Chen X-Q, Niu H, Li D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses [J]. Intermetallics, 2011, 19(9): 1275-81.
[228] Weng H, Fang C, Fang Z, et al. Topological semimetals with triply degenerate nodal points in $\ensuremath{\theta}$-phase tantalum nitride [J]. Physical Review B, 2016, 93(24): 241202.
[229] Liu A Y, Wentzcovitch R M, Cohen M L. Structural and electronic properties of WC [J]. Physical Review B, 1988, 38(14): 9483-9.
[230] Hugosson, Hakan W, Erikssen, et al. Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric [J]. Journal of Applied Physics, 1999, 86(7): 3758-67.
[231] Liang Y, Fang Z. First-principles study of osmium under high pressure [J]. Journal of Physics: Condensed Matter, 2006, 18(39): 8749.
[232] Jhi S-H, Ihm J, Louie S G, et al. Electronic mechanism of hardness enhancement in transition-metal carbonitrides [J]. Nature, 1999, 399(6732): 132-4.
[233] Jhi S-H, Ihm J. Electronic structure and structural stability of TiCxN1−x alloys [J]. Physical Review B, 1997, 56(21): 13826-9.
[234] Liang Y, Wu Z, Yuan X, et al. Discovery of elusive structures of multifunctional transition-metal borides [J]. Nanoscale, 2016, 8(2): 1055-65.
[235] Oates W A. Configurational Entropies of Mixing in Solid Alloys [J]. Journal of Phase Equilibria and Diffusion, 2007, 28(1): 79-89.
[236] Metaxa C, Ozsdolay B D, Zorba T, et al. Electronic and optical properties of rocksalt-phase tungsten nitride (B1-WN) [J]. Journal of Vacuum Science & Technology A, 2017, 35(3): 031501.
[237] Wriedt H A. The N-W (nitrogen-tungsten) system [J]. Bulletin of Alloy Phase Diagrams, 1989, 10(4): 358-67.
[238] Sangiovanni D G, Hultman L, Chirita V. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration [J]. Acta Materialia, 2011, 59(5): 2121-34.
[239] Jhi S H, Ihm J, Loule S G, et al. Electronic mechanism of hardness enhancement in transition-metal carbonitrides [J]. Nature, 1999, 399(6732): 132-4.
[240] Zhou X, Ma D, Wang L, et al. Large-volume cubic press produces high temperatures above 4000 Kelvin for study of the refractory materials at pressures [J]. Review of Scientific Instruments, 2020, 91(1): 015118.
[241] Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction [J]. Physica B: Condensed Matter, 1993, 192(1): 55-69.
[242] Toby B. EXPGUI, a graphical user interface for GSAS [J]. Journal of Applied Crystallography, 2001, 34(2): 210-3.
[243] Aitkaliyeva A, Madden J W, Miller B D, et al. Comparison of preparation techniques for nuclear materials for transmission electron microscopy (TEM) [J]. Journal of Nuclear Materials, 2015, 459: 241-6.
[244] Blöchl P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953-79.
[245] Liang Y, Yang J, Xi L, et al. The vacancy ordering produces a new cubic monocarbide: ReC [J]. Materials Today Physics, 2018, 7: 54-60.
[246] Lin Y, Yang C, Niu Q, et al. Interfacial Charge Transfer between Silver Phosphate and W2N3 Induced by Nitrogen Vacancies Enhances Removal of β-Lactam Antibiotics [J]. Advanced Functional Materials, 2022, 32(5): 2108814.
[247] Hall E O. The Deformation and Ageing of Mild Steel: III Discussion of Results [J]. Proceedings of the Physical Society Section B, 1951, 64(9): 747-53.
[248] Petch N J. The Cleavage Strength of Polycrystals [J]. J Iron Steel Inst, 1953, 174: 25-31.
[249] Gréaux S, Kono Y, Wang Y, et al. Sound velocities of aluminum-bearing stishovite in the mantle transition zone [J]. Geophysical Research Letters, 2016, 43(9): 4239-46.
[250] Zhou C, Gréaux S, Liu Z, et al. Sound Velocity of MgSiO3 Majorite Garnet up to 18 GPa and 2000 K [J]. Geophysical Research Letters, 2021, 48(14): 1-9.
[251] Franco E, Meza J, Buiochi F. Measurement of elastic properties of materials by the ultrasonic through-transmission technique [J]. DYNA (Colombia), 2011, 78: 58-64.
[252] Chen X Q, Niu H, Li D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses [J]. Intermetallics, 2011, 19(9): 1275-81.
[253] Amulele G M, Manghnani M H, Marriappan S, et al. Compression behavior of WC and WC-6%Co up to 50 GPa determined by synchrotron x-ray diffraction and ultrasonic techniques [J]. Journal of Applied Physics, 2008, 103(11): 113522.
[254] Day J P, Ruoff A L. Pressure dependence of elastic moduli of tungsten carbide cermet [J]. Journal of Applied Physics, 1973, 44(6): 2447-8.
[255] 阎守胜. 固体物理基础 [M]. 北京: 北京大学出版社, 2011: 135-144.
[256] Mathew S, Abraham A R, Chintalapati S, et al. Temperature Dependent Structural Evolution of WSe2: A Synchrotron X-ray Diffraction Study [J]. Condensed Matter, 2020, 5(4): 76.
[257] Vočadlo L, Knight K S, Price G D, et al. Thermal expansion and crystal structure of FeSi between 4 and 1173 K determined by time-of-flight neutron powder diffraction [J]. Physics and Chemistry of Minerals, 2002, 29(2): 132-9.
[258] Zhou X, Gu C, Song G, et al. Synthesis, Crystal Structures, Mechanical Properties, and Formation Mechanisms of Cubic Tungsten Nitrides [J]. Chemistry of Materials, 2022, 34(20): 9261–9.
[259] Mouhat F, Coudert F-X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104.
[260] Sangiovanni D G, Chirita V, Hultman L. Electronic mechanism for toughness enhancement in TiXM1−XN (M= Mo and W) [J]. Physical Review B, 2010, 81(10): 104107.
[261] Ekimov E A, Sidorov V A, Bauer E D, et al. Superconductivity in diamond [J]. Nature, 2004, 428(6982): 542-5.
[262] Zhang G, Samuely T, Xu Z, et al. Superconducting Ferromagnetic Nanodiamond [J]. ACS Nano, 2017, 11(6): 5358-66.
[263] Johansson B O, Sundqren J E, Greene J E. Growth and properties of single crystal TIN films deposited by reactive magnetron sputtering [J]. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3(2): 303-7.
[264] Geerk J, Linker G, Smithey R. Electron tunneling into superconducting ZrN [J]. Physical Review Letters, 1986, 57(26): 3284-7.
[265] Zhao B R, Chen L, Luo H L, et al. Superconducting and normal-state properties of vanadium nitride [J]. Physical Review B, 1984, 29(11): 6198-202.
[266] Gurvitch M, Remeika J P, Rowell J M, et al. Tunneling, resistive and structural study of Nbn and other superconducting nitrides [J]. IEEE Transactions on Magnetics, 1985, 21(2): 509-13.
[267] Reichelt K, Nellen W, Mair G. Preparation and compositional analysis of sputtered TaN films [J]. Journal of Applied Physics, 1978, 49(10): 5284-7.
[268] Soignard E, McMillan P F, Chaplin T D, et al. High-pressure synthesis and study of low-compressibility molybdenum nitride (MoN and MoN1−x) phases phases [J]. Physical Review B, 2003, 68(13): 132101.
[269] Ihara H, Kimura Y, Senzaki K, et al. Electronic structures of B1 MoN, fcc Mo2N, and hexagonal MoN [J]. Physical Review B, 1985, 31(5): 3177-8.
[270] Chen X-J, Struzhkin V V, Wu Z, et al. Electronic stiffness of a superconducting niobium nitride single crystal under pressure [J]. Physical Review B, 2005, 72(9): 094514.
[271] Zerr A, Miehe G, Riedel R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure [J]. Nature Materials, 2003, 2(3): 185-9.
[272] Wang S, Yu X, Zhang J, et al. Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN [J]. Crystal Growth & Design, 2015, 16(1): 351-8.
[273] Chen J, Gao J. Strong Electron–Phonon Coupling in 3D WN and Coexistence of Intrinsic Superconductivity and Topological Nodal Line in Its 2D Limit [J]. physica status solidi (RRL) – Rapid Research Letters, 2022, 16(1): 2100477.
[274] Ansari I A. Numerical solution of Bloch–Gruneisen function to determine the contribution of electron–phonon interaction in polycrystalline MgB2 superconductor [J]. Physica C: Superconductivity, 2010, 470(11): 508-10.
[275] Kinsel T, Lynton E A, Serin B. Magnetic properties of a superconductor of the second kind [J]. Physics Letters, 1962, 3(1): 30-2.
[276] Wu W, Liu K, Li Y, et al. Superconductivity in chromium nitrides Pr3Cr10-xN11 with strong electron correlations [J]. National Science Review, 2019, 7(1): 21-6.
[277] Goodman B B. Type II superconductors [J]. Reports on Progress in Physics, 1966, 29(2): 445-87.
[278] Silcox J, Rollins R W. Hysteresis in Hard Superconductors [J]. Reviews of Modern Physics, 1964, 36(1): 52-4.
[279] Abdel-Hafiez M, Zhao Y, Huang Z, et al. High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2 [J]. Physical Review B, 2018, 97(13): 134508.
[280] Chumakov A I, Monaco G, Monaco A, et al. Equivalence of the Boson Peak in Glasses to the Transverse Acoustic van Hove Singularity in Crystals [J]. Physical Review Letters, 2011, 106(22): 225501.
[281] Guo J, Yamaura J-i, Lei H, et al. Superconductivity in Ban+2Ir4nGe12n+4 (n = 1,2) with cage structure and softening of low-lying localized mode [J]. Physical Review B, 2013, 88(14): 140507.
[282] Wang B, Zhang Y, Xu S, et al. Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors [J]. Chinese Physics B, 2019, 28(10): 107401.
[283] McMillan W L. Transition Temperature of Strong-Coupled Superconductors [J]. Physical Review, 1968, 167(2): 331-44.
[284] Ausserlechner U. Van-der-Pauw measurement on devices with four contacts and two orthogonal mirror symmetries [J]. Solid-State Electronics, 2017, 133: 53-63.
[285] Wang S, Yu X, Zhang J, et al. Experimental invalidation of phase-transition-induced elastic softening in CrN [J]. Physical Review B, 2012, 86(6): 064111.
[286] Jin H, Laiquan L, Liu X, et al. Nitrogen Vacancies on 2D Layered W2N3: A Stable and Efficient Active Site for Nitrogen Reduction Reaction [J]. Advanced Materials, 2019, 31: 1902709.
[287] Yu H, Yang X, Xiao X, et al. Atmospheric‐Pressure Synthesis of 2D Nitrogen‐Rich Tungsten Nitride [J]. Advanced Materials, 2018, 30.
[288] Wang S, Ge H, Sun S, et al. A New Molybdenum Nitride Catalyst with Rhombohedral MoS2 Structure for Hydrogenation Applications [J]. Journal of the American Chemical Society, 2015, 137(14): 4815-22.
[289] McCusker L B, Von Dreele R B, Cox D E, et al. Rietveld refinement guidelines [J]. Journal of Applied Crystallography, 1999, 32(1): 36-50.
[290] Amano H, Kito M, Hiramatsu K, et al. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) [J]. Japanese Journal of Applied Physics, 1989, 28(12A): L2112.
[291] Liang C, Li Z, Qiu J, et al. Graphitic Nanofilaments as Novel Support of Ru–Ba Catalysts for Ammonia Synthesis [J]. Journal of Catalysis, 2002, 211(1): 278-82.
[292] Pust P, Weiler V, Hecht C, et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material [J]. Nature Materials, 2014, 13(9): 891-6.
[293] Balbarin V, Van Dover R B, Disalvo F J. The high temperature preparation and property measurements of CaTaN2: A ternary superconducting nitride [J]. Journal of Physics and Chemistry of Solids, 1996, 57(12): 1919-27.
[294] Lee K, Kim S W, Toda Y, et al. Dicalcium nitride as a two-dimensional electride with an anionic electron layer [J]. Nature, 2013, 494(7437): 336-40.
[295] Huang H, Jin K-H, Liu F. Alloy Engineering of Topological Semimetal Phase Transition in MgTa2-xNbxN3 [J]. Physical Review Letters, 2018, 120(13): 136403.
[296] Cao B, Veith G M, Neuefeind J C, et al. Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction [J]. Journal of the American Chemical Society, 2013, 135(51): 19186-92.
[297] Chourasia A R, Chopra D R. X-ray photoelectron study of TiN/SiO2 and TiN/Si interfaces [J]. Thin Solid Films, 1995, 266(2): 298-301.
[298] Bauers S R, Holder A, Sun W, et al. Ternary nitride semiconductors in the rocksalt crystal structure [J]. Proceedings of the National Academy of Sciences, 2019, 116(30): 14829.
[299] Hong Y-L. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials [J]. Science, 2020, 369: 670–4
[300] Hinuma Y, Hatakeyama T, Kumagai Y, et al. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis [J]. Nature Communications, 2016, 7(1): 11962.
[301] Sarmiento-Pérez R, Cerqueira T F T, Körbel S, et al. Prediction of Stable Nitride Perovskites [J]. Chemistry of Materials, 2015, 27(17): 5957-63.
[302] Jung M-C, Lee K-W, Pickett W E. Perovskite ThTaN3: A large-thermopower topological crystalline insulator [J]. Physical Review B, 2018, 97(12): 121104.
[303] Singh S, Tripathi M N. Sr-doped LaMoN3 and LaWN3: New degenerate p-type nitrides [J]. Journal of Applied Physics, 2018, 124(6): 065109.
[304] Tian X, Shi X, He P, et al. Broken cubic symmetry driven co-emergence of type-I and type-II Dirac points in topological crystalline insulator ThTaN3 [J]. Journal of Physics: Condensed Matter, 2019, 31(29): 295501.
[305] Bandyopadhyay S, Paul A, Dasgupta I. Origin of Rashba-Dresselhaus effect in the ferroelectric nitride perovskite LaWN3 [J]. Physical Review B, 2020, 101(1): 014109.
[306] Gui C, Dong S. Pressure-induced ferroelectric phase of LaMoN3 [J]. Physical Review B, 2020, 102(18): 180103.
[307] Zhao H J, Chen P, Paillard C, et al. Large spin splittings due to the orbital degree of freedom and spin textures in a ferroelectric nitride perovskite [J]. Physical Review B, 2020, 102(4): 041203.
[308] Bandyopadhyay S, Dasgupta I. Orbital-dependent spin textures in ferroelectric Rashba systems [J]. Physical Review B, 2021, 103(1): 014105.
[309] Liu X, Fu J, Chen G. First-principles calculations of electronic structure and optical and elastic properties of the novel ABX3-type LaWN3 perovskite structure [J]. RSC Advances, 2020, 10(29): 17317-26.
[310] Pastrana-Fábregas R, Isasi-Marín J, Cascales C, et al. Synthesis, structure and magnetic properties of R–W–O–N (R=Nd and Eu) oxynitrides [J]. Journal of Solid State Chemistry, 2007, 180(1): 92-7.
[311] Cheviré F, Tessier F, Marchand R. New scheelite-type oxynitrides in systems RWO3N–AWO4 (R = rare-earth element; A = Ca, Sr) from precursors obtained by the citrate route [J]. Materials Research Bulletin, 2004, 39(7): 1091-101.
[312] Bacher P, Antoine P, Marchand R, et al. Time-of-flight neutron diffraction study of the structure of the perovskite-type oxynitride LaWO0.6N2.4 [J]. Journal of Solid State Chemistry, 1988, 77(1): 67-71.
[313] Talley K R, Mangum J, Perkins C L, et al. Synthesis of Lanthanum Tungsten Oxynitride Perovskite Thin Films [J]. Advanced Electronic Materials, 2019, 5(7): 1900214.
[314] Talley K R, Perkins C L, Diercks D R, et al. Synthesis of LaWN3 nitride perovskite with polar symmetry [J]. Science, 2021, 374(6574): 1488-91.
[315] Hong X. Nitride perovskite becomes polar [J]. Science, 2021, 374(6574): 1445-6.
[316] Zhang L, Wang Y, Lv J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2: 17005.
[317] Horvath-Bordon E, Riedel R, Zerr A, et al. High-pressure chemistry of nitride-based materials [J]. Chemical Society Reviews, 2006, 35(10): 987-1014.
[318] Wang Y, Bykov M, Chepkasov I, et al. Stabilization of hexazine rings in potassium polynitride at high pressure [J]. Nature Chemistry, 2022.
[319] Bykov M, Chariton S, Fei H, et al. High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re2(N2)(N)2 stable at ambient conditions [J]. Nature Communications, 2019, 10(1): 2994.
[320] Dubrovinsky L, Khandarkhaeva S, Fedotenko T, et al. Materials synthesis at terapascal static pressures [J]. Nature, 2022, 605(7909): 274-8.
[321] Kloß S D, Ritter C, Attfield J P. Neutron diffraction study of nitride perovskite LaReN3 [J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 2022, 648(21): e202200194.
[322] Sunding M F, Hadidi K, Diplas S, et al. XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures [J]. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184(7): 399-409.
[323] Koh K Y, Zhang S, Paul Chen J. Hydrothermally synthesized lanthanum carbonate nanorod for adsorption of phosphorus: Material synthesis and optimization, and demonstration of excellent performance [J]. Chemical Engineering Journal, 2020, 380: 122153.
[324] Xie F Y, Gong L, Liu X, et al. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment [J]. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185(3): 112-8.
[325] Biswas B, Saha B. Development of semiconducting ScN [J]. Physical Review Materials, 2019, 3(2): 020301.
[326] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review, 1965, 140(4A): A1133-A8.
[327] Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Physical Review, 1964, 136(3B): B864-B71.
[328] Krukau A V, Vydrov O A, Izmaylov A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals [J]. The Journal of Chemical Physics, 2006, 125(22): 224106.
[329] Togo A, Tanaka I. First principles phonon calculations in materials science [J]. Scripta Materialia, 2015, 108: 1-5.
[330] Cohen R E. Origin of ferroelectricity in perovskite oxides [J]. Nature, 1992, 358(6382): 136-8.
[331] Lasota C, Wang C-Z, Yu R, et al. Ab initio linear response study of SrTiO3 [J]. Ferroelectrics, 1997, 194(1): 109-18.
[332] Ghosez P, Cockayne E, Waghmare U V, et al. Lattice dynamics of BaTiO3, PbTiO3, and PbZrO3: A comparative first-principles study [J]. Physical Review B, 1999, 60(2): 836-43.
[333] Bersuker I B. Pseudo-Jahn–Teller Effect—A Two-State Paradigm in Formation, Deformation, and Transformation of Molecular Systems and Solids [J]. Chemical Reviews, 2013, 113(3): 1351-90.

所在学位评定分委会
物理学
国内图书分类号
O521
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543803
专题理学院_物理系
推荐引用方式
GB/T 7714
周雪峰. 钨-氮化合物的高温高压合成及其物性研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849475-周雪峰-物理系.pdf(20096KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周雪峰]的文章
百度学术
百度学术中相似的文章
[周雪峰]的文章
必应学术
必应学术中相似的文章
[周雪峰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。