[1] 刘志国, 千正男. 高压技术 : High pressure technology [M]. 哈尔滨: 哈尔滨工业大学出版社, 2012: 1-11.
[2] Mao H-K, Chen X-J, Ding Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90(1): 015007.
[3] Millot M, Coppari F, Rygg J R, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice [J]. Nature, 2019, 569(7755): 251-5.
[4] Mishima O, Calvert L D, Whalley E. ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids [J]. Nature, 1984, 310(5976): 393-5.
[5] Wang L, Liu B, Li H, et al. Long-Range Ordered Carbon Clusters: A Crystalline Material with Amorphous Building Blocks [J]. Science, 2012, 337(6096): 825-8.
[6] Sheng H W, Liu H Z, Cheng Y Q, et al. Polyamorphism in a metallic glass [J]. Nature Materials, 2007, 6(3): 192-7.
[7] Mao W L, Wang L, Ding Y, et al. Distortions and stabilization of simple-cubic calcium at high pressure and low temperature [J]. Proceedings of the National Academy of Sciences, 2010, 107(22): 9965-8.
[8] Zeng Q-s, Ding Y, Mao W L, et al. Origin of Pressure-Induced Polyamorphism in Ce75Al25 Metallic Glass [J]. Physical Review Letters, 2010, 104(10): 105702.
[9] Zeng Q, Sheng H, Ding Y, et al. Long-Range Topological Order in Metallic Glass [J]. Science, 2011, 332(6036): 1404-6.
[10] McMahon J M, Morales M A, Pierleoni C, et al. The properties of hydrogen and helium under extreme conditions [J]. Reviews of Modern Physics, 2012, 84(4): 1607-53.
[11] Ma Y, Eremets M, Oganov A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182-5.
[12] Millot M, Coppari F, Rygg J, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice [J]. Nature, 2019, 569: 251-5.
[13] 冯端, 金国钧. 凝聚态物理学 (上卷) [M]. 北京: 高等教育出版社 2003: 27-78.
[14] Schilling A, Cantoni M, Guo J D, et al. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system [J]. Nature, 1993, 363(6424): 56-8.
[15] Chu C W, Gao L, Chen F, et al. Superconductivity above 150 K in HgBa2Ca2Cu3O8+δ at high pressures [J]. Nature, 1993, 365(6444): 323-5.
[16] Zhang L, Wang Y, Lv J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005.
[17] Mujica A, Rubio A, Muñoz A, et al. High-pressure phases of group-IV, III-V, and II-VI compounds [J]. Reviews of Modern Physics, 2003, 75(3): 863-912.
[18] Markopoulos G, Kroll P, Hoffmann R. Compressing the Most Hydrogen-Rich Inorganic Ion [J]. Journal of the American Chemical Society, 2010, 132(2): 748-55.
[19] Somayazulu M, Dera P, Goncharov A F, et al. Pressure-induced bonding and compound formation in xenon–hydrogen solids [J]. Nature Chemistry, 2010, 2(1): 50-3.
[20] Li B, Ding Y, Kim D Y, et al. Rhodium dihydride (RhH2) with high volumetric hydrogen density [J]. Proceedings of the National Academy of Sciences, 2011, 108(46): 18618-21.
[21] Zhang W, Oganov A R, Goncharov A F, et al. Unexpected Stable Stoichiometries of Sodium Chlorides [J]. Science, 2013, 342(6165): 1502-5.
[22] Holzapfel W B. Physics of solids under strong compression [J]. Reports on Progress in Physics, 1996, 59(1): 29.
[23] Rueff J P, Kao C C, Struzhkin V V, et al. Pressure-Induced High-Spin to Low-Spin Transition in FeS Evidenced by X-Ray Emission Spectroscopy [J]. Physical Review Letters, 1999, 82(16): 3284-7.
[24] Buzea C, Robbie K. Assembling the puzzle of superconducting elements: a review [J]. Superconductor Science and Technology, 2005, 18(1): R1.
[25] Miao M-S, Hoffmann R. High Pressure Electrides: A Predictive Chemical and Physical Theory [J]. Accounts of Chemical Research, 2014, 47(4): 1311-7.
[26] Friedrich A, Winkler B, Bayarjargal L, et al. Novel Rhenium Nitrides [J]. Physical Review Letters, 2010, 105(8).
[27] Crowhurst J C, Goncharov A F, Sadigh B, et al. Synthesis and characterization of the nitrides of platinum and iridium [J]. Science, 2006, 311(5765): 1275-8.
[28] Young A F, Sanloup C, Gregoryanz E, et al. Synthesis of novel transition metal nitrides IrN2 and OsN2 [J]. Physical Review Letters, 2006, 96(15).
[29] Gregoryanz E, Sanloup C, Somayazulu M, et al. Synthesis and characterization of a binary noble metal nitride [J]. Nature Materials, 2004, 3(5): 294-7.
[30] Marchand R, Laurent Y, Guyader J, et al. Nitrides and oxynitrides: Preparation, crystal chemistry and properties [J]. Journal of the European Ceramic Society, 1991, 8(4): 197-213.
[31] Schnick W, Schlieper T, Huppertz H, et al. Nitridosilicates - A Significant Extension of Silicate Chemistry [J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 1997, 124(1): 163-72.
[32] Sun W, Holder A, Orvañanos B, et al. Thermodynamic routes to novel metastable nitrogen-rich nitrides [J]. Chemistry of Materials, 2017, 29(16): 6936-46.
[33] Sun W, Dacek S T, Ong S P, et al. The thermodynamic scale of inorganic crystalline metastability [J]. Science Advances, 2016, 2(11): e1600225.
[34] Niewa R, DiSalvo F J. Recent Developments in Nitride Chemistry [J]. Chemistry of Materials, 1998, 10(10): 2733-52.
[35] Tareen A K, Priyanga G S, Behara S, et al. Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance [J]. Progress in Solid State Chemistry, 2019, 53: 1-26.
[36] Zakutayev A. Design of nitride semiconductors for solar energy conversion [J]. Journal of Materials Chemistry, 2016, 4: 6742-54.
[37] De La Cruz W, Dı́az J A, Mancera L, et al. Yttrium nitride thin films grown by reactive laser ablation [J]. Journal of Physics and Chemistry of Solids, 2003, 64(11): 2273-9.
[38] Gregoire J M, Kirby S D, Scopelianos G E, et al. High mobility single crystalline ScN and single-orientation epitaxial YN on sapphire via magnetron sputtering [J]. Journal of Applied Physics, 2008, 104(7): 074913.
[39] Häglund J, Fernández Guillermet A, Grimvall G, et al. Theory of bonding in transition-metal carbides and nitrides [J]. Physical Review B, 1993, 48(16): 11685-91.
[40] Kaner R B, Gilman J J, Tolbert S H. Designing Superhard Materials [J]. Science, 2005, 308(5726): 1268.
[41] Yu R, Zhan Q, Zhang X F. Elastic stability and electronic structure of pyrite type PtN2: A hard semiconductor [J]. Applied Physics Letters, 2006, 88(5): 051913.
[42] Friedrich A, Winkler B, Bayarjargal L, et al. Novel Rhenium Nitrides [J]. Physical Review Letters, 2010, 105(8): 085504.
[43] Young A F, Sanloup C, Gregoryanz E, et al. Synthesis of Novel Transition Metal Nitrides IrN2 and OsN2 [J]. Physical Review Letters, 2006, 96(15): 155501.
[44] Hones P, Sanjinés R, Lévy F, et al. Electronic structure and mechanical properties of resistant coatings: The chromium molybdenum nitride system [J]. Journal of Vacuum Science & Technology A, 1999, 17(3): 1024-30.
[45] Claesson Y, Georgson M, Roos A, et al. Optical characterisation of titanium-nitride-based solar control coatings [J]. Solar Energy Materials, 1990, 20(5): 455-65.
[46] Khan S, Mahmood A, Shah A, et al. Structural and optical analysis of Cr2N thin films prepared by DC magnetron sputtering [J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(2): 197-202.
[47] Zhao B, Sun K, Song Z, et al. Ultrathin Mo/MoN bilayer nanostructure for diffusion barrier application of advanced Cu metallization [J]. Applied Surface Science, 2010, 256(20): 6003-6.
[48] Hones P, Martin N, Regula M, et al. Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films [J]. Journal of Physics D, 2003, 36(8): 1023-9.
[49] Zhou Y, Guo W, Li T. A review on transition metal nitrides as electrode materials for supercapacitors [J]. Ceramics International, 2019.
[50] Peng X, Pi C, Zhang X, et al. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting [J]. Sustainable Energy Fuels, 2019, 3(2): 366-81.
[51] Deis D W, Gavaler J R, Hulm J K, et al. High Field Properties of Pure Niobium Nitride Thin Films [J]. Journal of Applied Physics, 1969, 40(5): 2153-6.
[52] Kim S, Terai H, Yamashita T, et al. Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate [J]. Communications Materials, 2021, 2(1): 98.
[53] Chen X-J, Struzhkin V V, Wu Z, et al. Hard superconducting nitrides [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(9): 3198.
[54] Wang S, Antonio D, Yu X, et al. The Hardest Superconducting Metal Nitride [J]. Scientific Reports, 2015, 5(1): 13733.
[55] Saha B, Sands T D, Waghmare U V. Electronic structure, vibrational spectrum, and thermal properties of yttrium nitride: A first-principles study [J]. Journal of Applied Physics, 2011, 109(7).
[56] Gall D, Petrov I, Madsen L D, et al. Microstructure and electronic properties of the refractory semiconductor ScN grown on MgO(001) by ultra-high-vacuum reactive magnetron sputter deposition [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998, 16(4): 2411-7.
[57] Abe H, Cheung T K, Bell A T. The activity of transition metal nitrides for hydrotreating quinoline and thiophene [J]. Catalysis Letters, 1993, 21(1-2): 11-8.
[58] Neylon M K, Choi S, Kwon H, et al. Catalytic properties of early transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenation and isomerization [J]. Applied Catalysis a-General, 1999, 183(2): 253-63.
[59] Shi C, Zhu A M, Yang X F, et al. On the catalytic nature of VN, Mo2N, and W2N nitrides for NO reduction with hydrogen [J]. Applied Catalysis a-General, 2004, 276(1-2): 223-30.
[60] Tabata M, Maeda K, Higashi M, et al. Modified Ta3N5 Powder as a Photocatalyst for O2 Evolution in a Two-Step Water Splitting System with an Iodate/Iodide Shuttle Redox Mediator under Visible Light [J]. Langmuir, 2010, 26(12): 9161-5.
[61] Frisk K. A thermodynamic evaluation of the Cr-N, Fe-N, Mo-N and Cr-Mo-N systems [J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 1991, 15(1): 79-106.
[62] Bhobe P A, Chainani A, Taguchi M, et al. Evidence for a Correlated Insulator to Antiferromagnetic Metal Transition in CrN [J]. Physical Review Letters, 2010, 104(23): 236404.
[63] O'Loughlin J L, Wallace C H, Knox M S, et al. Rapid Solid-State Synthesis of Tantalum, Chromium, and Molybdenum Nitrides [J]. Inorganic Chemistry, 2001, 40(10): 2240-5.
[64] Gillan E G, Kaner R B. Rapid Solid-State Synthesis of Refractory Nitrides [J]. Inorganic Chemistry, 1994, 33(25): 5693-700.
[65] Zhang X Y, Chawla J S, Deng R P, et al. Epitaxial suppression of the metal-insulator transition in CrN [J]. Physical Review B, 2011, 84(7): 073101.
[66] Kimura S, Emura S, Yamauchi Y, et al. Low temperature molecular beam epitaxy growth of cubic GaCrN [J]. Journal of Crystal Growth, 2008, 310(1): 40-6.
[67] Gall D, Shin C S, Haasch R T, et al. Band gap in epitaxial NaCl-structure CrN(001) layers [J]. Journal of Applied Physics, 2002, 91(9): 5882-6.
[68] Lerch M, Füglein E, Wrba J. Synthesis, Crystal Structure, and High Temperature Behavior of Zr3N4 [J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 1996, 622: 367-72.
[69] Brauer G, Weidlein J, Strahle J. Über das Tantalnitrid Ta3N5 und das Tantaloxidnitrid TaON [J]. Zeitschrift fuer Anorganische und Allgemeine Chemie, 1966, 348(5-6): 298-308.
[70] Browne J D, Liddell P R, Street R, et al. An investigation of the antiferromagnetic transition of CrN [J]. Phys State Sol (a) 1970, 1(4): 715.
[71] Tsuchiya Y, Kosuge K, Ikeda Y, et al. Non-stoichiometry and antiferromagnetic phase transition of NaCl-type CrN thin films prepared by reactive sputtering [J]. Materials Transactions Jim, 1996, 37(2): 121-9.
[72] Rivadulla F, Banobre-Lopez M, Quintela C X, et al. Reduction of the bulk modulus at high pressure in CrN [J]. Nature Materials, 2009, 8(12): 947-51.
[73] Chen M, Wang S, Zhang J, et al. Synthesis of Stoichiometric and Bulk CrN through a Solid-State Ion-Exchange Reaction [J]. Chemistry – A European Journal, 2012, 18(48): 15459-63.
[74] Zerr A, Miehe G, Riedel R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure [J]. Nature Materials, 2003, 2(3): 185-9.
[75] Zerr A, Miehe G, Li J, et al. High-pressure synthesis of tantalum nitride having orthorhombic U2S3-type structure [J]. Advanced Functional Materials, 2009, 19(14): 2282-8.
[76] Tsai M H, Sun S C, Chiu H T, et al. Metalorganic chemical vapor deposition of tungsten nitride for advanced metallization [J]. Applied Physics Letters, 1996, 68(10): 1412-4.
[77] Lee C W, Kim Y T. High temperature thermal stability of plasma-deposited tungsten nitride Schottky contacts to GaAs [J]. Solid-State Electronics, 1995, 38(3): 679-82.
[78] Misra V. Issues in Metal Gate Electrode Selection for Bulk CMOS Devices [M]//HUFF, GILMER. High Dielectric Constant Materials: VLSI MOSFET Applications. Berlin, Heidelberg; Springer Berlin Heidelberg. 2005: 415-34.
[79] Claflin B, Binger M, Lucovsky G, et al. Investigation of the Growth and Chemical Stability of Composite Metal Gates on Ultra-thin Gate Dielectrics [J]. MRS Proceedings, 1998, 532: 171.
[80] Jiang P-C, Lai Y-S, Chen J S. Dependence of crystal structure and work function of WNx films on the nitrogen content [J]. Applied Physics Letters, 2006, 89(12): 122107.
[81] Anwar S, Anwar S. Thermal stability studies of tungsten nitride thin films [J]. Surface Engineering, 2016, 33(4): 276-81.
[82] Wen M, Meng Q N, Yu W X, et al. Growth, stress and hardness of reactively sputtered tungsten nitride thin films [J]. Surface and Coatings Technology, 2010, 205(7): 1953-61.
[83] Polcar T, Parreira N, Cavaleiro A. Structural and tribological characterization of tungsten nitride coatings at elevated temperature [J]. Wear, 2008, 265(3-4): 319-26.
[84] Wang H, Sandoz‐Rosado E J, Tsang S H, et al. Elastic Properties of 2D Ultrathin Tungsten Nitride Crystals Grown by Chemical Vapor Deposition [J]. Advanced Functional Materials, 2019: 1902663.
[85] Nagai M, Suda T, Oshikawa K, et al. CVD preparation of alumina-supported tungsten nitride and its activity for thiophene hydrodesulfurization [J]. Catalysis Today, 1999, 50(1): 29-37.
[86] Bull S K, Mcneary W W, Adkins C A, et al. Atomic layer deposition of tungsten nitride films as protective barriers to hydrogen [J]. Applied Surface Science, 2020, 507: 145019.
[87] Ju H, Ding N, Xu J, et al. Crystal structure and the improvement of the mechanical and tribological properties of tungsten nitride films by addition of titanium [J]. Surface and Coatings Technology, 2018, 345: 132-9.
[88] Buchinger J, Koutná N, Chen Z, et al. Toughness enhancement in TiN/WN superlattice thin films [J]. Acta Materialia, 2019, 172: 18-29.
[89] Klaus J W, Ferro S J, George S M. Atomic Layer Deposition of Tungsten Nitride Films Using Sequential Surface Reactions [J]. Journal of the Electrochemical Society, 2000, 147(3): 1175-81.
[90] Becker J, Gordon R G. Diffusion barrier properties of tungsten nitride films grown by atomic layer deposition from bis(tert-butylimido)bis(dimethylamido)tungsten and ammonia [J]. Applied Physics Letters, 2003, 82(14): 2239-41.
[91] Sim H S, Kim S-I, Kim Y T. Method to enhance atomic-layer deposition of tungsten–nitride diffusion barrier for Cu interconnect [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2003, 21(4): 1411-4.
[92] Mcneary W W, Zaccarine S F, Lai A, et al. Improved durability and activity of Pt/C catalysts through atomic layer deposition of tungsten nitride and subsequent thermal treatment [J]. Applied Catalysis B-environmental, 2019, 254: 587-93.
[93] Chakrapani V, Thangala J, Sunkara M K. WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production [J]. International Journal of Hydrogen Energy, 2009, 34(22): 9050-9.
[94] Ko A-R, Han S-B, Lee Y-W, et al. Template-free synthesis and characterization of mesoporous tungsten nitride nanoplates [J]. Physical Chemistry Chemical Physics, 2011, 13(28): 12705-7.
[95] Yan H, Tian C, Wang L, et al. Phosphorus‐Modified Tungsten Nitride/Reduced Graphene Oxide as a High‐Performance, Non‐Noble‐Metal Electrocatalyst for the Hydrogen Evolution Reaction [J]. Angewandte Chemie International Edition, 2015, 54(21): 6325-9.
[96] Wang Y L, Nie T, Li Y H, et al. Black tungsten nitride as a metallic photocatalyst for overall water splitting operable at up to 765 nm [J]. Angewandte Chemie International Edition, 2017, 56(26): 7430-4.
[97] Dubal D P, Chodankar N R, Qiao S. Tungsten nitride nanodots embedded phosphorous modified carbon fabric as flexible and robust electrode for asymmetric pseudocapacitor [J]. Small, 2019, 15(1): 1804104.
[98] Zhu Y, Chen G, Zhong Y, et al. Rationally Designed Hierarchically Structured Tungsten Nitride and Nitrogen‐Rich Graphene‐Like Carbon Nanocomposite as Efficient Hydrogen Evolution Electrocatalyst [J]. Advanced Science, 2018, 5(2): 1700603.
[99] Yu H, Yang X, Xiao X, et al. Atmospheric-Pressure Synthesis of 2D Nitrogen-Rich Tungsten Nitride [J]. Adv Mater, 2018, 30(51): e1805655.
[100] Patil S K R, Mangale N S, Khare S V, et al. Super hard cubic phases of period VI transition metal nitrides: First principles investigation [J]. Thin Solid Films, 2008, 517(2): 824-7.
[101] Benhai Y, Chunlei W, Xuanyu S, et al. Structural stability and mechanical property of WN from first-principles calculations [J]. Journal of Alloys and Compounds, 2009, 487(1-2): 556-9.
[102] Mehl M J, Finkenstadt D, Dane C, et al. Finding the stable structures of N1-XWX with an ab initio high-throughput approach [J]. Physical Review B, 2015, 91(18): 184110.
[103] Balasubramanian K, Khare S, Gall D. Vacancy-induced mechanical stabilization of cubic tungsten nitride [J]. Physical Review B, 2016, 94(17): 174111.
[104] Jhi S-H, Louie S G, Cohen M L, et al. Vacancy Hardening and Softening in Transition Metal Carbides and Nitrides [J]. Physical Review Letters, 2001, 86(15): 3348-51.
[105] Cai L, Feng C. Effect of Vacancy Defects on the Electronic Structure and Optical Properties of GaN [J]. Journal of Nanotechnology, 2017, 2017: 6987430.
[106] Efimenko A K, Hollmann N, Hoefer K, et al. Electronic signature of the vacancy ordering in NbO (Nb3O3) [J]. Physical Review B, 2017, 96(19): 195112.
[107] Wang H, Li Q, Li Y, et al. Ultra-incompressible phases of tungsten dinitride predicted from first principles [J]. Physical Review B, 2009, 79(13): 132109.
[108] Zhao Z, Bao K, Duan D, et al. The low coordination number of nitrogen in hard tungsten nitrides: a first-principles study [J]. Physical Chemistry Chemical Physics, 2015, 17(20): 13397-402.
[109] Wang S, Yu X, Lin Z, et al. Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides [J]. Chemistry of Materials, 2012, 24(15): 3023-8.
[110] Kawamura F, Yusa H, Taniguchi T. Synthesis of hexagonal phases of WN and W2.25N3 by high-pressure metathesis reaction [J]. Journal of the American Ceramic Society, 2018, 101(2): 949-56.
[111] Campi D, Kumari S, Marzari N. Prediction of Phonon-Mediated Superconductivity with High Critical Temperature in the Two-Dimensional Topological Semimetal W2N3 [J]. Nano Letters, 2021, 21(8): 3435-42.
[112] Chen J, Ge Y. Emergence of intrinsic superconductivity in monolayer W2N3 [J]. Physical Review B, 2021, 103(6): 064510.
[113] You J-Y, Gu B, Su G, et al. Two-dimensional topological superconductivity candidate in a van der Waals layered material [J]. Physical Review B, 2021, 103(10): 104503.
[114] Wang C, Tao Q, Dong S, et al. Synthesis and Mechanical Character of Hexagonal Phase δ−WN [J]. Inorganic Chemistry, 2017, 56(7): 3970-5.
[115] Lu C, Li Q, Ma Y, et al. Extraordinary Indentation Strain Stiffening Produces Superhard Tungsten Nitrides [J]. Physical Review Letters, 2017, 119(11): 115503.
[116] Metaxa C, Ozsdolay B D, Zorba T, et al. Electronic and optical properties of rocksalt-phase tungsten nitride (B1-WN) [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2017, 35(3): 031501.
[117] Xing W, Zhang Y, Meng F, et al. Structure stabilization effect of configuration entropy in cubic WN [J]. Physical Chemistry Chemical Physics, 2018, 20(46): 29243-8.
[118] Xia K, Gao H, Liu C, et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search [J]. Science Bulletin, 2018, 63(13): 817-24.
[119] Salke N P, Xia K, Fu S, et al. Tungsten Hexanitride with Single-Bonded Armchairlike Hexazine Structure at High Pressure [J]. Physical Review Letters, 2021, 126(6): 065702.
[120] Li Q, Sha L, Zhu C, et al. New multifunctional tungsten nitride with energetic N6 and extreme hardness predicted from first principles [J]. EPL (Europhysics Letters), 2017, 118(4): 46001.
[121] Wang C, Tao Q, Li Y, et al. Excellent mechanical properties of metastable c-WN fabricated at high pressure and high temperature [J]. International Journal of Refractory Metals and Hard Materials, 2017, 66: 63-7.
[122] Xing W, Miao X, Meng F, et al. Crystal structure of and displacive phase transition in tungsten nitride WN [J]. Journal of Alloys and Compounds, 2017, 722: 517-24.
[123] Bem D S, Lampe-Önnerud C M, Olsen H P, et al. Synthesis and Structure of Two New Ternary Nitrides: FeWN2 and MnMoN2 [J]. Inorganic Chemistry, 1996, 35(3): 581-5.
[124] Brese N E, DiSalvo F J. Synthesis of the First Thorium-Containing Nitride Perovskite, TaThN3 [J]. Journal of Solid State Chemistry, 1995, 120(2): 378-80.
[125] Jackson S K, Layland R C, zur Loye H-C. The simultaneous powder X-ray and neutron diffraction refinement of two η-carbide type nitrides, Fe3Mo3N and Co3Mo3N, prepared by ammonolysis and by plasma nitridation of oxide precursors [J]. Journal of Alloys and Compounds, 1999, 291(1): 94-101.
[126] Javaid K, Yu J, Wu W, et al. Thin Film Solar Cell Based on ZnSnN2/SnO Heterojunction [J]. physica status solidi (RRL) – Rapid Research Letters, 2018, 12(1): 1700332.
[127] Langmi H W, McGrady G S. Ternary nitrides for hydrogen storage: Li–B–N, Li–Al–N and Li–Ga–N systems [J]. Journal of Alloys and Compounds, 2008, 466(1): 287-92.
[128] Tellekamp M B, Melamed C L, Norman A G, et al. Heteroepitaxial Integration of ZnGeN2 on GaN Buffers Using Molecular Beam Epitaxy [J]. Crystal Growth & Design, 2020, 20(3): 1868-75.
[129] Sun W, Bartel C J, Arca E, et al. A map of the inorganic ternary metal nitrides [J]. Nature Materials, 2019, 18(7): 732-9.
[130] Greenaway A L, Melamed C L, Tellekamp M B, et al. Ternary Nitride Materials: Fundamentals and Emerging Device Applications [J]. Annual Review of Materials Research, 2021, 51(1): 591-618.
[131] H. Gregory D. Structural families in nitride chemistry [J]. Journal of the Chemical Society, Dalton Transactions, 1999, (3): 259-70.
[132] Xia Z, Poeppelmeier K R. Chemistry-Inspired Adaptable Framework Structures [J]. Accounts of Chemical Research, 2017, 50(5): 1222-30.
[133] Martinez A D, Fioretti A N, Toberer E S, et al. Synthesis, structure, and optoelectronic properties of II–IV–V2 materials [J]. Journal of Materials Chemistry A, 2017, 5(23): 11418-35.
[134] Heinselman K N, Lany S, Perkins J D, et al. Thin Film Synthesis of Semiconductors in the Mg–Sb–N Materials System [J]. Chemistry of Materials, 2019, 31(21): 8717-24.
[135] Sarmiento-Perez R, Cerqueira T F T, Koerbel S, et al. ChemInform Abstract: Prediction of Stable Nitride Perovskites [J]. ChemInform, 2015, 46(45).
[136] Flores-Livas J A, Sarmiento-Pérez R, Botti S, et al. Rare-earth magnetic nitride perovskites [J]. Journal of Physics: Materials, 2019, 2(2): 025003.
[137] Kevin R T, Craig L P, David R D, et al. Synthesis of LaWN3 nitride perovskite with polar symmetry [J]. Science, 2021, 374(6574): 1488–91
[138] Kloß S D, Weidemann M L, Attfield J P. Preparation of Bulk-Phase Nitride Perovskite LaReN3 and Topotactic Reduction to LaNiO2-Type LaReN2 [J]. Angewandte Chemie International Edition, 2021, 60(41): 22260-4.
[139] Ha V-A, Lee H, Giustino F. CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps [J]. Chemistry of Materials, 2022, 34(5): 2107-22.
[140] Sherbondy R, Smaha R W, Bartel C J, et al. High-Throughput Selection and Experimental Realization of Two New Ce-Based Nitride Perovskites: CeMoN3 and CeWN3 [J]. Chemistry of Materials, 2022.
[141] Schnick W, Huppertz H. Nitridosilicates-A Significant Extension of Silicate Chemistry [J]. Chemistry – A European Journal, 1997, 3(5): 679-83.
[142] Szymanski N J, Adhikari V, Willard M A, et al. Prediction of improved magnetization and stability in Fe16N2 through alloying [J]. Journal of Applied Physics, 2019, 126(9): 093903.
[143] Verrelli R, Arroyo-de-Dompablo M E, Tchitchekova D, et al. On the viability of Mg extraction in MgMoN2: a combined experimental and theoretical approach [J]. Physical Chemistry Chemical Physics, 2017, 19(38): 26435-41.
[144] Fang Y-W, Fisher C A J, Kuwabara A, et al. Lattice dynamics and ferroelectric properties of the nitride perovskite LaWN3 [J]. Physical Review B, 2017, 95(1): 014111.
[145] Xia H. Nitride perovskite becomes polar [J]. Science, 2021, 374(6574): 1445-6.
[146] Kroll P, Schroter T, Peters M. Prediction of novel phases of tantalum(V) nitride and tungsten(VI) nitride that can be synthesized under high pressure and high temperature [J]. Angewandte Chemie-International Edition, 2005, 44(27): 4249-54.
[147] Alling B, Marten T, Abrikosov I A. Questionable collapse of the bulk modulus in CrN [J]. Nature Materials, 2010, 9(4): 283-4.
[148] Alling B, Marten T, Abrikosov I A. Effect of magnetic disorder and strong electron correlations on the thermodynamics of CrN [J]. Physical Review B, 2010, 82(18): 184430.
[149] Balasubramanian K, Khare S V, Gall D. Energetics of point defects in rocksalt structure transition metal nitrides: Thermodynamic reasons for deviations from stoichiometry [J]. Acta Materialia, 2018, 159: 77-88.
[150] Wang S, Yu X, Zhang J, et al. Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN [J]. Crystal Growth & Design, 2016, 16(1): 351-8.
[151] Lengauer W, Ettmayer P. Physical and mechanical properties of cubic δ-VN1-x [J]. Journal of the Less Common Metals, 1985, 109(2): 351-9.
[152] Lu C, Chen C. Indentation-strain stiffening in tungsten nitrides: Mechanisms and implications [J]. Physical Review Materials, 2020, 4(4): 043402.
[153] Talley K R, Sherbondy R, Zakutayev A, et al. Review of high-throughput approaches to search for piezoelectric nitrides [J]. Journal of Vacuum Science & Technology A, 2019, 37(6): 060803.
[154] Ningthoujam R S, Gajbhiye N S. Synthesis, electron transport properties of transition metal nitrides and applications [J]. Progress in Materials Science, 2015, 70: 50-154.
[155] Tonkov E, Ponyatovsky E G. Phase Transformations of Elements Under High Pressure [M]. 2004: 1-377.
[156] Cannon J F. Behavior of the elements at high pressures [J]. Journal of Physical and Chemical Reference Data, 1974, 3(3): 781-824.
[157] McMahon M I, Nelmes R J. High-pressure structures and phase transformations in elemental metals [J]. Chemical Society Reviews, 2006, 35(10): 943-63.
[158] Mirwald P W, Kennedy G C. Melting temperature of lead and sodium at high pressures [J]. Journal of Physics and Chemistry of Solids, 1976, 37(8): 795-7.
[159] Lees J, Williamson B. Combined very high pressure/high temperature calibration of the tetrahedral anvil apparatus, fusion curves of zinc, aluminium, germanium and silicon to 60 kilobars [J]. Nature, 1965, 208(5007): 278.
[160] Akella J, Kennedy G C. Melting of gold, silver, and copper-proposal for a new high‐pressure calibration scale [J]. Journal of Geophysical Research, 1971, 76(20): 4969-77.
[161] Hieu H K, Ha N N. High pressure melting curves of silver, gold and copper [J]. AIP Advances, 2013, 3(11): 112125.
[162] Errandonea D. High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt [J]. Physical Review B, 2013, 87(5): 054108.
[163] Wang S, He D, Wang W, et al. Pressure calibration for the cubic press by differential thermal analysis and the high-pressure fusion curve of aluminum [J]. High Pressure Research, 2009, 29(4): 806-14.
[164] Liebermann R C. Multi-anvil, high pressure apparatus: a half-century of development and progress [J]. High Pressure Research, 2011, 31(4): 493-532.
[165] Hai-Kuo W, Ying R, Duan-Wei H, et al. Force analysis and pressure quantitative measurement for the high pressure cubic cell [J]. Acta Physica Sinica, 2017, 66(9): 090702.
[166] Bundy F P. Melting Point of Graphite at High Pressure: Heat of Fusion [J]. Science, 1962, 137(3535): 1055-7.
[167] Bouvier P, Djurado E, Lucazeau G, et al. High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia [J]. Physical Review B, 2000, 62(13): 8731-7.
[168] Latta R E, Duderstadt E C, Fryxell R E. The melting point of pure zirconia [J]. Journal of Nuclear Materials, 1970, 35(3): 345-6.
[169] Zhao Y, Lawson A C, Zhang J, et al. Thermoelastic equation of state of molybdenum [J]. Physical Review B, 2000, 62(13): 8766-76.
[170] Mirwald P W, Kennedy G C. The melting curve of gold, silver, and copper to 60‐Kbar pressure: A reinvestigation [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B12): 6750-6.
[171] Zhao Y, Dreele R B V, Weidner D J, et al. P- V- T Data of hexagonal boron nitride h BN and determination of pressure and temperature using thermoelastic equations of state of multiple phases [J]. High Pressure Research, 1997, 15: 369-86.
[172] Ross M, Errandonea D, Boehler R. Melting of transition metals at high pressure and the influence of liquid frustration: The early metals Ta and Mo [J]. Physical Review B, 2007, 76(18): 184118.
[173] Dewaele A, Mezouar M, Guignot N, et al. High Melting Points of Tantalum in a Laser-Heated Diamond Anvil Cell [J]. Physical Review Letters, 2010, 104(25): 255701.
[174] Kolopus J A, Boatner L A. Single-Crystal Tungsten Carbide in High-Temperature In-Situ Additive Manufacturing Characterization [J]. Technical Report No NFE-16-06110,, 2017.
[175] Utsumi W, Saitoh H, Kaneko H, et al. Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth [J]. Nature Materials, 2003, 2(11): 735-8.
[176] Bassett W A. Diamond anvil cell, 50th birthday [J]. High Pressure Research, 2009, 29(2): 163-86.
[177] Han Q-G, Yang W-K, Jia X-P, et al. Hybrid-toroidal anvil: a replacement for the conventional WC anvil used for the large volume cubic high pressure apparatus [J]. High Pressure Research, 2014, 34(4): 404-11.
[178] Ekimov E, Sadykov R, Gierlotka S, et al. A high-pressure cell for high-temperature experiments in a toroid-type chamber [J]. Instruments and Experimental Techniques, 2004, 47(2): 276-8.
[179] Ekimov E A, Sadykov R A, Gierlotka S, et al. A High-Pressure Cell for High-Temperature Experiments in a Toroid-Type Chamber [J]. Instruments and Experimental Techniques, 2004, 47(2): 276-8.
[180] Bhaumik S K, Divakar C, Mohan M, et al. A modified high‐temperature cell (up to 3300 K) for use with a cubic press [J]. Review of Scientific Instruments, 1996, 67(10): 3679-82.
[181] Xie L, Yoneda A, Yoshino T, et al. Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus [J]. Review of Scientific Instruments, 2017, 88(9): 093904.
[182] Shatskiy A, Yamazaki D, Morard G, et al. Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments [J]. Review of Scientific Instruments, 2009, 80(2): 023907.
[183] Andrault D, Fiquet G, Itie J-P, et al. Thermal pressure in the laser-heated diamond-anvil cell; an X-ray diffraction study [J]. European Journal of Mineralogy, 1998, 10(5): 931-40.
[184] Lord O T, Wood I G, Dobson D P, et al. The melting curve of Ni to 1 Mbar [J]. Earth and Planetary Science Letters, 2014, 408: 226-36.
[185] Brey G P, KÖHler T. Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers [J]. Journal of Petrology, 1990, 31(6): 1353-78.
[186] Zhang J, Li B, Utsumi W, et al. In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics [J]. Physics and Chemistry of Minerals, 1996, 23(1): 1-10.
[187] Chiu C-K, Teo J C Y, Schnyder A P, et al. Classification of topological quantum matter with symmetries [J]. Reviews of Modern Physics, 2016, 88(3): 035005.
[188] Weng H, Dai X, Fang Z. Topological semimetals predicted from first-principles calculations [J]. Journal of Physics: Condensed Matter, 2016, 28(30): 303001.
[189] Yan B, Felser C. Topological Materials: Weyl Semimetals [J]. Annual Review of Condensed Matter Physics, 2016, 8(1): 337-54..
[190] Mourik V, Zuo K, Frolov S M, et al. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices [J]. Science, 2012, 336(6084): 1003-7.
[191] Nadj-Perge S, Drozdov I K, Li J, et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor [J]. Science, 2014, 346(6209): 602-7.
[192] Liu Z K, Zhou B, Zhang Y, et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi [J]. Science, 2014, 343(6173): 864-7.
[193] Soluyanov A A, Gresch D, Wang Z, et al. Type-II Weyl semimetals [J]. Nature, 2015, 527(7579): 495-8.
[194] Su-Yang, Xu, Ilya, et al. TOPOLOGICAL MATTER. Discovery of a Weyl fermion semimetal and topological Fermi arcs [J]. Science, 2015, 349(6248): 613-7.
[195] Chen, Y., L., et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs [J]. Nature physics, 2015, 11(9): 728-32.
[196] Gang X, Weng H, Wang Z, et al. Chern semi-metal and Quantized Anomalous Hall Effect in HgCr2Se4 [J]. Physical Review Letters, 2011, 107(18): 186806.
[197] Young S M, Zaheer S, Teo J C Y, et al. Dirac Semimetal in Three Dimensions [J]. Physical Review Letters, 2012, 108(14): 140405.
[198] Weng H, Fang C, Fang Z, et al. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides [J]. Physical Review X, 2015, 5(1): 011029.
[199] Lv B Q, Weng H M, Fu B B, et al. Experimental Discovery of Weyl Semimetal TaAs [J]. Physical Review X, 2015, 5(3): 031013.
[200] Wieder B J, Kim Y, Rappe A M, et al. Double Dirac Semimetals in Three Dimensions [J]. Physical Review Letters, 2016, 116(18): 186402.
[201] Winkler G W, Wu Q, Troyer M, et al. Topological Phases in InAs1−xSbx: From Novel Topological Semimetal to Majorana Wire [J]. Physical Review Letters, 2016, 117(7): 076403.
[202] Weng H, Fang C, Fang Z, et al. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride [J]. Physical Review B, 2016, 93(24): 241202.
[203] Zhu Z, Winkler G W, Wu Q, et al. Triple Point Topological Metals [J]. Physical Review X, 2016, 6(3): 031003.
[204] Weng H, Fang C, Fang Z, et al. Coexistence of Weyl fermion and massless triply degenerate nodal points [J]. Physical Review B, 2016, 94(16): 165201.
[205] Chang G, Xu S-Y, Huang S-M, et al. Nexus fermions in topological symmorphic crystalline metals [J]. Scientific Reports, 2017, 7(1): 1688.
[206] Lv B Q, Feng Z L, Xu Q N, et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide [J]. Nature, 2017, 546(7660): 627-31.
[207] Ma J Z, He J B, Xu Y F, et al. Three-component fermions with surface Fermi arcs in tungsten carbide [J]. Nature Physics, 2018, 14(4): 349-54.
[208] Wang C, Tao Q, Dong S, et al. Synthesis and Mechanical Character of Hexagonal Phase δ-WN [J]. Inorganic chemistry, 2017, 56(7): 3970-5.
[209] Lu C, Li Q, Ma Y, et al. Extraordinary Indentation Strain Stiffening Produces Superhard Tungsten Nitrides [J]. Physical Review Letters, 2017, 119(11): 115503.
[210] Kanoun M B, Goumri-Said S, Jaouen M. Structure and mechanical stability of molybdenum nitrides: A first-principles study [J]. Physical Review B, 2007, 76(13): 134109.
[211] Ganin A Y, Kienle L, Vajenine G V. Synthesis and characterisation of hexagonal molybdenum nitrides [J]. Journal of Solid State Chemistry, 2006, 179(8): 2339-48.
[212] Soignard E, Shebanova O, McMillan P F. Compressibility measurements and phonon spectra of hexagonal transition-metal nitrides at high pressure: ε−TaN, δ−MoN, and Cr2N [J]. Physical Review B, 2007, 75(1): 014104.
[213] Liang Y, Wei X-F, Gu C, et al. Enhanced Hardness in Transition-Metal Monocarbides via Optimal Occupancy of Bonding Orbitals [J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14365-76.
[214] Kaner R B, Gilman J J, Tolbert S H. Designing Superhard Materials [J]. Science, 2005, 308: 1268 - 9.
[215] Crowhurst J C, Goncharov A F, Sadigh B, et al. Synthesis and Characterization of the Nitrides of Platinum and Iridium [J]. Science, 2006, 311(5765): 1275-8.
[216] Cumberland R W, Weinberger M B, Gilman J J, et al. Osmium Diboride, An Ultra-Incompressible, Hard Material [J]. Journal of the American Chemical Society, 2005, 127(20): 7264-5.
[217] Chung H-Y, Weinberger M B, Levine J B, et al. Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure [J]. Science, 2007, 316: 436.
[218] Teter, David M. Computational Alchemy: The Search for New Superhard Materials [J]. Mrs Bulletin, 1998, 23(January): 22-7.
[219] Sears V F. Neutron scattering lengths and cross sections [J]. Neutron News, 1992, 3(3): 26-37.
[220] Ganbavle V V, Agawane G L, Moholkar A V, et al. Structural, Optical, Electrical, and Dielectric Properties of the Spray-Deposited WO3 Thin Films [J]. Journal of Materials Engineering and Performance, 2014, 23(4): 1204-13.
[221] Gu C, Liang Y, Zhou X, et al. Crystal structures and formation mechanisms of boron-rich tungsten borides [J]. Physical Review B, 2021, 104(1): 014110.
[222] Kang Z, He H Y, Ding R, et al. Structures of WxNy Crystals and Their Intrinsic Properties: First-Principles Calculations [J]. Crystal Growth & Design, 2018, 18(4): 2270-8.
[223] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169-86.
[224] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Physical Review Letters, 1996, 77(18): 3865-8.
[225] Oba F, Togo A, Tanaka I, et al. Defect energetics in ZnO: A hybrid Hartree-Fock density functional study [J]. Physical Review B, 2008, 77(24): 245202.
[226] Hill R. The Elastic Behaviour of a Crystalline Aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349.
[227] Chen X-Q, Niu H, Li D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses [J]. Intermetallics, 2011, 19(9): 1275-81.
[228] Weng H, Fang C, Fang Z, et al. Topological semimetals with triply degenerate nodal points in $\ensuremath{\theta}$-phase tantalum nitride [J]. Physical Review B, 2016, 93(24): 241202.
[229] Liu A Y, Wentzcovitch R M, Cohen M L. Structural and electronic properties of WC [J]. Physical Review B, 1988, 38(14): 9483-9.
[230] Hugosson, Hakan W, Erikssen, et al. Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric [J]. Journal of Applied Physics, 1999, 86(7): 3758-67.
[231] Liang Y, Fang Z. First-principles study of osmium under high pressure [J]. Journal of Physics: Condensed Matter, 2006, 18(39): 8749.
[232] Jhi S-H, Ihm J, Louie S G, et al. Electronic mechanism of hardness enhancement in transition-metal carbonitrides [J]. Nature, 1999, 399(6732): 132-4.
[233] Jhi S-H, Ihm J. Electronic structure and structural stability of TiCxN1−x alloys [J]. Physical Review B, 1997, 56(21): 13826-9.
[234] Liang Y, Wu Z, Yuan X, et al. Discovery of elusive structures of multifunctional transition-metal borides [J]. Nanoscale, 2016, 8(2): 1055-65.
[235] Oates W A. Configurational Entropies of Mixing in Solid Alloys [J]. Journal of Phase Equilibria and Diffusion, 2007, 28(1): 79-89.
[236] Metaxa C, Ozsdolay B D, Zorba T, et al. Electronic and optical properties of rocksalt-phase tungsten nitride (B1-WN) [J]. Journal of Vacuum Science & Technology A, 2017, 35(3): 031501.
[237] Wriedt H A. The N-W (nitrogen-tungsten) system [J]. Bulletin of Alloy Phase Diagrams, 1989, 10(4): 358-67.
[238] Sangiovanni D G, Hultman L, Chirita V. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration [J]. Acta Materialia, 2011, 59(5): 2121-34.
[239] Jhi S H, Ihm J, Loule S G, et al. Electronic mechanism of hardness enhancement in transition-metal carbonitrides [J]. Nature, 1999, 399(6732): 132-4.
[240] Zhou X, Ma D, Wang L, et al. Large-volume cubic press produces high temperatures above 4000 Kelvin for study of the refractory materials at pressures [J]. Review of Scientific Instruments, 2020, 91(1): 015118.
[241] Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction [J]. Physica B: Condensed Matter, 1993, 192(1): 55-69.
[242] Toby B. EXPGUI, a graphical user interface for GSAS [J]. Journal of Applied Crystallography, 2001, 34(2): 210-3.
[243] Aitkaliyeva A, Madden J W, Miller B D, et al. Comparison of preparation techniques for nuclear materials for transmission electron microscopy (TEM) [J]. Journal of Nuclear Materials, 2015, 459: 241-6.
[244] Blöchl P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953-79.
[245] Liang Y, Yang J, Xi L, et al. The vacancy ordering produces a new cubic monocarbide: ReC [J]. Materials Today Physics, 2018, 7: 54-60.
[246] Lin Y, Yang C, Niu Q, et al. Interfacial Charge Transfer between Silver Phosphate and W2N3 Induced by Nitrogen Vacancies Enhances Removal of β-Lactam Antibiotics [J]. Advanced Functional Materials, 2022, 32(5): 2108814.
[247] Hall E O. The Deformation and Ageing of Mild Steel: III Discussion of Results [J]. Proceedings of the Physical Society Section B, 1951, 64(9): 747-53.
[248] Petch N J. The Cleavage Strength of Polycrystals [J]. J Iron Steel Inst, 1953, 174: 25-31.
[249] Gréaux S, Kono Y, Wang Y, et al. Sound velocities of aluminum-bearing stishovite in the mantle transition zone [J]. Geophysical Research Letters, 2016, 43(9): 4239-46.
[250] Zhou C, Gréaux S, Liu Z, et al. Sound Velocity of MgSiO3 Majorite Garnet up to 18 GPa and 2000 K [J]. Geophysical Research Letters, 2021, 48(14): 1-9.
[251] Franco E, Meza J, Buiochi F. Measurement of elastic properties of materials by the ultrasonic through-transmission technique [J]. DYNA (Colombia), 2011, 78: 58-64.
[252] Chen X Q, Niu H, Li D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses [J]. Intermetallics, 2011, 19(9): 1275-81.
[253] Amulele G M, Manghnani M H, Marriappan S, et al. Compression behavior of WC and WC-6%Co up to 50 GPa determined by synchrotron x-ray diffraction and ultrasonic techniques [J]. Journal of Applied Physics, 2008, 103(11): 113522.
[254] Day J P, Ruoff A L. Pressure dependence of elastic moduli of tungsten carbide cermet [J]. Journal of Applied Physics, 1973, 44(6): 2447-8.
[255] 阎守胜. 固体物理基础 [M]. 北京: 北京大学出版社, 2011: 135-144.
[256] Mathew S, Abraham A R, Chintalapati S, et al. Temperature Dependent Structural Evolution of WSe2: A Synchrotron X-ray Diffraction Study [J]. Condensed Matter, 2020, 5(4): 76.
[257] Vočadlo L, Knight K S, Price G D, et al. Thermal expansion and crystal structure of FeSi between 4 and 1173 K determined by time-of-flight neutron powder diffraction [J]. Physics and Chemistry of Minerals, 2002, 29(2): 132-9.
[258] Zhou X, Gu C, Song G, et al. Synthesis, Crystal Structures, Mechanical Properties, and Formation Mechanisms of Cubic Tungsten Nitrides [J]. Chemistry of Materials, 2022, 34(20): 9261–9.
[259] Mouhat F, Coudert F-X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104.
[260] Sangiovanni D G, Chirita V, Hultman L. Electronic mechanism for toughness enhancement in TiXM1−XN (M= Mo and W) [J]. Physical Review B, 2010, 81(10): 104107.
[261] Ekimov E A, Sidorov V A, Bauer E D, et al. Superconductivity in diamond [J]. Nature, 2004, 428(6982): 542-5.
[262] Zhang G, Samuely T, Xu Z, et al. Superconducting Ferromagnetic Nanodiamond [J]. ACS Nano, 2017, 11(6): 5358-66.
[263] Johansson B O, Sundqren J E, Greene J E. Growth and properties of single crystal TIN films deposited by reactive magnetron sputtering [J]. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3(2): 303-7.
[264] Geerk J, Linker G, Smithey R. Electron tunneling into superconducting ZrN [J]. Physical Review Letters, 1986, 57(26): 3284-7.
[265] Zhao B R, Chen L, Luo H L, et al. Superconducting and normal-state properties of vanadium nitride [J]. Physical Review B, 1984, 29(11): 6198-202.
[266] Gurvitch M, Remeika J P, Rowell J M, et al. Tunneling, resistive and structural study of Nbn and other superconducting nitrides [J]. IEEE Transactions on Magnetics, 1985, 21(2): 509-13.
[267] Reichelt K, Nellen W, Mair G. Preparation and compositional analysis of sputtered TaN films [J]. Journal of Applied Physics, 1978, 49(10): 5284-7.
[268] Soignard E, McMillan P F, Chaplin T D, et al. High-pressure synthesis and study of low-compressibility molybdenum nitride (MoN and MoN1−x) phases phases [J]. Physical Review B, 2003, 68(13): 132101.
[269] Ihara H, Kimura Y, Senzaki K, et al. Electronic structures of B1 MoN, fcc Mo2N, and hexagonal MoN [J]. Physical Review B, 1985, 31(5): 3177-8.
[270] Chen X-J, Struzhkin V V, Wu Z, et al. Electronic stiffness of a superconducting niobium nitride single crystal under pressure [J]. Physical Review B, 2005, 72(9): 094514.
[271] Zerr A, Miehe G, Riedel R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure [J]. Nature Materials, 2003, 2(3): 185-9.
[272] Wang S, Yu X, Zhang J, et al. Synthesis, Hardness, and Electronic Properties of Stoichiometric VN and CrN [J]. Crystal Growth & Design, 2015, 16(1): 351-8.
[273] Chen J, Gao J. Strong Electron–Phonon Coupling in 3D WN and Coexistence of Intrinsic Superconductivity and Topological Nodal Line in Its 2D Limit [J]. physica status solidi (RRL) – Rapid Research Letters, 2022, 16(1): 2100477.
[274] Ansari I A. Numerical solution of Bloch–Gruneisen function to determine the contribution of electron–phonon interaction in polycrystalline MgB2 superconductor [J]. Physica C: Superconductivity, 2010, 470(11): 508-10.
[275] Kinsel T, Lynton E A, Serin B. Magnetic properties of a superconductor of the second kind [J]. Physics Letters, 1962, 3(1): 30-2.
[276] Wu W, Liu K, Li Y, et al. Superconductivity in chromium nitrides Pr3Cr10-xN11 with strong electron correlations [J]. National Science Review, 2019, 7(1): 21-6.
[277] Goodman B B. Type II superconductors [J]. Reports on Progress in Physics, 1966, 29(2): 445-87.
[278] Silcox J, Rollins R W. Hysteresis in Hard Superconductors [J]. Reviews of Modern Physics, 1964, 36(1): 52-4.
[279] Abdel-Hafiez M, Zhao Y, Huang Z, et al. High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd2As2 [J]. Physical Review B, 2018, 97(13): 134508.
[280] Chumakov A I, Monaco G, Monaco A, et al. Equivalence of the Boson Peak in Glasses to the Transverse Acoustic van Hove Singularity in Crystals [J]. Physical Review Letters, 2011, 106(22): 225501.
[281] Guo J, Yamaura J-i, Lei H, et al. Superconductivity in Ban+2Ir4nGe12n+4 (n = 1,2) with cage structure and softening of low-lying localized mode [J]. Physical Review B, 2013, 88(14): 140507.
[282] Wang B, Zhang Y, Xu S, et al. Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors [J]. Chinese Physics B, 2019, 28(10): 107401.
[283] McMillan W L. Transition Temperature of Strong-Coupled Superconductors [J]. Physical Review, 1968, 167(2): 331-44.
[284] Ausserlechner U. Van-der-Pauw measurement on devices with four contacts and two orthogonal mirror symmetries [J]. Solid-State Electronics, 2017, 133: 53-63.
[285] Wang S, Yu X, Zhang J, et al. Experimental invalidation of phase-transition-induced elastic softening in CrN [J]. Physical Review B, 2012, 86(6): 064111.
[286] Jin H, Laiquan L, Liu X, et al. Nitrogen Vacancies on 2D Layered W2N3: A Stable and Efficient Active Site for Nitrogen Reduction Reaction [J]. Advanced Materials, 2019, 31: 1902709.
[287] Yu H, Yang X, Xiao X, et al. Atmospheric‐Pressure Synthesis of 2D Nitrogen‐Rich Tungsten Nitride [J]. Advanced Materials, 2018, 30.
[288] Wang S, Ge H, Sun S, et al. A New Molybdenum Nitride Catalyst with Rhombohedral MoS2 Structure for Hydrogenation Applications [J]. Journal of the American Chemical Society, 2015, 137(14): 4815-22.
[289] McCusker L B, Von Dreele R B, Cox D E, et al. Rietveld refinement guidelines [J]. Journal of Applied Crystallography, 1999, 32(1): 36-50.
[290] Amano H, Kito M, Hiramatsu K, et al. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) [J]. Japanese Journal of Applied Physics, 1989, 28(12A): L2112.
[291] Liang C, Li Z, Qiu J, et al. Graphitic Nanofilaments as Novel Support of Ru–Ba Catalysts for Ammonia Synthesis [J]. Journal of Catalysis, 2002, 211(1): 278-82.
[292] Pust P, Weiler V, Hecht C, et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material [J]. Nature Materials, 2014, 13(9): 891-6.
[293] Balbarin V, Van Dover R B, Disalvo F J. The high temperature preparation and property measurements of CaTaN2: A ternary superconducting nitride [J]. Journal of Physics and Chemistry of Solids, 1996, 57(12): 1919-27.
[294] Lee K, Kim S W, Toda Y, et al. Dicalcium nitride as a two-dimensional electride with an anionic electron layer [J]. Nature, 2013, 494(7437): 336-40.
[295] Huang H, Jin K-H, Liu F. Alloy Engineering of Topological Semimetal Phase Transition in MgTa2-xNbxN3 [J]. Physical Review Letters, 2018, 120(13): 136403.
[296] Cao B, Veith G M, Neuefeind J C, et al. Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction [J]. Journal of the American Chemical Society, 2013, 135(51): 19186-92.
[297] Chourasia A R, Chopra D R. X-ray photoelectron study of TiN/SiO2 and TiN/Si interfaces [J]. Thin Solid Films, 1995, 266(2): 298-301.
[298] Bauers S R, Holder A, Sun W, et al. Ternary nitride semiconductors in the rocksalt crystal structure [J]. Proceedings of the National Academy of Sciences, 2019, 116(30): 14829.
[299] Hong Y-L. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials [J]. Science, 2020, 369: 670–4
[300] Hinuma Y, Hatakeyama T, Kumagai Y, et al. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis [J]. Nature Communications, 2016, 7(1): 11962.
[301] Sarmiento-Pérez R, Cerqueira T F T, Körbel S, et al. Prediction of Stable Nitride Perovskites [J]. Chemistry of Materials, 2015, 27(17): 5957-63.
[302] Jung M-C, Lee K-W, Pickett W E. Perovskite ThTaN3: A large-thermopower topological crystalline insulator [J]. Physical Review B, 2018, 97(12): 121104.
[303] Singh S, Tripathi M N. Sr-doped LaMoN3 and LaWN3: New degenerate p-type nitrides [J]. Journal of Applied Physics, 2018, 124(6): 065109.
[304] Tian X, Shi X, He P, et al. Broken cubic symmetry driven co-emergence of type-I and type-II Dirac points in topological crystalline insulator ThTaN3 [J]. Journal of Physics: Condensed Matter, 2019, 31(29): 295501.
[305] Bandyopadhyay S, Paul A, Dasgupta I. Origin of Rashba-Dresselhaus effect in the ferroelectric nitride perovskite LaWN3 [J]. Physical Review B, 2020, 101(1): 014109.
[306] Gui C, Dong S. Pressure-induced ferroelectric phase of LaMoN3 [J]. Physical Review B, 2020, 102(18): 180103.
[307] Zhao H J, Chen P, Paillard C, et al. Large spin splittings due to the orbital degree of freedom and spin textures in a ferroelectric nitride perovskite [J]. Physical Review B, 2020, 102(4): 041203.
[308] Bandyopadhyay S, Dasgupta I. Orbital-dependent spin textures in ferroelectric Rashba systems [J]. Physical Review B, 2021, 103(1): 014105.
[309] Liu X, Fu J, Chen G. First-principles calculations of electronic structure and optical and elastic properties of the novel ABX3-type LaWN3 perovskite structure [J]. RSC Advances, 2020, 10(29): 17317-26.
[310] Pastrana-Fábregas R, Isasi-Marín J, Cascales C, et al. Synthesis, structure and magnetic properties of R–W–O–N (R=Nd and Eu) oxynitrides [J]. Journal of Solid State Chemistry, 2007, 180(1): 92-7.
[311] Cheviré F, Tessier F, Marchand R. New scheelite-type oxynitrides in systems RWO3N–AWO4 (R = rare-earth element; A = Ca, Sr) from precursors obtained by the citrate route [J]. Materials Research Bulletin, 2004, 39(7): 1091-101.
[312] Bacher P, Antoine P, Marchand R, et al. Time-of-flight neutron diffraction study of the structure of the perovskite-type oxynitride LaWO0.6N2.4 [J]. Journal of Solid State Chemistry, 1988, 77(1): 67-71.
[313] Talley K R, Mangum J, Perkins C L, et al. Synthesis of Lanthanum Tungsten Oxynitride Perovskite Thin Films [J]. Advanced Electronic Materials, 2019, 5(7): 1900214.
[314] Talley K R, Perkins C L, Diercks D R, et al. Synthesis of LaWN3 nitride perovskite with polar symmetry [J]. Science, 2021, 374(6574): 1488-91.
[315] Hong X. Nitride perovskite becomes polar [J]. Science, 2021, 374(6574): 1445-6.
[316] Zhang L, Wang Y, Lv J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2: 17005.
[317] Horvath-Bordon E, Riedel R, Zerr A, et al. High-pressure chemistry of nitride-based materials [J]. Chemical Society Reviews, 2006, 35(10): 987-1014.
[318] Wang Y, Bykov M, Chepkasov I, et al. Stabilization of hexazine rings in potassium polynitride at high pressure [J]. Nature Chemistry, 2022.
[319] Bykov M, Chariton S, Fei H, et al. High-pressure synthesis of ultraincompressible hard rhenium nitride pernitride Re2(N2)(N)2 stable at ambient conditions [J]. Nature Communications, 2019, 10(1): 2994.
[320] Dubrovinsky L, Khandarkhaeva S, Fedotenko T, et al. Materials synthesis at terapascal static pressures [J]. Nature, 2022, 605(7909): 274-8.
[321] Kloß S D, Ritter C, Attfield J P. Neutron diffraction study of nitride perovskite LaReN3 [J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 2022, 648(21): e202200194.
[322] Sunding M F, Hadidi K, Diplas S, et al. XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures [J]. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184(7): 399-409.
[323] Koh K Y, Zhang S, Paul Chen J. Hydrothermally synthesized lanthanum carbonate nanorod for adsorption of phosphorus: Material synthesis and optimization, and demonstration of excellent performance [J]. Chemical Engineering Journal, 2020, 380: 122153.
[324] Xie F Y, Gong L, Liu X, et al. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment [J]. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185(3): 112-8.
[325] Biswas B, Saha B. Development of semiconducting ScN [J]. Physical Review Materials, 2019, 3(2): 020301.
[326] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review, 1965, 140(4A): A1133-A8.
[327] Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Physical Review, 1964, 136(3B): B864-B71.
[328] Krukau A V, Vydrov O A, Izmaylov A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals [J]. The Journal of Chemical Physics, 2006, 125(22): 224106.
[329] Togo A, Tanaka I. First principles phonon calculations in materials science [J]. Scripta Materialia, 2015, 108: 1-5.
[330] Cohen R E. Origin of ferroelectricity in perovskite oxides [J]. Nature, 1992, 358(6382): 136-8.
[331] Lasota C, Wang C-Z, Yu R, et al. Ab initio linear response study of SrTiO3 [J]. Ferroelectrics, 1997, 194(1): 109-18.
[332] Ghosez P, Cockayne E, Waghmare U V, et al. Lattice dynamics of BaTiO3, PbTiO3, and PbZrO3: A comparative first-principles study [J]. Physical Review B, 1999, 60(2): 836-43.
[333] Bersuker I B. Pseudo-Jahn–Teller Effect—A Two-State Paradigm in Formation, Deformation, and Transformation of Molecular Systems and Solids [J]. Chemical Reviews, 2013, 113(3): 1351-90.
修改评论