中文版 | English
题名

基于压电超声换能器的骨切割手术器械关键技术研究

其他题名
Research on key technology of ultrasonic surgical instrument for bone tissue removal based on piezoelectric ultrasonic transducer
姓名
姓名拼音
ZHANG Shibo
学号
11849601
学位类型
博士
学位专业
0802 机械工程
学科门类/专业学位类别
学术型
导师
吴勇波
导师单位
机械与能源工程系
论文答辩日期
2023-04-07
论文提交日期
2023-06-15
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

骨骼系统是人体最为重要的器官系统之一,具有支撑身体的重要功能,按结缔组织性质通常可分为硬骨组织与软骨组织,对其的切割是在临床医疗手术中较为重视的问题。当前使用传统切骨器械的手术过程一般具有“精”、“险”、“难”、“盲”、“久”等特点,这些特点不仅导致骨切割类手术术后并发症概率高、术后恢复时间长,同时对医生的心理、体力、经验等方面提出了较高的要求。为此,研发一种基于新型切骨机理,同时具备易操作、低损伤、更精细等特点的手术器械,并探索利用该手术器械的切骨技术,是当前各界所普遍关注的问题。本文针对临床医疗领域对先进骨切割技术与高端骨科手术器械的迫切需求,分别考虑硬骨组织与软骨组织的结构形态与力学特性,围绕精细化、低损伤的骨组织切除等关键问题,基于从器械的核心技术研究到器械的整体设计过程、从切骨的基础特性研究到骨组织材料的去除及表面形成过程这一研究思路,系统性开展了面向基于压电超声换能器的精细化低损伤骨切割手术器械研发的关键技术研究。通过对高性能超声换能器的创新设计及其超声振动特性的调查分析,开展了骨组织超声切割手术器械的整体设计与切骨技术研究,明确了超声作用下骨组织切割的材料去除行为及超声切骨后骨组织生物学评价方法,最终完成了精细化、低损伤、易操作的超声骨组织手术器械的关键技术研究。本文的主要工作如下:

从结构改进的角度开展了超声换能器性能提升的研究。基于超声换能器工作时与外界的“纵向耦合”与“径向耦合”两种不良耦合状态的分析,提出了一种“Z”型低耦合弹性法兰结构。基于有限元分析优化了低耦合法兰的结构尺寸,搭建了测量系统,通过实际测量发现所提出并优化了的新型低耦合法兰结构具备明显的解耦能力,显著提高换能器的振幅输出。该研究基于低耦合法兰结构的分析和讨论为本文所研究的超声手术器械提供结构优化。

从电气特性的角度开展了超声换能器频响控制的研究。根据频率偏移滞后、振幅陡变等现象,开展了对超声换能器非线性特性的研究。对实际测量获得的超声换能器自由振动衰减过程进行拟合发现,等效机械损耗和等效弹簧常数两者都与振动速度幅值呈线性相关,据此建立了一种压电换能器等效电路模型。根据该电路模型提出了一个包含描述换能器非线性振动行为的二次非线性项的非线性模型。数值求解后的结果验证了该非线性模型的有效性,表明该模型可以较好地描述换能器在高功率激励下的典型非线性现象。非线性参数的测量进一步表明利用该模型有助于预测超声换能器的非线性特性,并基于此提出了一种超声换能器非线性调控方法。

完善了超声硬骨组织手术器械(简称:超声硬骨刀)的整体设计过程,同时明确了超声硬骨组织切割下的组织生物学评价方法。针对硬骨切割设计了一种超声硬骨刀,并根据所提出的切骨原理,设计了一种特殊弯曲的刀具,可实现刀具的横向摆动式振动。通过有限元仿真确定了超声硬骨刀的最终尺寸,通过阻抗分析、频响测量证明所提出的超声硬骨刀共振频率及振幅达到设计要求。猪腿骨的体外切割实验及其组织学分析结果表明,该超声硬骨刀可以精细、安全地去除骨组织,为术后恢复创造良好的愈合条件。小鼠动物实验结果表明,相比于传统器械所造成的缺损,所研制的超声硬骨刀在骨缺损手术中可有利于术后恢复。

系统开展了超声硬骨刀的骨组织材料去除行为研究,基于对超声切骨术与骨组织结构的理解并充分考虑更为微观的骨组织结构,依据超声振动方向与骨矿化胶原纤维轴向夹角及切割特性的不同,将超声切骨中的材料去除行为简化为四种切割模式,其分别为横向-平行模式(Transverse-Parallel (TP模式))、横向-横切模式(Transverse-Intersect (TI模式))、纵向-交叉模式(Vertical-Cross (VC模式))、纵向-横切模式(Vertical-Intersect (VI模式))。通过不同切割模式下的超声硬骨切割实验,明确了超声切骨过程,揭示了超声作用下的硬骨组织材料去除行为。阐明了不同切割模式下的侵入深度、材料去除、表面形貌、切割力的不同,并初步探究了其骨屑形成及裂纹扩展机理。

研制出了超声软骨组织手术器械(简称:超声软骨吸引器),阐述了其整体设计过程,同时开展了软骨组织切割的基础实验。针对软骨组织的基本结构与特性,将椭圆超声引入至软骨切割中,基于有限元设计方法及振动叠加原理,提出了端面椭圆超声换能器的基本设计过程及控制方法。通过阻抗分析与频响测量验证了器械的性能及椭圆超声的形成与控制。利用设计制作的超声软骨吸引器开展了小鼠肋软骨体外切割的基础实验,证明了该器械可以有效去除软骨。组织学切片分析表明,超声软骨吸引器可以有效减少对周围组织的损伤,为手术后的愈合创造良好的条件,初步实现了超声作用下的软骨组织去除。

其他摘要

Skeletal system is one of the most important organ systems in the human body and plays an important role in supporting the body. Bone tissue can usually be distinguished as hard bone and cartilage tissue. Because of their excellent mechanical properties, the cutting of bone tissue during surgery is also the most important problem in the medical field. At present, the surgical process using traditional instruments generally has the characteristics of "fine", "dangerous", "difficult", "blind" and "long", which not only lead to the high probability of postoperative complications and long postoperative recovery time, but also put forward higher requirements on the psychological, physical and experience of surgeons. Therefore, it is the most concerned direction of all circles to develop a kind of surgical power instrument with a new mechanism of osteotomy, improve its osteotomy technical system for this device, and realize the real osteotomy therapy innovation. Aiming at the urgent demand for advanced bone cutting technology and high-end orthopedic surgical instruments in the clinical medical field, this paper considers the structural morphology and mechanical properties of hard bone tissue and cartilage tissue respectively, and focuses on the key issues such as fine and low-damage bone tissue resection. Based on the research ideas from the research and breakthrough of the core technology of the equipment to the establishment of the overall design system of the equipment, from the study of the adaptability of bone cutting to the process of bone tissue material removal and surface formation, a new generation of bone cutting surgical instruments and techniques based on the principle of ultrasonic cutting were systematically carried out. Through the innovative design of high performance ultrasonic transducer and the investigation of ultrasonic vibration characteristics, the overall design of ultrasonic bone tissue cutting surgical instruments and the study of bone cutting technology were carried out, the material removal behavior of bone tissue cutting under the action of ultrasonic was defined, and the biological evaluation method of bone tissue after ultrasonic bone cutting was established. Finally, this study basically completed the research on the key technology of ultrasonic bone tissue surgical instruments with fine, low damage and easy operation. The main work of this paper is as follows:

Firstly, the performance improvement of ultrasonic transducer is studied from the perspective of structural improvement. Based on the analysis of two bad coupling states, longitudinal coupling and radial coupling, a low coupling elastic flange structure was proposed. Based on the finite element analysis, the structure size of the low coupling flange was optimized, and the measurement system was built. Through the actual measurement, it was found that the proposed and optimized new low coupling flange structure has obvious decoupling ability, which significantly improves the amplitude output of the transducer. This study based on the analysis and discussion of the low coupling flange structure provides structural optimization for the ultrasonic surgical instruments studied in this paper.

Then the frequency response control of ultrasonic transducer is studied from the angle of electrical characteristics. The nonlinear characteristics of the ultrasonic transducer are studied according to the phenomena of frequency offset lag and amplitude steepness. By fitting the measured free vibration attenuation process of the ultrasonic transducer, it is found that both the equivalent mechanical loss and the equivalent spring constant are linearly related to the amplitude of vibration velocity. Based on this, an equivalent circuit model of the piezoelectric transducer is established. Based on the circuit model, a nonlinear model containing quadratic nonlinear terms describing the nonlinear vibration behavior of the transducer is proposed. The numerical results verify the effectiveness of the nonlinear model and show that the model can well describe the typical nonlinear phenomena of the transducer under high power excitation. The measurement of the nonlinear parameters further shows that this model is helpful to predict the nonlinear characteristics of the ultrasonic transducer and a nonlinear tuning control strategy is proposed based on this.

The overall design process of ultrasonic hard bone surgical instrument was improved, and the tissue biological evaluation method of ultrasonic bone tissue cutting was defined. A kind of ultrasonic cutting tool is designed for bone cutting, and according to the principle of bone cutting, a special bending tool is designed, which can realize the transverse swing vibration. Impedance analysis and frequency response measurement proved that the resonant frequency and amplitude of the proposed ultrasonic hard bone surgical instrument met the design requirements. The results of in vitro cutting experiment and histological analysis of pig leg bone showed that the ultrasonic hard bone surgical instrument could remove bone tissue accurately and safely, and create good healing conditions for postoperative recovery. The results of animal experiments on mice showed that compared with the defects caused by traditional instruments, the developed ultrasonic hard bone surgical instrument was beneficial to the postoperative recovery of bone defects.

A systematic study was carried out on the removal behavior of bone tissue material with ultrasonic hard bone surgical instrument. Based on the understanding of ultrasonic bone resection and structure, four cutting modes of material removal behavior in ultrasonic hard bone surgical instrument were defined according to the size of ultrasonic amplitude and the full consideration of more microscopic bone tissue structure. They are respectively Transverse-Parallel cutting mode (TP mode), Transverse-Intersect cutting mode (TI mode) and Vertical-Cross cutting mode (VC mode)), Vertical-Intersect cutting mode (VI mode)).Through ultrasonic osteotomy experiments under different cutting modes, the process of ultrasonic osteotomy was defined and the removal behavior of bony tissue materials under ultrasonic action was revealed. The effects of different cutting modes on the invasion depth, material removal, surface morphology and cutting force were expounded, and the mechanism of bone chip formation and crack propagation was preliminarily investigated.

The ultrasonic cartilage tissue surgical instrument (referred to as ultrasonic cartilage aspirator) was initially developed, and the overall design process was described. At the same time, the basic experiment of cartilage tissue cutting was carried out. According to the basic structure and characteristics of cartilage tissue, elliptic ultrasonic vibration was introduced into cartilage cutting. Based on the finite element design method and the principle of vibration superposition, the basic design process and control method of the end-face elliptic ultrasonic transducer were proposed. Impedance analysis and frequency response measurement were used to verify the performance of the instrument and the formation and control of elliptical ultrasound. The basic experiment of in vitro cutting of mouse costal cartilage was carried out with the designed ultrasonic cartilage attractor, which proved that the device can effectively remove cartilage. Histological section analysis showed that the ultrasonic cartilage aspirator could effectively reduce the damage to the surrounding tissue and create good conditions for the healing after surgery, and the removal of cartilage tissue under the action of ultrasonic was preliminarily realized.

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-06
参考文献列表

[1] 刘畅, 许玉萍, 夏维波. 从罕见骨骼疾病研究到对复杂骨病的认识[J]. 中华骨质疏松和骨矿盐疾病杂志, 2017, 10: 209-215.
[2] Lucas M, Mathieson A. 23 - Ultrasonic cutting for surgical applications[M]// Gallego J A, Graff K F. Power Ultrasonics. Oxford; Woodhead Publishing. 2015: 695-721.
[3] 董配玉. 往复摆动式框架锯锯切性能研究及阶梯强化预合金锯齿设计 [D]; 山东大学, 2022.
[4] Santiuste C, Rodríguez-Millán M, Giner E, et al. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone[J]. Composite Structures, 2014, 116: 423-431.
[5] James T P, Chang G, Micucci S, et al. Effect of applied force and blade speed on histopathology of bone during resection by sagittal saw[J]. Medical Engineering & Physics, 2014, 36: 364-370.
[6] Lee J, Chavez C L, Park J. Parameters affecting mechanical and thermal responses in bone drilling: A review[J]. Journal of Biomechanics, 2018, 71: 4-21.
[7] Zhang L, Tai B L, Wang A C, et al. Mist cooling in neurosurgical bone grinding[J]. CIRP Annals, 2013, 62: 367-370.
[8] 祁磊, 史桂东. 双通道脊柱内镜在颈椎胸椎疾病手术中的应用[J]. 临床外科杂志, 2022, 30: 306-308.
[9] 脇谷滋之, 郑雄一. 骨骼系统[M]. 辽宁: 辽宁科学技术出版社, 2019.
[10] Davids J R. Review of Orthopaedics[J]. Journal of Pediatric Orthopaedics, 1993, 13: 106.
[11] Jurvelin J S, Buschmann M D, Hunziker E B. Mechanical anisotropy of the human knee articular cartilage in compression[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2003, 217: 215-224.
[12] Lewis J L, Johnson S L. Collagen architecture and failure processes in bovine patellar cartilage[J]. Journal of Anatomy, 2001, 199: 483-492.
[13] Daniero J J, Spiegel J R, Brody R M, et al. Ultrasonic surgical aspirator-assisted phonosurgery: a novel technique for laryngeal cartilage dissection[J]. Laryngoscope, 2014, 124: 1909-1920.
[14] Shu L, Li S, Terashima M, et al. A novel self-centring drill bit design for low-trauma bone drilling[J]. International Journal of Machine Tools and Manufacture, 2020, 154: 103568.
[15] Matsushita K, Kobori Y, Kamada S, et al. Easily manoeuvrable osteotome for pterygomaxillary disjunction[J]. British Journal of Oral and Maxillofacial Surgery, 2015, 53: 474-475.
[16] 柏伟, 潘鹏飞, 舒利明, 等. 骨组织超声辅助切削切屑形成与裂纹扩展机理[J]. 机械工程学报, 2021, 57: 69-77.
[17] 屈昊. 脊柱术区组织多模态信息感知及在机器人辅助手术中的实验研究 [D]; 北京协和医学院, 2021.
[18] 医学论坛网, 听译动画系列11:椎板切除术. [EB/OL] (2015-05-18)
[2022-07-29]. https://www.cmt.com.cn/show/index/2829.
[19] 张鹤译, 吕松岑. 关节置换术后假体周围感染临床诊断与治疗的研究现状[J]. 中华解剖与临床杂志, 2021, 26: 597-601.
[20] 赵永辉, 范新宇, 王腾, 等. 保留假体清创术在膝关节假体周围感染中的应用[J]. 中华关节外科杂志(电子版), 2020, 14: 632-635.
[21] Hao S, Angster K, Hubbard F, et al. Ear Scaffold Reconstruction Using Ultrasonic Aspirator for Cauliflower Ear[J]. Cleft Palate Craniofac J, 2018, 55: 619-621.
[22] Tingstad E M, Spindler K P. Basic arthroscopic instruments[J]. Operative Techniques in Sports Medicine, 2004, 12: 200-203.
[23] In Y, Bahk W-J, Park J-B. Detachment of the tip of a motorized shaver Within the knee joint: a complication of arthroscopic surgery[J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2003, 19: 25-27.
[24] Small N C. Complications in arthroscopy: The knee and other joints: Committee on complications of the arthroscopy association of north America[J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 1986, 2: 253-258.
[25] Ogilvie-Harris D J, Weisleder L. Fluid pump systems for arthroscopy: A comparison of pressure control versus pressure and flow control[J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 1995, 11: 591-595.
[26] Singh S, Tavakkolizadeh A, Arya A, et al. Arthroscopic powered instruments: a review of shavers and burrs[J]. Orthopaedics and Trauma, 2009, 23: 357-361.
[27] Hao S, Angster K, Hubbard F, et al. Ear Scaffold Reconstruction Using Ultrasonic Aspirator for Cauliflower Ear[J]. The Cleft Palate-Craniofacial Journal, 2017, 55: 619-621.
[28] 陈志桦, 王成勇, 汤娜, 等. 髋关节置换术中关键手术刀具的研究[J]. 工具技术, 2016, 51: 8-14.
[29] 高鹏, 梁志强, 王西彬, 等. 骨组织微创切削微细铣刀设计制备及铣削实验研究[J]. 兵工学报, 2020, 41: 152-160.
[30] 陈俊伟. 氯化钠磨料水射流切削皮质骨表面特性研究 [D]; 中北大学, 2022.
[31] Liao Z, Axinte D A. On chip formation mechanism in orthogonal cutting of bone[J]. International Journal of Machine Tools and Manufacture, 2016, 102: 41-55.
[32] Feldmann A, Ganser P, Nolte L, et al. Orthogonal cutting of cortical bone: Temperature elevation and fracture toughness[J]. International Journal of Machine Tools and Manufacture, 2017, 118-119: 1-11.
[33] Bai W, Shu L, Sun R, et al. Mechanism of material removal in orthogonal cutting of cortical bone[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104: 103618.
[34] 罗源嫱. 骨密质材料去除机理及其孔加工关键技术研究 [D]; 湖南大学, 2020.
[35] Singh G, Babbar A, Jain V, et al. Comparative statement for diametric delamination in drilling of cortical bone with conventional and ultrasonic assisted drilling techniques[J]. Journal of Orthopaedics, 2021, 25: 53-58.
[36] Singh G, Jain V, Gupta D. Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229: 225-231.
[37] Gupta V, Singh R P, Pandey P M, et al. In vitro comparison of conventional surgical and rotary ultrasonic bone drilling techniques[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234: 398-411.
[38] Gupta V, Pandey P M, Gupta R K, et al. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231: 189-196.
[39] Li Z, Yang D, Hao W, et al. A novel technique for micro-hole forming on skull with the assistance of ultrasonic vibration[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57: 1-13.
[40] 阎志强. 三尖钻超声振动辅助钻削皮质骨损伤研究 [D]; 天津理工大学, 2020.
[41] Cseke A, Heinemann R. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials[J]. Medical Engineering & Physics, 2018, 51: 24-30.
[42] Zhang Y, Wang C, Zhou S, et al. A Comparison Review on Orthopedic Surgery Using Piezosurgery and Conventional Tools[J]. Procedia CIRP, 2017, 65: 99-104.
[43] 林道贤, 戴绍业, 钟世磐. 关节镜术——一门新兴的外科技术[J]. 新医学, 1985, 606-608.
[44] Chen Z, Zhang Y, Wang C, et al. Understanding the cutting mechanisms of composite structured soft tissues[J]. International Journal of Machine Tools and Manufacture, 2021, 161: 103685.
[45] Pang X, Zhang Y, Wang C, et al. Effect of cutting parameters on cutting force and surface quality in cutting of articular cartilage[J]. Procedia CIRP, 2020, 89: 116-121.
[46] Schafer M E. Ultrasonic surgical devices and procedures[M]//. Power Ultrasonics. 2015: 633-660.
[47] Sun D, Zhou Z Y, Liu Y H, et al. Development and application of ultrasonic surgical instruments[J]. IEEE Transactions on Biomedical Engineering, 1997, 44: 462-467.
[48] Vasquez J M, Eisenberg E, Osteen K G, et al. Laparoscopic Ablation of Endometriosis Using the Cavitational Ultrasonic Surgical Aspirator[J]. The Journal of the American Association of Gynecologic Laparoscopists, 1993, 1: 36-42.
[49] Bodzin A S, Leiby B E, Ramirez C G, et al. Liver resection using cavitron ultrasonic surgical aspirator (CUSA) versus harmonic scalpel: a retrospective cohort study[J]. International Journal of Surgery, 2014, 12: 500-503.
[50] Bonin E A, Mariani A, Swain J, et al. Laparoscopic ultrasound-assisted liposuction for lymph node dissection: a pilot study[J]. Surgical Endoscopy, 2012, 26: 1963-2023.
[51] Richards D, Mathieson A, Lucas M, et al. An ultrasonically assisted sagittal saw for large bone surgeries[C]. IEEE International Ultrasonics Symposium Proceedings, 2015: 5-8
[52] Ying C, Zhaoying Z, Ganghua Z. Effects of different tissue loads on high power ultrasonic surgery scalpel[J]. Ultrasound in Medicine and Biology, 2006, 32: 415-420.
[53] Lucas M, Mathieson A. Ultrasonic cutting for surgical applications[M]//. Power Ultrasonics. 2015: 695-721.
[54] Uchino K. Piezoelectric ceramics for transducers[M]//. Ultrasonic Transducers. 2012: 70-116.
[55] Stryker, SONOPET Ultrasonic Aspirator [EB/OL] (2022-02-15)
[2022-07-30]. https://neurosurgical.stryker.com/products/sonopet-ultrasonic-aspirator/.
[56] Cleary R, Wallace R, Simpson H, et al. A longitudinal-torsional mode ultrasonic needle for deep penetration into bone[J]. Ultrasonics, 2022, 124: 106756.
[57] Nakamura K. Ultrasonic transducers[M]. 2012.
[58] Nakamura K. Electrical evaluation of piezoelectric transducers[M]//. Ultrasonic Transducers. 2012: 264-276.
[59] 国家食品药品监督管理总局, 超声骨组织手术设备: YY/T 1601-2018[S]. 北京:中国标准出版社, 2018: 1-19
[60] Hadeishi H, Suzuki A, Yasui N, et al. Anterior Clinoidectomy and Opening of the Internal Auditory Canal Using an Ultrasonic Bone Curette[J]. Neurosurgery, 2003, 52: 254-261.
[61] Chang H S, Joko M, Song J S, et al. Ultrasonic bone curettage for optic canal unroofing and anterior clinoidectomy: Technical note[J]. Journal of Neurosurgery, 2006, 104: 621-624.
[62] Ueki K, Nakagawa K, Marukawa K, et al. Le Fort I osteotomy using an ultrasonic bone curette to fracture the pterygoid plates[J]. Journal of Cranio-Maxillofacial Surgery, 2004, 32: 381-386.
[63] Timothy J, Petralia V, Wilson J R. Use of an Ultrasonic Bone Curet for the Extraction of a Cervical Artificial Disc: A Novel Application: A Case Report[J]. JBJS Case Connector, 2018, 8: 14-24.
[64] Hazer D B, Yaşar B, Rosberg H-E, et al. Technical Aspects on the Use of Ultrasonic Bone Shaver in Spine Surgery: Experience in 307 Patients[J]. BioMed Research International, 2016, 2016: 8428530.
[65] Kuang Y, Sadiq M, Cochran S, et al. Design and Characterization of an Ultrasonic Surgical Tool Using d31 PMN-PT Plate[J]. Physics Procedia, 2015, 63: 182-188.
[66] Bejarano F, Feeney A, Wallace R, et al. An ultrasonic orthopaedic surgical device based on a cymbal transducer[J]. Ultrasonics, 2016, 72: 24-33.
[67] Alam K, Khan M, Silberschmidt V V. Analysis of forces in conventional and ultrasonically assisted plane cutting of cortical bone[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2013, 227: 636-642.
[68] Alam K, Mitrofanov A V, Silberschmidt V V. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone[J]. Medical Engineering & Physics, 2011, 33: 234-239.
[69] Sugita N, Shu L, Shimada T, et al. Novel surgical machining via an impact cutting method based on fracture analysis with a discontinuum bone model[J]. CIRP Annals, 2017, 66: 65-68.
[70] Eshet Y, Mann R R, Anaton A, et al. Microwave drilling of bones[J]. IEEE Transactions on Biomedical Engineering, 2006, 53: 1174-1182.
[71] 马赛, 李楠, 何达. 超声骨刀和高速磨钻在颈椎后路棘突纵割式椎板成形术中的应用比较[J]. 中国骨与关节杂志, 2022, 11: 504-509.
[72] 郑小涛. 超声弧面骨切割装置的设计及实验研究 [D]; 四川大学, 2021.
[73] 夏磊. 超声辅助钻削皮质骨的仿真与试验研究 [D]; 天津理工大学, 2019.
[74] 康仁科, 马付建, 董志刚, 等. 难加工材料超声辅助切削加工技术[J]. 航空制造技术, 2012, 44-49.
[75] Liu X, Wen B T, Chen Z Q, et al. Ultrasonic osteotome versus high-speed burr in cervical anterior vertebral subtotal resection: A retrospective study of 81 cases[J]. Neurochirurgie, 2020, 66: 369-372.
[76] Zhang Y, Robles-Linares J A, Chen L, et al. Advances in machining of hard tissues – From material removal mechanisms to tooling solutions[J]. International Journal of Machine Tools and Manufacture, 2022, 172: 103838.
[77] 曹凤国. 超声加工技术[M]. 2004.
[78] 杨晋玲. 用于水下金属探测成像的压电式微机械超声波换能器[J]. 中国测试, 2019, 45: 84-88.
[79] 吴妍, 费春龙, 杨新宇, 等. 聚焦超声换能器的研究现状与发展[J]. 压电与声光, 2019, 41: 904-909.
[80] 陈颖. 超声手术刀的研制现状与应用[J]. 生物医学工程学杂志, 2005, 22: 377-380.
[81] 易拥洁. MEMS压电薄膜超声换能器的研究 [D]; 重庆大学, 2020.
[82] 刘细宝, 钟利民, 郁涛, 等. 流量计用超声波探头的研制[J]. 声学与电子工程, 2020, 13-15.
[83] 张云电. 夹心式压电换能器及其应用[M]. 科学出版社, 2006.
[84] Gallego-Juárez J A, Graff K F. 1 - Introduction to power ultrasonics[M]// GALLEGO-JUáREZ J A, GRAFF K F. Power Ultrasonics. Oxford; Woodhead Publishing. 2015: 1-6.
[85] Gallego-Juárez J A. Power ultrasonics: new technologies and applications for fluid processing[M]//. Ultrasonic Transducers. 2012: 476-516.
[86] Aghapour Aktij S, Taghipour A, Rahimpour A, et al. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes[J]. Ultrasonics, 2020, 108: 106228.
[87] Sharma A, Jain V, Gupta D. A novel investigation study on float glass hole surface integrity & tool wear using Chemical assisted Rotary ultrasonic machining[J]. Materials Today: Proceedings, 2020, 26: 632-637.
[88] 邵健. 超声复合电加工振动系统特性分析与试验 [D]; 扬州大学, 2015.
[89] Nguyen L T, Modrak R T. Ultrasonic wavefield inversion and migration in complex heterogeneous structures: 2D numerical imaging and nondestructive testing experiments[J]. Ultrasonics, 2018, 82: 357-370.
[90] Zhang S, Guo Y, Chen Z, et al. Proposal for a novel elliptical ultrasonic aspirator and its fundamental performance in cartilage removal[J]. Ultrasonics, 2021, 109: 106259.
[91] Acevedo P, Das-Gupta D. The measurement of the spatial average temporal average intensity Isata and ultrasonic power W in composite ultrasonic transducers for medical application[J]. Ultrasonics, 2002, 40: 819-821.
[92] Kurosawa M K, Higuchi T. Transducer for High Speed and Large Thrust Ultrasonic Linear Motor Using Two Sandwich-Type Vibrators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45: 1188-1198.
[93] 贾洛. 超声椭圆振动车削工作头的设计与实验研究 [D]; 东北大学, 2015.
[94] Feucht F, Ketelaer J, Wolff A, et al. Latest Machining Technologies of Hard-to-cut Materials by Ultrasonic Machine Tool[J]. Procedia CIRP, 2014, 14: 148-152.
[95] Subhedar P B, Gogate P R. Ultrasound assisted intensification of biodiesel production using enzymatic interesterification[J]. Ultrason Sonochem, 2016, 29: 67-75.
[96] 侯尚, 费春龙, 杨新宇, 等. 血管内超声换能器的研究现状与进展[J]. 压电与声光, 2019, 41: 383-386.
[97] Yu P, Wang L, Jin J, et al. A novel piezoelectric actuated underwater robotic finger[J]. Smart Materials and Structures, 2019, 28: 105047.
[98] 张林森, 曾双贵, 宁小玲, 等. 超声耦合无线电能传输用发射换能器优化设计[J]. 压电与声光, 2022, 44: 407-412.
[99] Graff K F. 6 - Power ultrasonic transducers: principles and design[M]// GALLEGO-JUáREZ J A, GRAFF K F. Power Ultrasonics. Oxford; Woodhead Publishing. 2015: 127-158.
[100] 张东来. 基于3D打印技术制备无铅压电陶瓷及超声换能器的研究 [D]; 广东工业大学, 2022.
[101] 施浩然, 孔淑婷, 高桂玲, 等. 功率超声换能器压电元件阻抗匹配装置的设计与制作[J]. 电子设计工程, 2021, 29: 27-32.
[102] 张雄伟. 基于Labview的超声波发生器频率自动跟踪技术研究 [D]; 中北大学, 2022.
[103] Sherrit S, Wiederick H D, Mukherjee B K, et al. An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode[J]. Journal of Physics D: Applied Physics, 1997, 30: 2354.
[104] Von Arx M. Novel ultrasonic transducer design for fine-pitch wire bonding[C]. IEEE/CPMT/SEMI 28th International Electronics Manufacturing Technology Symposium, 2003 IEMT 2003, 2003: 49-53
[105] Lin S, Xu L, Wenxu H. A new type of high power composite ultrasonic transducer[J]. Journal of Sound and Vibration, 2011, 330: 1419-1431.
[106] Or S W, Chan H L W, Liu P C K. Piezocomposite ultrasonic transducer for high-frequency wire-bonding of microelectronics devices[J]. Sensors and Actuators A: Physical, 2007, 133: 195-199.
[107] Or S W, Chan H, Lo V, et al. Dynamics of an ultrasonic transducer used for wire bonding[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45: 1453-1460.
[108] Parrini L. Design of advanced ultrasonic transducers for welding devices[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48: 1632-1639.
[109] Zhang H, Ning X, Zhao C, et al. Optimization design of a new type of high-frequency piezoelectric ultrasonic transducer with the compliant hinge-based mounting clamp[J]. Sensors and Actuators A: Physical, 2020, 315: 112284.
[110] Zhang H, Zhao J, Hou Y, et al. A new method to enhance the tip vibration amplitude output of the high frequency piezoelectric ultrasonic transducer used in the thermosonic bonding[J]. Sensors and Actuators A: Physical, 2019, 294: 116-125.
[111] Liu Y, Ozaki R, Morita T. Investigation of nonlinearity in piezoelectric transducers[J]. Sensors and Actuators A: Physical, 2015, 227: 31-38.
[112] Yun C, Ishii T, Nakamura K, et al. A High Power Ultrasonic Linear Motor Using a Longitudinal and Bending Hybrid Bolt-Clamped Langevin Type Transducer[J]. Japanese Journal Of Applied Physics, 2001, 40: 3773-3776.
[113] Lu X, Hu J, Peng H, et al. A new topological structure for the Langevin-type ultrasonic transducer[J]. Ultrasonics, 2017, 75: 142-156.
[114] Li J, Liu H, Li J, et al. Piezoelectric transducer design for an ultrasonic scalpel with enhanced dexterity for minimally invasive surgical robots[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 234: 1271-1285.
[115] Han L, Zhong J, Gao G. Effect of tightening torque on transducer dynamics and bond strength in wire bonding[J]. Sensors and Actuators, A: Physical, 2008, 141: 695-702.
[116] Parrini L. New techniques for the design of advanced ultrasonic transducers for wire bonding[J]. IEEE transactions on electronics packaging manufacturing, 2003, 26: 37-45.
[117] 李双双. 大功率超声波振动系统分析与设计 [D]; 杭州电子科技大学, 2015.
[118] Al-Budairi H, Lucas M, Harkness P. A design approach for longitudinal–torsional ultrasonic transducers[J]. Sensors and Actuators A: Physical, 2013, 198: 99-106.
[119] Hall D A. Nonlinearity in piezoelectric ceramics[J]. Journal of Materials Science, 2001, 36: 4575-4601.
[120] Devos S, Reynaerts D, Van Brussel H. Minimising heat dissipation in ultrasonic piezomotors by working in a resonant mode[J]. Precision Engineering, 2008, 32: 114-125.
[121] Tanaka T, Oiwa T, Syamsul H. Positioning behavior resulting from the application of ultrasonic oscillation to a linear motion ball bearing during step motion[J]. Precision Engineering, 2018, 51: 362-372.
[122] 鲜晓军, 赵天龙, 孙昕郝, 等. BS-PT基高温压电超声换能器研究[J]. 压电与声光, 2022, 44: 431-434.
[123] Land C E, Smith G W, Westgate C R. The Dependence of the Small-Signal Parameters of Ferroelectric Ceramic Resonators Upon State of Polarization[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1964, 11: 118-120.
[124] Guyomar D, Aurelle N, Eyraud L. Piezoelectric Ceramics Nonlinear Behavior. Application to Langevin Transducer[J]. Journal de Physique III, 1997, 7: 1197-1208.
[125] Aurelle N, Guyomar D, Richard C, et al. Nonlinear behavior of an ultrasonic transducer[J]. Ultrasonics, 1996, 34: 187-191.
[126] Li X, Yao Z, Mi Y, et al. Modeling, analysis and suppression of current harmonics of Langevin-type ultrasonic motors under high voltage[J]. Precision Engineering, 2020, 64: 177-187.
[127] Maeda M, Washihira M, Hashimoto H, et al. Measurement of Nonlinear Elastic Constants of Piezoelectric Ceramics[J]. Journal of the Physical Society of Japan, 2007, 76: 084704.
[128] Lu S F, Zhang W, Song X J. Time-varying nonlinear dynamics of a deploying piezoelectric laminated composite plate under aerodynamic force[J]. Acta Mechanica Sinica, 2017, 34: 303-314.
[129] Lu S F, Jiang Y, Zhang W, et al. Vibration suppression of cantilevered piezoelectric laminated composite rectangular plate subjected to aerodynamic force in hygrothermal environment[J]. European Journal of Mechanics - A/Solids, 2020, 83: 104002.
[130] Zhang W, Yang J H, Zhang Y F, et al. Nonlinear transverse vibrations of angle-ply laminated composite piezoelectric cantilever plate with four-modes subjected to in-plane and out-of-plane excitations[J]. Engineering Structures, 2019, 198: 109501.
[131] Umeda M, Nakamura K, Takahashi S, et al. Waveforms of the Vibration Velocity and the Current of a Piezoelectric Transducer in the Transient State[J]. Japanese Journal of Applied Physics, 2001, 40: 5735-5739.
[132] Liu Y, Morita T. Nonlinear coefficients in lead-free CuO–(K,Na)NbO3 transducers[J]. Japanese Journal of Applied Physics, 2015, 54: 07hc01.
[133] Guyomar D, Ducharne B, Sebald G. High nonlinearities in Langevin transducer: a comprehensive model[J]. Ultrasonics, 2011, 51: 1006-1019.
[134] Schafer M E. 21 - Ultrasonic surgical devices and procedures[M]// GALLEGO-JUáREZ J A, GRAFF K F. Power Ultrasonics. Oxford; Woodhead Publishing. 2015: 633-660.
[135] 徐嘉林. 弛豫铁电单晶高压电响应及其在医用超声换能器中的应用研究 [D]; 中国科学院大学(中国科学院上海硅酸盐研究所), 2021.
[136] Wu F, Chen W-Z, Bai J, et al. Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound[J]. Ultrasound in Medicine & Biology, 2001, 27: 1099-1106.
[137] Do-Huu J P, Hartemann P. Deep and Local Heating Induced by an Ultrasound Phased Array Transducer[C]. 1982 Ultrasonics Symposium, 1982: 735-738
[138] Wu F, Wang Z B, Cao Y D, et al. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer[J]. British Journal of Cancer, 2003, 89: 2227-2233.
[139] Li C, Zhang W, Fan W, et al. Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound[J]. Cancer, 2010, 116: 3934-3942.
[140] Zhang L, Chen W-Z, Liu Y-J, et al. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus[J]. European Journal of Radiology, 2010, 73: 396-403.
[141] Burtnyk M, N’djin W A, Kobelevskiy I, et al. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms[J]. Physics in Medicine and Biology, 2010, 55: 6817-6839.
[142] Beiring P, Yan J. Ultrasonic vibration-assisted microgrinding of glassy carbon[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233: 4165-4175.
[143] Wang F, Zhang H, Liang C, et al. Design of High Frequency Ultrasonic Transducers with Flexure Decoupling Flanges for Thermosonic Bonding[J]. IEEE Transactions on Industrial Electronics, 2015, 18-25.
[144] Cochran S. Piezoelectricity and basic configurations for piezoelectric ultrasonic transducers[M]//. Ultrasonic Transducers. 2012: 3-35.
[145] Karafi M, Kamali S. A continuum electro-mechanical model of ultrasonic Langevin transducers to study its frequency response[J]. Applied Mathematical Modelling, 2021, 92: 44-62.
[146] Voronina S, Babitsky V, Meadows A. Modelling of autoresonant control of ultrasonic transducer for machining applications[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222: 1957-1974.
[147] Zhang S, Li Y, Li S, et al. Investigation of the nonlinear phenomena of a Langevin ultrasonic transducer caused by high applied voltage[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021,
[148] Mathieson A, Cardoni A, Cerisola N, et al. The influence of piezoceramic stack location on nonlinear behavior of Langevin transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60: 1126-1133.
[149] Ramesh R, Kumar R K, Kumar T K V. Heat generation in 1–3 piezoceramic—polymer composites[J]. Journal of Electroceramics, 2013, 30: 251-257.
[150] Hagiwara M, Hoshina T, Takeda H, et al. Identicalness between Piezoelectric Loss and Dielectric Loss in Converse Effect of Piezoelectric Ceramic Resonators[J]. Japanese Journal of Applied Physics, 2012, 51: 09ld10.
[151] Cochran S, Démoré C E M, Courtney C R P. Modelling ultrasonic-transducer performance: one-dimensional models[M]//. Ultrasonic Transducers. 2012: 187-219.
[152] Feng J, Liu C, Zhang W, et al. Mechanical Behaviors Research and the Structural Design of a Bipolar Electrostatic Actuation Microbeam Resonator[J]. Sensors (Basel), 2019, 19: 156-168.
[153] Nayfeh A H. Introduction to perturbation techniques[M]. John Wiley & Sons, 2011.
[154] Nayfeh A H, Mook D T. Nonlinear oscillations[M]. John Wiley & Sons, 2008.
[155] Cveticanin L. Analysis Techniques for the Various Forms of the Duffing Equation[M]//. The Duffing Equation. 2011: 81-137.
[156] Parmar D, Mann M, Walmsley A D, et al. Cutting characteristics of ultrasonic surgical instruments[J]. Clinical Oral Implants Research, 2011, 22: 1385-1392.
[157] Wu Y, Fan Y, Kato M, et al. Development of an ultrasonic elliptic-vibration shoe centerless grinding technique[J]. Journal of Materials Processing Technology, 2004, 155-156: 1780-1787.
[158] Li Y, Wu Y, Zhou L, et al. Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher[J]. International Journal of Machine Tools and Manufacture, 2014, 77: 93-102.
[159] Zhang Q, Shi S, Chen W. An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer[J]. Ultrasonics, 2016, 66: 18-26.
[160] Passacantilli E, Antonelli M, D'amico A, et al. Neurosurgical applications of the 2-mum thulium laser: histological evaluation of meningiomas in comparison to bipolar forceps and an ultrasonic aspirator[J]. Photomedicine and Laser Surgery, 2012, 30: 286-292.
[161] Zadeh G, Salehi F, An S, et al. Diagnostic implications of histological analysis of neurosurgical aspirate in addition to routine resections[J]. Neuropathology, 2012, 32: 44-50.
[162] Davids J R. Review of Orthopaedics[J]. Journal of Pediatric Orthopaedics, 1993, 13:
[163] Giner E, Arango C, Vercher A, et al. Numerical modelling of the mechanical behaviour of an osteon with microcracks[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37: 109-124.
[164] Misonix, BoneScalpel_neXus_banner [EB/OL]
[9 March 2022]. https://www.misonix.com/products/bone-scalpel/#reference1.
[165] Bai X, Hou S, Li K, et al. Analysis of machining process and thermal conditions during vibration-assisted cortical bone drilling based on generated bone chip morphologies[J]. Medical Engineering & Physics, 2020, 83: 73-81.
[166] Zhang S, Chen Z, Li G, et al. A novel Z-shaped elastic flange structure for increasing the amplitude output of a piezoelectric ultrasonic transducer[J]. Sensors and Actuators A: Physical, 2021, 331: 112995.
[167] Khambay B S, Walmsley A D. Investigations into the use of an ultrasonic chisel to cut bone.[J]. Journal of Dentistry, 2000, 28: 31-37.
[168] Robles-Linares J A, Axinte D, Liao Z, et al. Machining-induced thermal damage in cortical bone: Necrosis and micro-mechanical integrity[J]. Materials and Design, 2021, 197: 86-95.
[169] Giner E, Arango C, Vercher A, et al. Numerical modelling of the mechanical behaviour of an osteon with microcracks[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37: 109-133.
[170] Bai W, Shu L, Sun R, et al. Improvements of material removal in cortical bone via impact cutting method[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 108: 103791.

所在学位评定分委会
机械
国内图书分类号
TH718
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543804
专题南方科技大学
推荐引用方式
GB/T 7714
张诗博. 基于压电超声换能器的骨切割手术器械关键技术研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849601-张诗博-机械与能源工程(21658KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张诗博]的文章
百度学术
百度学术中相似的文章
[张诗博]的文章
必应学术
必应学术中相似的文章
[张诗博]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。