[1] 刘畅, 许玉萍, 夏维波. 从罕见骨骼疾病研究到对复杂骨病的认识[J]. 中华骨质疏松和骨矿盐疾病杂志, 2017, 10: 209-215.
[2] Lucas M, Mathieson A. 23 - Ultrasonic cutting for surgical applications[M]// Gallego J A, Graff K F. Power Ultrasonics. Oxford; Woodhead Publishing. 2015: 695-721.
[3] 董配玉. 往复摆动式框架锯锯切性能研究及阶梯强化预合金锯齿设计 [D]; 山东大学, 2022.
[4] Santiuste C, Rodríguez-Millán M, Giner E, et al. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone[J]. Composite Structures, 2014, 116: 423-431.
[5] James T P, Chang G, Micucci S, et al. Effect of applied force and blade speed on histopathology of bone during resection by sagittal saw[J]. Medical Engineering & Physics, 2014, 36: 364-370.
[6] Lee J, Chavez C L, Park J. Parameters affecting mechanical and thermal responses in bone drilling: A review[J]. Journal of Biomechanics, 2018, 71: 4-21.
[7] Zhang L, Tai B L, Wang A C, et al. Mist cooling in neurosurgical bone grinding[J]. CIRP Annals, 2013, 62: 367-370.
[8] 祁磊, 史桂东. 双通道脊柱内镜在颈椎胸椎疾病手术中的应用[J]. 临床外科杂志, 2022, 30: 306-308.
[9] 脇谷滋之, 郑雄一. 骨骼系统[M]. 辽宁: 辽宁科学技术出版社, 2019.
[10] Davids J R. Review of Orthopaedics[J]. Journal of Pediatric Orthopaedics, 1993, 13: 106.
[11] Jurvelin J S, Buschmann M D, Hunziker E B. Mechanical anisotropy of the human knee articular cartilage in compression[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2003, 217: 215-224.
[12] Lewis J L, Johnson S L. Collagen architecture and failure processes in bovine patellar cartilage[J]. Journal of Anatomy, 2001, 199: 483-492.
[13] Daniero J J, Spiegel J R, Brody R M, et al. Ultrasonic surgical aspirator-assisted phonosurgery: a novel technique for laryngeal cartilage dissection[J]. Laryngoscope, 2014, 124: 1909-1920.
[14] Shu L, Li S, Terashima M, et al. A novel self-centring drill bit design for low-trauma bone drilling[J]. International Journal of Machine Tools and Manufacture, 2020, 154: 103568.
[15] Matsushita K, Kobori Y, Kamada S, et al. Easily manoeuvrable osteotome for pterygomaxillary disjunction[J]. British Journal of Oral and Maxillofacial Surgery, 2015, 53: 474-475.
[16] 柏伟, 潘鹏飞, 舒利明, 等. 骨组织超声辅助切削切屑形成与裂纹扩展机理[J]. 机械工程学报, 2021, 57: 69-77.
[17] 屈昊. 脊柱术区组织多模态信息感知及在机器人辅助手术中的实验研究 [D]; 北京协和医学院, 2021.
[18] 医学论坛网, 听译动画系列11:椎板切除术. [EB/OL] (2015-05-18)
[2022-07-29]. https://www.cmt.com.cn/show/index/2829.
[19] 张鹤译, 吕松岑. 关节置换术后假体周围感染临床诊断与治疗的研究现状[J]. 中华解剖与临床杂志, 2021, 26: 597-601.
[20] 赵永辉, 范新宇, 王腾, 等. 保留假体清创术在膝关节假体周围感染中的应用[J]. 中华关节外科杂志(电子版), 2020, 14: 632-635.
[21] Hao S, Angster K, Hubbard F, et al. Ear Scaffold Reconstruction Using Ultrasonic Aspirator for Cauliflower Ear[J]. Cleft Palate Craniofac J, 2018, 55: 619-621.
[22] Tingstad E M, Spindler K P. Basic arthroscopic instruments[J]. Operative Techniques in Sports Medicine, 2004, 12: 200-203.
[23] In Y, Bahk W-J, Park J-B. Detachment of the tip of a motorized shaver Within the knee joint: a complication of arthroscopic surgery[J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2003, 19: 25-27.
[24] Small N C. Complications in arthroscopy: The knee and other joints: Committee on complications of the arthroscopy association of north America[J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 1986, 2: 253-258.
[25] Ogilvie-Harris D J, Weisleder L. Fluid pump systems for arthroscopy: A comparison of pressure control versus pressure and flow control[J]. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 1995, 11: 591-595.
[26] Singh S, Tavakkolizadeh A, Arya A, et al. Arthroscopic powered instruments: a review of shavers and burrs[J]. Orthopaedics and Trauma, 2009, 23: 357-361.
[27] Hao S, Angster K, Hubbard F, et al. Ear Scaffold Reconstruction Using Ultrasonic Aspirator for Cauliflower Ear[J]. The Cleft Palate-Craniofacial Journal, 2017, 55: 619-621.
[28] 陈志桦, 王成勇, 汤娜, 等. 髋关节置换术中关键手术刀具的研究[J]. 工具技术, 2016, 51: 8-14.
[29] 高鹏, 梁志强, 王西彬, 等. 骨组织微创切削微细铣刀设计制备及铣削实验研究[J]. 兵工学报, 2020, 41: 152-160.
[30] 陈俊伟. 氯化钠磨料水射流切削皮质骨表面特性研究 [D]; 中北大学, 2022.
[31] Liao Z, Axinte D A. On chip formation mechanism in orthogonal cutting of bone[J]. International Journal of Machine Tools and Manufacture, 2016, 102: 41-55.
[32] Feldmann A, Ganser P, Nolte L, et al. Orthogonal cutting of cortical bone: Temperature elevation and fracture toughness[J]. International Journal of Machine Tools and Manufacture, 2017, 118-119: 1-11.
[33] Bai W, Shu L, Sun R, et al. Mechanism of material removal in orthogonal cutting of cortical bone[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104: 103618.
[34] 罗源嫱. 骨密质材料去除机理及其孔加工关键技术研究 [D]; 湖南大学, 2020.
[35] Singh G, Babbar A, Jain V, et al. Comparative statement for diametric delamination in drilling of cortical bone with conventional and ultrasonic assisted drilling techniques[J]. Journal of Orthopaedics, 2021, 25: 53-58.
[36] Singh G, Jain V, Gupta D. Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229: 225-231.
[37] Gupta V, Singh R P, Pandey P M, et al. In vitro comparison of conventional surgical and rotary ultrasonic bone drilling techniques[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234: 398-411.
[38] Gupta V, Pandey P M, Gupta R K, et al. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231: 189-196.
[39] Li Z, Yang D, Hao W, et al. A novel technique for micro-hole forming on skull with the assistance of ultrasonic vibration[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57: 1-13.
[40] 阎志强. 三尖钻超声振动辅助钻削皮质骨损伤研究 [D]; 天津理工大学, 2020.
[41] Cseke A, Heinemann R. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials[J]. Medical Engineering & Physics, 2018, 51: 24-30.
[42] Zhang Y, Wang C, Zhou S, et al. A Comparison Review on Orthopedic Surgery Using Piezosurgery and Conventional Tools[J]. Procedia CIRP, 2017, 65: 99-104.
[43] 林道贤, 戴绍业, 钟世磐. 关节镜术——一门新兴的外科技术[J]. 新医学, 1985, 606-608.
[44] Chen Z, Zhang Y, Wang C, et al. Understanding the cutting mechanisms of composite structured soft tissues[J]. International Journal of Machine Tools and Manufacture, 2021, 161: 103685.
[45] Pang X, Zhang Y, Wang C, et al. Effect of cutting parameters on cutting force and surface quality in cutting of articular cartilage[J]. Procedia CIRP, 2020, 89: 116-121.
[46] Schafer M E. Ultrasonic surgical devices and procedures[M]//. Power Ultrasonics. 2015: 633-660.
[47] Sun D, Zhou Z Y, Liu Y H, et al. Development and application of ultrasonic surgical instruments[J]. IEEE Transactions on Biomedical Engineering, 1997, 44: 462-467.
[48] Vasquez J M, Eisenberg E, Osteen K G, et al. Laparoscopic Ablation of Endometriosis Using the Cavitational Ultrasonic Surgical Aspirator[J]. The Journal of the American Association of Gynecologic Laparoscopists, 1993, 1: 36-42.
[49] Bodzin A S, Leiby B E, Ramirez C G, et al. Liver resection using cavitron ultrasonic surgical aspirator (CUSA) versus harmonic scalpel: a retrospective cohort study[J]. International Journal of Surgery, 2014, 12: 500-503.
[50] Bonin E A, Mariani A, Swain J, et al. Laparoscopic ultrasound-assisted liposuction for lymph node dissection: a pilot study[J]. Surgical Endoscopy, 2012, 26: 1963-2023.
[51] Richards D, Mathieson A, Lucas M, et al. An ultrasonically assisted sagittal saw for large bone surgeries[C]. IEEE International Ultrasonics Symposium Proceedings, 2015: 5-8
[52] Ying C, Zhaoying Z, Ganghua Z. Effects of different tissue loads on high power ultrasonic surgery scalpel[J]. Ultrasound in Medicine and Biology, 2006, 32: 415-420.
[53] Lucas M, Mathieson A. Ultrasonic cutting for surgical applications[M]//. Power Ultrasonics. 2015: 695-721.
[54] Uchino K. Piezoelectric ceramics for transducers[M]//. Ultrasonic Transducers. 2012: 70-116.
[55] Stryker, SONOPET Ultrasonic Aspirator [EB/OL] (2022-02-15)
[2022-07-30]. https://neurosurgical.stryker.com/products/sonopet-ultrasonic-aspirator/.
[56] Cleary R, Wallace R, Simpson H, et al. A longitudinal-torsional mode ultrasonic needle for deep penetration into bone[J]. Ultrasonics, 2022, 124: 106756.
[57] Nakamura K. Ultrasonic transducers[M]. 2012.
[58] Nakamura K. Electrical evaluation of piezoelectric transducers[M]//. Ultrasonic Transducers. 2012: 264-276.
[59] 国家食品药品监督管理总局, 超声骨组织手术设备: YY/T 1601-2018[S]. 北京:中国标准出版社, 2018: 1-19
[60] Hadeishi H, Suzuki A, Yasui N, et al. Anterior Clinoidectomy and Opening of the Internal Auditory Canal Using an Ultrasonic Bone Curette[J]. Neurosurgery, 2003, 52: 254-261.
[61] Chang H S, Joko M, Song J S, et al. Ultrasonic bone curettage for optic canal unroofing and anterior clinoidectomy: Technical note[J]. Journal of Neurosurgery, 2006, 104: 621-624.
[62] Ueki K, Nakagawa K, Marukawa K, et al. Le Fort I osteotomy using an ultrasonic bone curette to fracture the pterygoid plates[J]. Journal of Cranio-Maxillofacial Surgery, 2004, 32: 381-386.
[63] Timothy J, Petralia V, Wilson J R. Use of an Ultrasonic Bone Curet for the Extraction of a Cervical Artificial Disc: A Novel Application: A Case Report[J]. JBJS Case Connector, 2018, 8: 14-24.
[64] Hazer D B, Yaşar B, Rosberg H-E, et al. Technical Aspects on the Use of Ultrasonic Bone Shaver in Spine Surgery: Experience in 307 Patients[J]. BioMed Research International, 2016, 2016: 8428530.
[65] Kuang Y, Sadiq M, Cochran S, et al. Design and Characterization of an Ultrasonic Surgical Tool Using d31 PMN-PT Plate[J]. Physics Procedia, 2015, 63: 182-188.
[66] Bejarano F, Feeney A, Wallace R, et al. An ultrasonic orthopaedic surgical device based on a cymbal transducer[J]. Ultrasonics, 2016, 72: 24-33.
[67] Alam K, Khan M, Silberschmidt V V. Analysis of forces in conventional and ultrasonically assisted plane cutting of cortical bone[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2013, 227: 636-642.
[68] Alam K, Mitrofanov A V, Silberschmidt V V. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone[J]. Medical Engineering & Physics, 2011, 33: 234-239.
[69] Sugita N, Shu L, Shimada T, et al. Novel surgical machining via an impact cutting method based on fracture analysis with a discontinuum bone model[J]. CIRP Annals, 2017, 66: 65-68.
[70] Eshet Y, Mann R R, Anaton A, et al. Microwave drilling of bones[J]. IEEE Transactions on Biomedical Engineering, 2006, 53: 1174-1182.
[71] 马赛, 李楠, 何达. 超声骨刀和高速磨钻在颈椎后路棘突纵割式椎板成形术中的应用比较[J]. 中国骨与关节杂志, 2022, 11: 504-509.
[72] 郑小涛. 超声弧面骨切割装置的设计及实验研究 [D]; 四川大学, 2021.
[73] 夏磊. 超声辅助钻削皮质骨的仿真与试验研究 [D]; 天津理工大学, 2019.
[74] 康仁科, 马付建, 董志刚, 等. 难加工材料超声辅助切削加工技术[J]. 航空制造技术, 2012, 44-49.
[75] Liu X, Wen B T, Chen Z Q, et al. Ultrasonic osteotome versus high-speed burr in cervical anterior vertebral subtotal resection: A retrospective study of 81 cases[J]. Neurochirurgie, 2020, 66: 369-372.
[76] Zhang Y, Robles-Linares J A, Chen L, et al. Advances in machining of hard tissues – From material removal mechanisms to tooling solutions[J]. International Journal of Machine Tools and Manufacture, 2022, 172: 103838.
[77] 曹凤国. 超声加工技术[M]. 2004.
[78] 杨晋玲. 用于水下金属探测成像的压电式微机械超声波换能器[J]. 中国测试, 2019, 45: 84-88.
[79] 吴妍, 费春龙, 杨新宇, 等. 聚焦超声换能器的研究现状与发展[J]. 压电与声光, 2019, 41: 904-909.
[80] 陈颖. 超声手术刀的研制现状与应用[J]. 生物医学工程学杂志, 2005, 22: 377-380.
[81] 易拥洁. MEMS压电薄膜超声换能器的研究 [D]; 重庆大学, 2020.
[82] 刘细宝, 钟利民, 郁涛, 等. 流量计用超声波探头的研制[J]. 声学与电子工程, 2020, 13-15.
[83] 张云电. 夹心式压电换能器及其应用[M]. 科学出版社, 2006.
[84] Gallego-Juárez J A, Graff K F. 1 - Introduction to power ultrasonics[M]// GALLEGO-JUáREZ J A, GRAFF K F. Power Ultrasonics. Oxford; Woodhead Publishing. 2015: 1-6.
[85] Gallego-Juárez J A. Power ultrasonics: new technologies and applications for fluid processing[M]//. Ultrasonic Transducers. 2012: 476-516.
[86] Aghapour Aktij S, Taghipour A, Rahimpour A, et al. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes[J]. Ultrasonics, 2020, 108: 106228.
[87] Sharma A, Jain V, Gupta D. A novel investigation study on float glass hole surface integrity & tool wear using Chemical assisted Rotary ultrasonic machining[J]. Materials Today: Proceedings, 2020, 26: 632-637.
[88] 邵健. 超声复合电加工振动系统特性分析与试验 [D]; 扬州大学, 2015.
[89] Nguyen L T, Modrak R T. Ultrasonic wavefield inversion and migration in complex heterogeneous structures: 2D numerical imaging and nondestructive testing experiments[J]. Ultrasonics, 2018, 82: 357-370.
[90] Zhang S, Guo Y, Chen Z, et al. Proposal for a novel elliptical ultrasonic aspirator and its fundamental performance in cartilage removal[J]. Ultrasonics, 2021, 109: 106259.
[91] Acevedo P, Das-Gupta D. The measurement of the spatial average temporal average intensity Isata and ultrasonic power W in composite ultrasonic transducers for medical application[J]. Ultrasonics, 2002, 40: 819-821.
[92] Kurosawa M K, Higuchi T. Transducer for High Speed and Large Thrust Ultrasonic Linear Motor Using Two Sandwich-Type Vibrators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45: 1188-1198.
[93] 贾洛. 超声椭圆振动车削工作头的设计与实验研究 [D]; 东北大学, 2015.
[94] Feucht F, Ketelaer J, Wolff A, et al. Latest Machining Technologies of Hard-to-cut Materials by Ultrasonic Machine Tool[J]. Procedia CIRP, 2014, 14: 148-152.
[95] Subhedar P B, Gogate P R. Ultrasound assisted intensification of biodiesel production using enzymatic interesterification[J]. Ultrason Sonochem, 2016, 29: 67-75.
[96] 侯尚, 费春龙, 杨新宇, 等. 血管内超声换能器的研究现状与进展[J]. 压电与声光, 2019, 41: 383-386.
[97] Yu P, Wang L, Jin J, et al. A novel piezoelectric actuated underwater robotic finger[J]. Smart Materials and Structures, 2019, 28: 105047.
[98] 张林森, 曾双贵, 宁小玲, 等. 超声耦合无线电能传输用发射换能器优化设计[J]. 压电与声光, 2022, 44: 407-412.
[99] Graff K F. 6 - Power ultrasonic transducers: principles and design[M]// GALLEGO-JUáREZ J A, GRAFF K F. Power Ultrasonics. Oxford; Woodhead Publishing. 2015: 127-158.
[100] 张东来. 基于3D打印技术制备无铅压电陶瓷及超声换能器的研究 [D]; 广东工业大学, 2022.
[101] 施浩然, 孔淑婷, 高桂玲, 等. 功率超声换能器压电元件阻抗匹配装置的设计与制作[J]. 电子设计工程, 2021, 29: 27-32.
[102] 张雄伟. 基于Labview的超声波发生器频率自动跟踪技术研究 [D]; 中北大学, 2022.
[103] Sherrit S, Wiederick H D, Mukherjee B K, et al. An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode[J]. Journal of Physics D: Applied Physics, 1997, 30: 2354.
[104] Von Arx M. Novel ultrasonic transducer design for fine-pitch wire bonding[C]. IEEE/CPMT/SEMI 28th International Electronics Manufacturing Technology Symposium, 2003 IEMT 2003, 2003: 49-53
[105] Lin S, Xu L, Wenxu H. A new type of high power composite ultrasonic transducer[J]. Journal of Sound and Vibration, 2011, 330: 1419-1431.
[106] Or S W, Chan H L W, Liu P C K. Piezocomposite ultrasonic transducer for high-frequency wire-bonding of microelectronics devices[J]. Sensors and Actuators A: Physical, 2007, 133: 195-199.
[107] Or S W, Chan H, Lo V, et al. Dynamics of an ultrasonic transducer used for wire bonding[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45: 1453-1460.
[108] Parrini L. Design of advanced ultrasonic transducers for welding devices[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48: 1632-1639.
[109] Zhang H, Ning X, Zhao C, et al. Optimization design of a new type of high-frequency piezoelectric ultrasonic transducer with the compliant hinge-based mounting clamp[J]. Sensors and Actuators A: Physical, 2020, 315: 112284.
[110] Zhang H, Zhao J, Hou Y, et al. A new method to enhance the tip vibration amplitude output of the high frequency piezoelectric ultrasonic transducer used in the thermosonic bonding[J]. Sensors and Actuators A: Physical, 2019, 294: 116-125.
[111] Liu Y, Ozaki R, Morita T. Investigation of nonlinearity in piezoelectric transducers[J]. Sensors and Actuators A: Physical, 2015, 227: 31-38.
[112] Yun C, Ishii T, Nakamura K, et al. A High Power Ultrasonic Linear Motor Using a Longitudinal and Bending Hybrid Bolt-Clamped Langevin Type Transducer[J]. Japanese Journal Of Applied Physics, 2001, 40: 3773-3776.
[113] Lu X, Hu J, Peng H, et al. A new topological structure for the Langevin-type ultrasonic transducer[J]. Ultrasonics, 2017, 75: 142-156.
[114] Li J, Liu H, Li J, et al. Piezoelectric transducer design for an ultrasonic scalpel with enhanced dexterity for minimally invasive surgical robots[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 234: 1271-1285.
[115] Han L, Zhong J, Gao G. Effect of tightening torque on transducer dynamics and bond strength in wire bonding[J]. Sensors and Actuators, A: Physical, 2008, 141: 695-702.
[116] Parrini L. New techniques for the design of advanced ultrasonic transducers for wire bonding[J]. IEEE transactions on electronics packaging manufacturing, 2003, 26: 37-45.
[117] 李双双. 大功率超声波振动系统分析与设计 [D]; 杭州电子科技大学, 2015.
[118] Al-Budairi H, Lucas M, Harkness P. A design approach for longitudinal–torsional ultrasonic transducers[J]. Sensors and Actuators A: Physical, 2013, 198: 99-106.
[119] Hall D A. Nonlinearity in piezoelectric ceramics[J]. Journal of Materials Science, 2001, 36: 4575-4601.
[120] Devos S, Reynaerts D, Van Brussel H. Minimising heat dissipation in ultrasonic piezomotors by working in a resonant mode[J]. Precision Engineering, 2008, 32: 114-125.
[121] Tanaka T, Oiwa T, Syamsul H. Positioning behavior resulting from the application of ultrasonic oscillation to a linear motion ball bearing during step motion[J]. Precision Engineering, 2018, 51: 362-372.
[122] 鲜晓军, 赵天龙, 孙昕郝, 等. BS-PT基高温压电超声换能器研究[J]. 压电与声光, 2022, 44: 431-434.
[123] Land C E, Smith G W, Westgate C R. The Dependence of the Small-Signal Parameters of Ferroelectric Ceramic Resonators Upon State of Polarization[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1964, 11: 118-120.
[124] Guyomar D, Aurelle N, Eyraud L. Piezoelectric Ceramics Nonlinear Behavior. Application to Langevin Transducer[J]. Journal de Physique III, 1997, 7: 1197-1208.
[125] Aurelle N, Guyomar D, Richard C, et al. Nonlinear behavior of an ultrasonic transducer[J]. Ultrasonics, 1996, 34: 187-191.
[126] Li X, Yao Z, Mi Y, et al. Modeling, analysis and suppression of current harmonics of Langevin-type ultrasonic motors under high voltage[J]. Precision Engineering, 2020, 64: 177-187.
[127] Maeda M, Washihira M, Hashimoto H, et al. Measurement of Nonlinear Elastic Constants of Piezoelectric Ceramics[J]. Journal of the Physical Society of Japan, 2007, 76: 084704.
[128] Lu S F, Zhang W, Song X J. Time-varying nonlinear dynamics of a deploying piezoelectric laminated composite plate under aerodynamic force[J]. Acta Mechanica Sinica, 2017, 34: 303-314.
[129] Lu S F, Jiang Y, Zhang W, et al. Vibration suppression of cantilevered piezoelectric laminated composite rectangular plate subjected to aerodynamic force in hygrothermal environment[J]. European Journal of Mechanics - A/Solids, 2020, 83: 104002.
[130] Zhang W, Yang J H, Zhang Y F, et al. Nonlinear transverse vibrations of angle-ply laminated composite piezoelectric cantilever plate with four-modes subjected to in-plane and out-of-plane excitations[J]. Engineering Structures, 2019, 198: 109501.
[131] Umeda M, Nakamura K, Takahashi S, et al. Waveforms of the Vibration Velocity and the Current of a Piezoelectric Transducer in the Transient State[J]. Japanese Journal of Applied Physics, 2001, 40: 5735-5739.
[132] Liu Y, Morita T. Nonlinear coefficients in lead-free CuO–(K,Na)NbO3 transducers[J]. Japanese Journal of Applied Physics, 2015, 54: 07hc01.
[133] Guyomar D, Ducharne B, Sebald G. High nonlinearities in Langevin transducer: a comprehensive model[J]. Ultrasonics, 2011, 51: 1006-1019.
[134] Schafer M E. 21 - Ultrasonic surgical devices and procedures[M]// GALLEGO-JUáREZ J A, GRAFF K F. Power Ultrasonics. Oxford; Woodhead Publishing. 2015: 633-660.
[135] 徐嘉林. 弛豫铁电单晶高压电响应及其在医用超声换能器中的应用研究 [D]; 中国科学院大学(中国科学院上海硅酸盐研究所), 2021.
[136] Wu F, Chen W-Z, Bai J, et al. Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound[J]. Ultrasound in Medicine & Biology, 2001, 27: 1099-1106.
[137] Do-Huu J P, Hartemann P. Deep and Local Heating Induced by an Ultrasound Phased Array Transducer[C]. 1982 Ultrasonics Symposium, 1982: 735-738
[138] Wu F, Wang Z B, Cao Y D, et al. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer[J]. British Journal of Cancer, 2003, 89: 2227-2233.
[139] Li C, Zhang W, Fan W, et al. Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound[J]. Cancer, 2010, 116: 3934-3942.
[140] Zhang L, Chen W-Z, Liu Y-J, et al. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus[J]. European Journal of Radiology, 2010, 73: 396-403.
[141] Burtnyk M, N’djin W A, Kobelevskiy I, et al. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms[J]. Physics in Medicine and Biology, 2010, 55: 6817-6839.
[142] Beiring P, Yan J. Ultrasonic vibration-assisted microgrinding of glassy carbon[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233: 4165-4175.
[143] Wang F, Zhang H, Liang C, et al. Design of High Frequency Ultrasonic Transducers with Flexure Decoupling Flanges for Thermosonic Bonding[J]. IEEE Transactions on Industrial Electronics, 2015, 18-25.
[144] Cochran S. Piezoelectricity and basic configurations for piezoelectric ultrasonic transducers[M]//. Ultrasonic Transducers. 2012: 3-35.
[145] Karafi M, Kamali S. A continuum electro-mechanical model of ultrasonic Langevin transducers to study its frequency response[J]. Applied Mathematical Modelling, 2021, 92: 44-62.
[146] Voronina S, Babitsky V, Meadows A. Modelling of autoresonant control of ultrasonic transducer for machining applications[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222: 1957-1974.
[147] Zhang S, Li Y, Li S, et al. Investigation of the nonlinear phenomena of a Langevin ultrasonic transducer caused by high applied voltage[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021,
[148] Mathieson A, Cardoni A, Cerisola N, et al. The influence of piezoceramic stack location on nonlinear behavior of Langevin transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60: 1126-1133.
[149] Ramesh R, Kumar R K, Kumar T K V. Heat generation in 1–3 piezoceramic—polymer composites[J]. Journal of Electroceramics, 2013, 30: 251-257.
[150] Hagiwara M, Hoshina T, Takeda H, et al. Identicalness between Piezoelectric Loss and Dielectric Loss in Converse Effect of Piezoelectric Ceramic Resonators[J]. Japanese Journal of Applied Physics, 2012, 51: 09ld10.
[151] Cochran S, Démoré C E M, Courtney C R P. Modelling ultrasonic-transducer performance: one-dimensional models[M]//. Ultrasonic Transducers. 2012: 187-219.
[152] Feng J, Liu C, Zhang W, et al. Mechanical Behaviors Research and the Structural Design of a Bipolar Electrostatic Actuation Microbeam Resonator[J]. Sensors (Basel), 2019, 19: 156-168.
[153] Nayfeh A H. Introduction to perturbation techniques[M]. John Wiley & Sons, 2011.
[154] Nayfeh A H, Mook D T. Nonlinear oscillations[M]. John Wiley & Sons, 2008.
[155] Cveticanin L. Analysis Techniques for the Various Forms of the Duffing Equation[M]//. The Duffing Equation. 2011: 81-137.
[156] Parmar D, Mann M, Walmsley A D, et al. Cutting characteristics of ultrasonic surgical instruments[J]. Clinical Oral Implants Research, 2011, 22: 1385-1392.
[157] Wu Y, Fan Y, Kato M, et al. Development of an ultrasonic elliptic-vibration shoe centerless grinding technique[J]. Journal of Materials Processing Technology, 2004, 155-156: 1780-1787.
[158] Li Y, Wu Y, Zhou L, et al. Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher[J]. International Journal of Machine Tools and Manufacture, 2014, 77: 93-102.
[159] Zhang Q, Shi S, Chen W. An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer[J]. Ultrasonics, 2016, 66: 18-26.
[160] Passacantilli E, Antonelli M, D'amico A, et al. Neurosurgical applications of the 2-mum thulium laser: histological evaluation of meningiomas in comparison to bipolar forceps and an ultrasonic aspirator[J]. Photomedicine and Laser Surgery, 2012, 30: 286-292.
[161] Zadeh G, Salehi F, An S, et al. Diagnostic implications of histological analysis of neurosurgical aspirate in addition to routine resections[J]. Neuropathology, 2012, 32: 44-50.
[162] Davids J R. Review of Orthopaedics[J]. Journal of Pediatric Orthopaedics, 1993, 13:
[163] Giner E, Arango C, Vercher A, et al. Numerical modelling of the mechanical behaviour of an osteon with microcracks[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37: 109-124.
[164] Misonix, BoneScalpel_neXus_banner [EB/OL]
[9 March 2022]. https://www.misonix.com/products/bone-scalpel/#reference1.
[165] Bai X, Hou S, Li K, et al. Analysis of machining process and thermal conditions during vibration-assisted cortical bone drilling based on generated bone chip morphologies[J]. Medical Engineering & Physics, 2020, 83: 73-81.
[166] Zhang S, Chen Z, Li G, et al. A novel Z-shaped elastic flange structure for increasing the amplitude output of a piezoelectric ultrasonic transducer[J]. Sensors and Actuators A: Physical, 2021, 331: 112995.
[167] Khambay B S, Walmsley A D. Investigations into the use of an ultrasonic chisel to cut bone.[J]. Journal of Dentistry, 2000, 28: 31-37.
[168] Robles-Linares J A, Axinte D, Liao Z, et al. Machining-induced thermal damage in cortical bone: Necrosis and micro-mechanical integrity[J]. Materials and Design, 2021, 197: 86-95.
[169] Giner E, Arango C, Vercher A, et al. Numerical modelling of the mechanical behaviour of an osteon with microcracks[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37: 109-133.
[170] Bai W, Shu L, Sun R, et al. Improvements of material removal in cortical bone via impact cutting method[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 108: 103791.
修改评论