中文版 | English
题名

铜催化的二醇类化合物自由基对映选择性去对称化反应研究

其他题名
STUDIES ON COPPER-CATALYZED ENANTIOSELECTIVE RADICAL DESYMMETRIZATION OF DIOLS
姓名
姓名拼音
YU Zhanglong
学号
11849562
学位类型
博士
学位专业
0817 化学工程与技术
学科门类/专业学位类别
08 工学
导师
刘心元
导师单位
化学系
论文答辩日期
2023-04-14
论文提交日期
2023-06-12
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

手性含氧化合物广泛存在于药物分子、生物活性物质和天然产物中,这类化 合物的高效合成有着重要的应用价值。在众多构建方法中,二醇化合物的对映选 择性去对称化策略日益受到关注,其原因在于该策略有着底物易合成、反应类型 多样、便于构建季碳手性中心等优点,但目前基于离子型反应机理的对映选择性 去对称化报道存在底物适用范围窄、官能团兼容性有限、全碳季碳手性中心构建 少等局限。与之对应的,自由基反应具有活性高、官能团兼容性广、受空间位阻 影响小等特点,但自由基的立体选择性控制是现代有机合成领域极具挑战性的课 题之一,文献报道中尚未实现自由基参与的催化对映选择性去对称化反应。针对 这一挑战性课题,本论文通过发展不同铜催化体系,系统性研究了几类高活性自 由基与二醇类化合物的对映选择性去对称化反应,发展了手性含氧化合物合成的 新方法,实现了几类极具合成挑战性的季碳手性中心的高对映选择性构建,为高 活性自由基的立体选择性控制提供了新思路。主要内容如下: 以高活性烷基 π 自由基的立体选择性控制为研究目标,设计了铜/手性磷酸的 协同催化体系,通过催化剂与原位产生的烷基自由基物种之间紧密的相互作用, 实现了自由基参与的催化对映选择性去对称化新反应。该反应采用前手性烯基二 醇化合物作为反应底物,通过全氟烷基磺酰氯产生的全氟烷基自由基与烯烃发生 自由基加成实现反应的启动,反应中需要加入碳酸银作为添加剂,用以中和副产 物盐酸,从而抑制非手性背景反应的发生。该反应官能团兼容性好、反应条件温 和,在两个手性中心位置不仅兼容吸电子/给电子基团取代的苯环,而且兼容呋喃、 噻吩等芳杂环,能以最高 96%的收率、最高 >20:1 的非对映选择性和最高 97%的 对映选择性获得目标手性产物。反应产物通过衍生化可以一步合成手性螺杂环化 合物。成功为含两个季碳手性中心的四氢呋喃类化合物的高效构筑提供了新方法。 以酰基 σ 自由基的远程立体选择性控制为研究目标,设计了铜/手性二齿磺酰 胺配体催化体系,通过与二醇类化合物分子间的对映选择性去对称化反应,实现 了这一活性 σ 自由基的远程立体选择性控制。该反应以简单易得的(杂)芳基、 烷基醛作为高原子经济性酰基自由基前体,兼容包括前手性 1,3-二醇、2-胺基1,3-二醇、1,2,3-三醇以及部分羟基被保护的内消旋四醇在内的多种醇类化合物。 以最高 89%的收率、最高 98%的对映选择性高效构建了全碳、含氧、含氮和含氯 季碳手性中心骨架。反应产物可以进一步衍生化为手性三碳合成子、α,α-双取代手性非天然氨基酸,展现了该催化策略的应用价值。控制实验证明酰基自由基参 与了手性控制步骤并排除了可能的离子型反应机理,该反应为高活性 σ 自由基的 对映选择性控制提供了新方法。 以磺酰基 σ自由基参与的对映选择性杂原子–杂原子交叉偶联反应为研究目标, 利用铜/手性双齿磺酰胺配体催化体系,通过自由基单电子还原消除的外球反应机 理,避免了杂原子难以双电子还原消除这一难题,实现了对映选择性硫–氧杂原 子交叉偶联反应。该反应普适性好,能够兼容前手性 1,3-二醇、内消旋 1,2-二醇 以及 1,2,3-三醇等醇类化合物,以最高 97%的反应收率、最高 99%的对映选择性 构建了全碳和含氧的季碳手性中心骨架。机理实验研究表明反应手性控制涉及磺 酰基自由基历程,控制实验说明碳酸银与质子海绵通过淬灭反应产生的盐酸,提 高了反应效率和对映选择性。在反应的应用性上,成功将甘油这一大宗化工原料 直接应用于该催化体系,并实现了克级规模转化。甘油经一步催化反应即可得到 高对映选择性的手性产物,通过简单衍生化可以得到多种重要的手性三碳合成子, 实现了甘油的高附加值转化。特别是使用 71%纯度的工业粗甘油也能实现高对映 选择性控制(82% ee)。 此外还完成了抗真菌药关键中间体以及药物左羟丙哌嗪的 合成,证明了该反应潜在的应用价值。 

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-06
参考文献列表

[1] GOMBERG M. An Instance of Trivalent Carbon: Triphenylmethyl [J]. Journal of the American Chemical Society, 1900, 22(11): 757-771.
[2] SCHOEPFLE C, BACHMANN W. Moses Gomberg 1866-1947 [J]. Journal of the American Chemical Society, 1947, 69(12): 2921-2925.
[3] RENAUD P, SIBI M P. Radicals in Organic Synthesis [M]. Weinheim: Wiley-VCH, 2001.
[4] TOGO H. Advanced Free Radical Reactions for Organic Synthesis [M]. Amsterdam: Elsevier, 2003.
[5] YAN M, LO J C, EDWARDS J T, et al. Radicals: Reactive Intermediates with Translational Potential [J]. Journal of the American Chemical Society, 2016, 138(39): 12692-12714.
[6] WANG K, KONG W. Recent Advances in Transition Metal-Catalyzed Asymmetric Radical Reactions [J]. Chinese Journal of Chemistry, 2018, 36(3): 247-256.
[7] ZENG X-P, CAO Z-Y, WANG Y-H, et al. Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters [J]. Chemical Reviews, 2016, 116(12): 7330–7396.
[8] PETERSEN K S. Nonenzymatic Enantioselective Synthesis of All-Carbon Auaternary Centers through Desymmetrization [J]. Tetrahedron Letters, 2015, 56(47): 6523–6535.
[9] ENRIQUEZ-GARCIA A, KUNDIG E P. Desymmetrisation of meso-diols mediated by non-enzymatic acyl transfer catalysts [J]. Chemical Society Reviews, 2012, 41(23): 7803-7831.
[10] DÍAZ-DE-VILLEGAS M D, GÁLVEZ J A, BADORREY R, et al. Organocatalyzed enantioselective desymmetrization of diols in the preparation of chiral building blocks [J]. Chemistry–A European Journal, 2012, 18(44): 1392013935.
[11] 滕明瑜, 韩涛, 黄恩, 等. 金属卡宾参与的对映选择性去对称化反应研究进展 [J]. 有机化学, 2022, 42(10): 3295-3301.
[12] BORISSOV A, DAVIES T Q, ELLIS S R, et al. Organocatalytic Enantioselective Desymmetrisation [J]. Chemical Society Reviews, 2016, 45(20): 5474–5540.
[13] NÁJERA C, FOUBELO F, SANSANO J M, et al. Enantioselective desymmetrization reactions in asymmetric catalysis [J]. Tetrahedron, 2022, 106107: 132629.
[14] XU Y, ZHAI T-Y, XU Z, et al. Recent advances towards organocatalytic enantioselective desymmetrizing reactions [J]. Trends in Chemistry, 2022, 4(3): 191-205.
[15] CURRAN D P, GEIB S J, LIN C-H. Group selective radical cyclizations with Oppolzer's camphor sultam [J]. Tetrahedron: Asymmetry, 1994, 5(2): 199-202.
[16] MURAHASHI S-I, NOJI S, HIRABAYASHI T, et al. Manganese-catalyzed enantioselective oxidation of C–H bonds of alkanes and silyl ethers to optically active ketones [J]. Tetrahedron: Asymmetry, 2005, 16(21): 3527-3535.
[17] GANSÄUER A, FAN C A, KELLER F, et al. Regiodivergent epoxide opening: a concept in stereoselective catalysis beyond classical kinetic resolutions and desymmetrizations [J]. Chemistry – A European Journal, 2007, 13(29): 8084-8090.
[18] ZHAO Y, WEIX D J. Enantioselective cross-coupling of meso-epoxides with aryl halides [J]. Journal of the American Chemical Society, 2015, 137(9): 3237-3240.
[19] YE K Y, MCCALLUM T, LIN S. Bimetallic Radical Redox-Relay Catalysis for the Isomerization of Epoxides to Allylic Alcohols [J]. Journal of the American Chemical Society, 2019, 141(24): 9548-9554.
[20] BOVINO M T, LIWOSZ T W, KENDEL N E, et al. Enantioselective coppercatalyzed carboetherification of unactivated alkenes [J]. Angewandte Chemie International Edition, 2014, 53(25): 6383-6387.
[21] KERN N, PLESNIAK M P, MCDOUALL J J W, et al. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals [J]. Nature Chemistry, 2017, 9(12): 1198-1204.
[22] STACHE E E, ROVIS T, DOYLE A G. Dual Nickel- and Photoredox-Catalyzed Enantioselective Desymmetrization of Cyclic meso-Anhydrides [J]. Angewandte Chemie International Edition, 2017, 56(13): 3679-3683.
[23] FUJITA K, MORI K. Synthesis of (2R,4R)-Supellapyrone, the Sex Pheromone of the Brownbanded Cockroach, Supella longipalpa, and Its Three Stereoisomers [J]. European Journal of Organic Chemistry, 2001, 2001(3): 493-502.
[24] OBAME G, PELLISSIER H, VANTHUYNE N, et al. Preparation of both enantiomers of a synthon for novel nucleoside analogs by enzymatic desymmetrization of a meso-diol with a methylene cyclopropane skeleton [J]. Tetrahedron Letters, 2011, 52(10): 1082-1085.
[25] OBAME G, BRÉMOND P, PANNECOUQUE C, et al. Synthesis and Biological Evaluation of Methylenecyclopropane Analogues of Nucleosides [J]. Synthesis, 2013, 45(18): 2612-2618.
[26] THIEL D, DESKA J. On a Chemoenzymatic Desymmetrization–Ring Expansion Strategy towards Functionalized N-Heterocycles [J]. Synlett, 2013, 24(12): 15291532.
[27] HOLEC C, SANDKUHL D, ROTHER D, et al. Chemoenzymatic Synthesis towards the Active Agent Travoprost [J]. ChemCatChem, 2015, 7(19): 3125-3130.
[28] ORIYAMA T, IMAI K, HOSOYA T, et al. Asymmetric acylation of meso-diols with benzoyl halide in the presence of a chiral diamine [J]. Tetrahedron Letters, 1998, 39(5-6): 397-400.
[29] ORIYAMA T, IMAI K, SANO T, et al. Highly efficient catalytic asymmetric acylation of meso-1,2-diols with benzoyl chloride in the presence of a chirai diamine combined with Et3N [J]. Tetrahedron Letters, 1998, 39(21): 3529-3532.
[30] MIZUTA S, SADAMORI M, FUJIMOTO T, et al. Asymmetric desymmetrization of meso-1,2-diols by phosphinite derivatives of cinchona alkaloids [J]. Angewandte Chemie International Edition, 2003, 42(29): 3383-3385.
[31] AIDA H, MORI K, YAMAGUCHI Y, et al. Enantioselective Acylation of 1,2- and 1,3-Diols Catalyzed by Aminophosphinite Derivatives of (1S,2R)-1-Amino-2indanol [J]. Organic Letters, 2012, 14(3): 812–815.
[32] XU K, NAKAZONO K, TAKATA T. Design of Rotaxane Catalyst for O-Acylative Asymmetric Desymmetrization of meso-1,2-Diol Utilizing the Cooperative Effect of the Components [J]. Chemistry Letters, 2016, 45(11): 1274-1276.
[33] MANDAI H, YASUHARA H, FUJII K, et al. Desymmetrization of meso-1,2-Diols by a Chiral N,N-4-Dimethylaminopyridine Derivative Containing a 1,1'Binaphthyl Unit: Importance of the Hydroxy Groups [J]. The Journal of Organic Chemistry, 2017, 82(13): 6846-6856.
[34] MIZUTA S, TSUZUKI T, FUJIMOTO T, et al. Catalytic asymmetric desymmetrization of cyclic meso-1,3- and 1,4-diols by a phosphinite derivative of quinidine [J]. Organic Letters, 2005, 7(17): 3633-3635.
[35] YAMADA S, MISONO T, IWAI Y, et al. New class of pyridine catalyst having a conformation switch system: asymmetric acylation of various sec-alcohols [J]. The Journal of Organic Chemistry, 2006, 71(18): 6872-6880.
[36] MATSUMURA Y, MAKI T, MURAKAMI S, et al. Copper ion-induced activation and asymmetric benzoylation of 1,2-diols: kinetic chiral molecular recognition [J]. Journal of the American Chemical Society, 2003, 125(8): 2052-2053.
[37] KAŁUŻA Z, BIELAWSKI K, ĆWIEK R, et al. C2-Symmetric hemiaminal ethers and diamines: new ligands for copper-catalyzed desymmetrization of meso-1,2diols and asymmetric Henry reactions [J]. Tetrahedron: Asymmetry, 2013, 24(2122): 1435-1442.
[38] CANIPA S J, STUTE A, O'BRIEN P. Use of copper(II)/diamine catalysts in the desymmetrisation of meso-diols and asymmetric Henry reactions: comparison of (−)-sparteine and (+)-sparteine surrogates [J]. Tetrahedron, 2014, 70(40): 73957403.
[39] HASHIMOTO Y, MICHIMUKO C, YAMAGUCHI K, et al. Selective Monoacylation of Diols and Asymmetric Desymmetrization of Dialkyl mesoTartrates Using 2-Pyridyl Esters as Acylating Agents and Metal Carboxylates as Catalysts [J]. The Journal of Organic Chemistry, 2019, 84(14): 9313-9321.
[40] CHINNARAJA E, ARUNACHALAM R, SURESH E, et al. Binuclear DoubleStranded Helicates and Their Catalytic Applications in Desymmetrization of Mesodiols [J]. Inorganic Chemistry, 2019, 58(7): 4465-4479.
[41] CHINNARAJA E, ARUNACHALAM R, SAMANTA J, et al. Desymmetrization of meso diols using enantiopure zinc (II) dimers: Synthesis and chiroptical properties [J]. Applied Organometallic Chemistry, 2019, 33(5): e4827.
[42] ROUX C, CANDY M, PONS J M, et al. Stereocontrol of all-carbon quaternary centers through enantioselective desymmetrization of meso primary diols by organocatalyzed acyl transfer [J]. Angewandte Chemie International Edition, 2014, 53(3): 766-770.
[43] ZHAO Y, RODRIGO J, HOVEYDA A H, et al. Enantioselective Silyl Protection of Alcohols Catalysed by an Amino-acid-based Small Molecule [J]. Nature, 2006, 443(7107): 67–70.
[44] MANVILLE N, ALITE H, HAEFFNER F, et al. Enantioselective Silyl Protection of Alcohols Promoted by a Combination of Chiral and Achiral Lewis Basic Catalysts [J]. Nature Chemistry, 2013, 5(9): 768–774.
[45] SUN X, WORTHY A D, TAN K L. Scaffolding catalysts: highly enantioselective desymmetrization reactions [J]. Angewandte Chemie International Edition, 2011, 50(35): 8167-8171.
[46] FIORI K W, PUCHLOPEK A L, MILLER S J. Enantioselective Sulfonylation Reactions Mediated by a Tetrapeptide Catalyst [J]. Nature Chemistry, 2009, 1(8): 630–634.
[47] KUWANO S, HOSAKA Y, ARAI T. Chiral benzazaboroles as catalysts for enantioselective sulfonylation of cis-1,2-diols [J]. Organic & Biomolecular Chemistry, 2019, 17(18): 4475-4482.
[48] DEMIZU Y, MATSUMOTO K, ONOMURA O, et al. Copper complex catalyzed asymmetric monosulfonylation of meso-vic-diols [J]. Tetrahedron Letters, 2007, 48(43): 7605-7609.
[49] HAMAGUCHI N, KURIYAMA M, ONOMURA O. Chiral copper-catalyzed asymmetric monoarylation of vicinal diols with diaryliodonium salts [J]. Tetrahedron: Asymmetry, 2016, 27(4-5): 177-181.
[50] LI R Z, TANG H, YANG K R, et al. Enantioselective Propargylation of Polyols and Desymmetrization of meso 1,2-Diols by Copper/Borinic Acid Dual Catalysis [J]. Angewandte Chemie International Edition, 2017, 56(25): 7213-7217.
[51] HAO B, GUNARATNA M J, ZHANG M, et al. Chiral-Substituted Poly-Nvinylpyrrolidinones and Bimetallic Nanoclusters in Catalytic Asymmetric Oxidation Reactions [J]. Journal of the American Chemical Society, 2016, 138(51): 16839-16848.
[52] RONG Z Q, PAN H J, YAN H L, et al. Enantioselective oxidation of 1,2-diols with quinine-derived urea organocatalyst [J]. Organic Letters, 2014, 16(1): 208-211.
[53] MORITANI J, HASEGAWA Y, KAYAKI Y, et al. Aerobic oxidative desymmetrization of meso-diols with bifunctional amidoiridium catalysts bearing chiral N-sulfonyldiamine ligands [J]. Tetrahedron Letters, 2014, 55(6): 1188-1191.
[54] TANAKA M, SATO K, YOSHIDA R, et al. Diastereoselective desymmetric 1,2cis-glycosylation of meso-diols via chirality transfer from a glycosyl donor [J]. Nature Communications, 2020, 11(1): 2431.
[55] SUZUKI T. Recent topics in the desymmetrization of meso-diols [J]. Tetrahedron Letters, 2017, 58(51): 4731-4739.
[56] GARCIA-URDIALES E, ALFONSO I, GOTOR V. Enantioselective enzymatic desymmetrizations in organic synthesis [J]. Chemical Reviews, 2011, 111(5): PR110-PR180.
[57] FADEL A, ARZEL P. Asymmetric construction of benzylic quaternary carbons by lipase-mediated enantioselective transesterification of prochiral α,α-disubstituted 1,3-propanediols [J]. Tetrahedron: Asymmetry, 1997, 8(2): 283-291.
[58] GUANTI G, BANFI L, RIVA R. Enzymatic asymmetrization of some prochiral and meso diols through monoacetylation with pig pancreatic lipase (PPL) [J]. Tetrahedron: Asymmetry, 1994, 5(1): 9-12.
[59] TSUJI K, TERAO Y, ACHIWA K. Lipase-catalyzed asymmetric synthesis of chiral 1,3-propanediols and its application to the preparation of optically pure building block for renin inhibitors [J]. Tetrahedron Letters, 1989, 30(45): 6189-6192.
[60] TOMBO G M R, SCHÄR H P, I BUSQUETS X F, et al. Synthesis of both enantiomeric forms of 2-substituted 1,3-propanediol monoacetates starting from a common prochiral precursor, using enzymatic transformations in aqueous and in organic media [J]. Tetrahedron Letters, 1986, 27(47): 5707-5710.
[61] KIRIHARA M, TAKUWA T, KAWASAKI M, et al. Synthesis of (+)-(R)-1-Amino2,2-difluorocyclopropane-1-carboxylic Acid through Lipase-Catalyzed Asymmetric Acetylation [J]. Chemistry Letters, 1999, 28(5): 405-406.
[62] KHONG D T, PAMARTHY V S, GALLAGHER T, et al. Chemoenzymatic Synthesis of Chiral 1-Benzyl-5-(hydroxymethyl)-2-piperidone Enabled by Lipase AK-Mediated Desymmetrization of Prochiral 1,3-Diol and Its Diacetate [J]. European Journal of Organic Chemistry, 2016, 2016(18): 3084-3089.
[63] PIZZILLI A, ZOPPI R, HOYOS P, et al. First stereoselective acylation of a primary diol possessing a prochiral quaternary center mediated by lipase TL from Pseudomonas stutzeri [J]. Tetrahedron, 2015, 71(48): 9172-9176.
[64] AKAI S, NAKA T, FUJITA T, et al. Efficient lipase-catalyzed enantioselective desymmetrization of prochiral 2,2-disubstituted 1,3-propanediols and meso 1,2diols using 1-ethoxyvinyl 2-furoate [J]. The Journal of Organic Chemistry, 2002, 67(2): 411-419.
[65] AKAI S, TSUJINO T, NAKA T, et al. Lipase-catalyzed enantioselective desymmetrization of prochiral 3,3-bis(hydroxymethyl)oxindoles [J]. Tetrahedron Letters, 2001, 42(41): 7315-7317.
[66] AKAI S, NAKA T, TAKEBE Y, et al. Lipase-catalyzed asymmetric desymmetrization of prochiral 2,2-disubstituted 1,3-propanediols using 1ethoxyvinyl benzoate [J]. Chemical & Pharmaceutical Bulletin, 2000, 48(10): 1519-1523.
[67] TROST B M, MINO T. Desymmetrization of Meso 1,3- and 1,4-Diols with a Dinuclear Zinc Asymmetric Catalyst [J]. Journal of the American Chemical Society, 2003, 125(9): 2410–2411.
[68] TROST B M, MALHOTRA S, MINO T, et al. Dinuclear Zinc-Catalyzed Asymmetric Desymmetrization of Acyclic 2-Substituted-1,3-Propanediols: A Powerful Entry into Chiral Building Blocks [J]. Chemistry–A European Journal, 2008, 14(25): 7648–7657.
[69] HONJO T, NAKAO M, SANO S, et al. Nonenzymatic Enantioselective Monoacetylation of Prochiral 2-Protectedamino-2-Alkyl-1,3-Propanediols Utilizing A Chiral Sulfonamide–Zn Complex Catalyst [J]. Organic Letters, 2007, 9(3): 509–512.
[70] MITSUDA M, TANAKA T, TANAKA T, et al. Kinetic Resolution of vic-Amino Alcohols Catalyzed by a Chiral Cu(II) Complex [J]. Tetrahedron Letters, 2006, 47(46): 8073–8077.
[71] JUNG B, HONG M S, KANG S H. Enantioselective Synthesis of Tertiary Alcohols by the Desymmetrizing Benzoylation of 2-Substituted Glycerols [J]. Angewandte Chemie International Edition, 2007, 46(15): 2616–2618.
[72] JUNG B, KANG S H. Chiral Imine Copper Chloride-Catalyzed Enantioselective Desymmetrization of 2-Substituted 1,2,3-Propanetriols [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5): 1471–1475.
[73] HONG M S, KIM T W, JUNG B, et al. Enantioselective Formation of tertAlkylamines by Desymmetrization of 2-Substituted Serinols [J]. Chemistry–A European Journal, 2008, 14(11): 3290–3296.
[74] LEE J Y, YOU Y S, KANG S H. Asymmetric Synthesis of All-Carbon Quaternary Stereocenters via Desymmetrization of 2,2-Disubstituted 1,3-Propanediols [J]. Journal of the American Chemical Society, 2011, 133(6): 1772–1774.
[75] ONOMURA O, DEMIZU Y, KUBO Y, et al. Nonenzymatic Kinetic Resolution of 3-Hydroxyalkanamides with Chiral Copper Catalyst [J]. Synlett, 2008, 2008(3): 433-437.
[76] WANG Q, YE F, CAO J, et al. Copper-catalyzed enantioselective desymmetrization of prochiral tetrasubstituted siladiols: Access toward optically active silicon-stereogenic silylmethanols [J]. Catalysis Communications, 2020, 138: 105950.
[77] LEWIS C A, SCULIMBRENE B R, XU Y, et al. Desymmetrization of Glycerol Derivatives with Peptide-Based Acylation Catalysts [J]. Organic Letters, 2005, 7(14): 3021–3023.
[78] SAKAKURA A, UMEMURA S, ISHIHARA K. Desymmetrization of mesoGlycerol Derivatives Induced by L-Histidine-Derived Acylation Catalysts [J]. Advanced Synthesis & Catalysis, 2011, 353(11-12): 1938-1942.
[79] LI B-S, WANG Y, PROCTOR R S, et al. Carbene-Catalyzed Desymmetrization of 1,3-Diols: Access to Optically Enriched Tertiary Alkyl Chlorides [J]. Chemical Communications, 2016, 52(53): 8313–8316.
[80] WU Z, WANG J. Enantioselective Medium-Ring Lactone Synthesis through an NHC-Catalyzed Intramolecular Desymmetrization of Prochiral 1,3-Diols [J]. ACS Catalysis, 2017, 7(11): 7647–7652.
[81] MANDAI H, ASHIHARA K, MITSUDO K, et al. Enantioselective Desymmetrization of 1,3-Diols by a Chiral DMAP Derivative [J]. Chemistry Letters, 2018, 47(11): 1360–1363.
[82] MENG S-S, LIANG Y, CAO K-S, et al. Chiral Phosphoric Acid Catalyzed Highly Enantioselective Desymmetrization of 2-Substituted and 2,2-Disubstituted 1,3Diols via Oxidative Cleavage of Benzylidene Acetals [J]. Journal of the American Chemical Society, 2014, 136(35): 12249–12252.
[83] MENG S-S, TANG W-B, ZHENG W-H. Catalytically Enantioselective Synthesis of Acyclic α-Tertiary Amines through Desymmetrization of 2-Substituted 2-Nitro1,3-diols [J]. Organic Letters, 2018, 20(3): 518–521.
[84] MENG S-S, YU P, YU Y-Z, et al. Computational Design of Enhanced Enantioselectivity in Chiral Phosphoric Acid-Catalyzed Oxidative Desymmetrization of 1,3-Diol Acetals [J]. Journal of the American Chemical Society, 2020, 142(18): 8506–8513.
[85] YANG W, YAN J, LONG Y, et al. Pd-catalyzed desymmetric intramolecular Oarylation reaction: enantioselective synthesis of (3,4-dihydro-2H-chromen-3yl)methanols [J]. Organic Letters, 2013, 15(23): 6022-6025.
[86] SHI J, WANG T, HUANG Y, et al. Pd-catalyzed asymmetric intramolecular aryl CO bond formation with SDP(O) ligand: enantioselective synthesis of (2,3dihydrobenzo[b]
[1,4]dioxin-2-yl)methanols [J]. Organic Letters, 2015, 17(4): 840843.
[87] YANG W, LIU Y, ZHANG S, et al. Copper-Catalyzed Intramolecular Desymmetric Aryl C-O Coupling for the Enantioselective Construction of Chiral Dihydrobenzofurans and Dihydrobenzopyrans [J]. Angewandte Chemie International Edition, 2015, 54(30): 8805-8808.
[88] ZHANG Y, WANG Q, WANG T, et al. Enantioselective Synthesis of Chiral Oxygen-Containing Heterocycles Using Copper-Catalyzed Aryl C-O Coupling Reactions via Asymmetric Desymmetrization [J]. The Journal of Organic Chemistry, 2017, 82(3): 1458-1463.
[89] ZHOU Q-Q, LU F-D, LIU D, et al. Dual photoredox and nickel-catalyzed desymmetric C–O coupling reactions: visible light-mediated enantioselective synthesis of 1,4-benzodioxanes [J]. Organic Chemistry Frontiers, 2018, 5(21): 3098-3102.
[90] CHEN Z, SUN J. Enantio- and diastereoselective assembly of tetrahydrofuran and tetrahydropyran skeletons with all-carbon-substituted quaternary stereocenters [J]. Angewandte Chemie International Edition, 2013, 52(51): 13593-13596.
[91] KE Z, TAN C K, CHEN F, et al. Catalytic asymmetric bromoetherification and desymmetrization of olefinic 1,3-diols with C2-symmetric sulfides [J]. Journal of the American Chemical Society, 2014, 136(15): 5627-5630.
[92] SEE J Y, YANG H, ZHAO Y, et al. Desymmetrizing Enantio- and Diastereoselective Selenoetherification through Supramolecular Catalysis [J]. ACS Catalysis, 2018, 8(2): 850-858.
[93] CAO K-S, ZHENG W-H. Enantioselective desymmetrization of prochiral allenic diols via cooperative catalysis of Pd(OAc)2 and a chiral phosphoric acid [J]. Tetrahedron: Asymmetry, 2015, 26(20): 1150-1155.
[94] ZI W, TOSTE F D. Gold(I)-Catalyzed Enantioselective Desymmetrization of 1,3Diols through Intramolecular Hydroalkoxylation of Allenes [J]. Angewandte Chemie International Edition, 2015, 54(48): 14447-14451.
[95] YAMAMOTO K, ISHIMARU S, OYAMA T, et al. Enantioselective Synthesis of α-Substituted Serine Derivatives via Cu-Catalyzed Oxidative Desymmetrization of 2-Amino-1,3-diols [J]. Organic Process Research & Development, 2019, 23(4): 660-666.
[96] YAMAMOTO K, TSUDA Y, KURIYAMA M, et al. Copper-Catalyzed Enantioselective Synthesis of Oxazolines from Aminotriols via Asymmetric Desymmetrization [J]. Chemistry—An Asian Journal, 2020, 15(6): 840-844.
[97] OUELLETTE E T, LOUGEE M G, BUCKNAM A R, et al. Desymmetrization of Diols by Phosphorylation with a Titanium-BINOLate Catalyst [J]. The Journal of Organic Chemistry, 2021, 86(11): 7450-7459.
[98] ESTRADA C D, ANG H T, VETTER K M, et al. Enantioselective Desymmetrization of 2-Aryl-1,3-propanediols by Direct O-Alkylation with a Rationally Designed Chiral Hemiboronic Acid Catalyst That Mitigates Substrate Conformational Poisoning [J]. Journal of the American Chemical Society, 2021, 143(11): 4162-4167.
[99] LI S, LIU B, CHEN L, et al. N-Heterocyclic carbene promoted enantioselective desymmetrization reaction of diarylalkane-bisphenols [J]. Organic Chemistry Frontiers, 2018, 5(7): 1101-1107.
[100] 朱仁义, 廖奎, 余金生, 等. P-手性膦氧化物的不对称催化合成研究进展 [J]. 化 学学报, 2020, 78(3): 193-216.
[101] HUANG Z, HUANG X, LI B, et al. Access to P-Stereogenic Phosphinates via NHeterocyclic Carbene-Catalyzed Desymmetrization of Bisphenols [J]. Journal of the American Chemical Society, 2016, 138(24): 7524-7527.
[102] ZHENG Y, GUO L, ZI W. Enantioselective and Regioselective Hydroetherification of Alkynes by Gold-Catalyzed Desymmetrization of Prochiral Phenols with PStereogenic Centers [J]. Organic Letters, 2018, 20(22): 7039-7043.
[103] BRIMIOULLE R, BACH T. Enantioselective Lewis acid catalysis of intramolecular enone
[2+2] photocycloaddition reactions [J]. Science, 2013, 342(6160): 840-843.
[104] FU G C. Transition-Metal Catalysis of Nucleophilic Substitution Reactions: A Radical Alternative to SN1 and SN2 Processes [J]. ACS Central Science, 2017, 3(7): 692–700.
[105] CHERNEY A H, KADUNCE N T, REISMAN S E. Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C–C Bonds [J]. Chemical Reviews, 2015, 115(17): 9587–9652.
[106] JIANG H, LANG K, LU H, et al. Asymmetric Radical Bicyclization of Allyl Azidoformates via Cobalt(II)-Based Metalloradical Catalysis [J]. Journal of the American Chemical Society, 2017, 139(27): 9164-9167.
[107] HAO W, HARENBERG J H, WU X, et al. Diastereo- and Enantioselective Formal
[3 + 2] Cycloaddition of Cyclopropyl Ketones and Alkenes via Ti-Catalyzed Radical Redox Relay [J]. Journal of the American Chemical Society, 2018, 140(10): 3514-3517.
[108] HASHIMOTO T, KAWAMATA Y, MARUOKA K. An organic thiyl radical catalyst for enantioselective cyclization [J]. Nature Chemistry, 2014, 6(8): 702-705.
[109] BEESON T D, MASTRACCHIO A, HONG J B, et al. Enantioselective organocatalysis using SOMO activation [J]. Science, 2007, 316(5824): 582-585.
[110] WANG Z, YIN H, FU G C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins [J]. Nature, 2018, 563(7731): 379-383.
[111] LIN J-S, DONG X-Y, LI T-T, et al. A Dual-Catalytic Strategy To Direct Asymmetric Radical Aminotrifluoromethylation of Alkenes [J]. Journal of the American Chemical Society, 2016, 138(30): 9357-9360.
[112] CHENG Y-F, DONG X-Y, GU Q-S, et al. Achiral Pyridine Ligand-Enabled Enantioselective Radical Oxytrifluoromethylation of Alkenes with Alcohols [J]. Angewandte Chemie International Edition, 2017, 56(30): 8883-8886.
[113] CHEN X H, ZHANG W Q, GONG L Z. Asymmetric organocatalytic threecomponent 1,3-dipolar cycloaddition: control of stereochemistry via a chiral Bronsted acid activated dipole [J]. Journal of the American Chemical Society, 2008, 130(17): 5652-5653.
[114] BARATA-VALLEJO S, COOKE M V, POSTIGO A. Radical Fluoroalkylation Reactions [J]. ACS Catalysis, 2018, 8(8): 7287-7307.
[115] AHO J E, PIHKO P M, RISSA T K. Nonanomeric Spiroketals in Natural Products:  Structures, Sources, and Synthetic Strategies [J]. Chemical Reviews, 2005, 105(12): 4406-4440.
[116] ALBERTI A, BENAGLIA M, BONA M A D, et al. EPR Characterization of New Phosphavinyl σ Radicals [J]. Research on Chemical Intermediates, 1996, 22(4): 381–392.
[117] LIU Y-L, OUYANG Y-J, ZHENG H, et al. Recent Advances in Acyl Radical Enabled Reactions between Aldehydes and Alkenes [J]. Chemical Communications, 2021, 57(50): 6111–6120.
[118] 刘宏娟, 杜伟, 刘德华. 生物柴油及 1,3-丙二醇联产工艺产业化进展 [J]. 化学进 展, 2007, 19(0708): 1185-1189.
[119] 孙佳, 王普, 章鹏鹏, 等. 甘油在微生物代谢合成及生物催化中的应用 [J]. 化学 进展, 2016, 28(9): 1426-1434.
[120] GIUSTRA Z X, TAN K L. The Efficient Desymmetrization of Glycerol Using Scaffolding Catalysis [J]. Chemical Communications, 2013, 49(39): 4370–4372.
[121] SANO S, NAKAO M, TAKEYASU M, et al. Chemoenzymatic Synthesis of αSubstituted Serines via Enantiodivergent Transformation [J]. The Open Organic Chemistry Journal, 2009, 3(1): 22–34.
[122] CARTIER A, LEVERNIER E, DHIMANE A L, et al. Synthesis of Aliphatic Amides through a Photoredox Catalyzed Radical Carbonylation Involving Organosilicates as Alkyl Radical Precursors [J]. Advanced Synthesis & Catalysis, 2020, 362(11): 2254–2259.
[123] 宋戈洋, 薛东. 光促进过渡金属催化的 C-杂原子键偶联反应进展 [J]. 有机化学, 2022, 42(8): 2275-2299.
[124] 王乃兴. 钯催化的交叉偶联反应——2010 年诺贝尔化学奖获奖工作介绍 [J]. 有机化学, 2011, 31(8): 1319-1323.
[125] CHERNEY A H, KADUNCE N T, REISMAN S E. Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C–C Bonds [J]. Chemical Reviews, 2015, 115(17): 9587-9652.
[126] CHOI J, FU G C. Transition metal-catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry [J]. Science, 2017, 356(6334): eaaf7230.
[127] ZHOU F, LIU J, CAI Q. Transition Metal Catalyzed Asymmetric Aryl Carbon– Heteroatom Bond Coupling Reactions [J]. Synlett, 2016, 27(05): 664-675.
[128] CHEN C, PETERS J C, FU G C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity [J]. Nature, 2021, 596(7871): 250-256.
[129] MULINA O M, ILOVAISKY A I, TERENT'EV A O. Oxidative Coupling with SN Bond Formation [J]. European Journal of Organic Chemistry, 2018, 2018(34): 4648-4672.
[130] MAMPUYS P, MCELROY C R, CLARK J H, et al. Thiosulfonates as Emerging Reactants: Synthesis and Applications [J]. Advanced Synthesis & Catalysis, 2019, 362(1): 3-64.
[131] PENG K, DONG Z B. Recent Advances in Sulfur‐Centered S–X (X = N, P, O) Bond Formation Catalyzed by Transition Metals [J]. European Journal of Organic Chemistry, 2020, 2020(34): 5488-5495.
[132] JANG H Y. Oxidative cross-coupling of thiols for S-X (X = S, N, O, P, and C) bond formation: mechanistic aspects [J]. Organic & Biomolecular Chemistry, 2021, 19(40): 8656-8686.
[133] BAI J, CUI X, WANG H, et al. Copper-catalyzed reductive coupling of aryl sulfonyl chlorides with H-phosphonates leading to S-aryl phosphorothioates [J]. Chemical Communications, 2014, 50(64): 8860-8863.
[134] KORCH K M, WATSON D A. Cross-Coupling of Heteroatomic Electrophiles [J]. Chemical Reviews, 2019, 119(13): 8192-8228.
[135] SAMBIAGIO C, MARSDEN S P, BLACKER A J, et al. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development [J]. Chemical Society Reviews, 2014, 43(10): 3525-3550.
[136] ELROD L T, BOXWALA H, HAQ H, et al. As–As Bond Formation via Reductive Elimination from a Zirconocene Bis(dimesitylarsenide) Compound [J]. Organometallics, 2012, 31(14): 5204-5207.
[137] NEUMANN J J, SURI M, GLORIUS F. Efficient synthesis of pyrazoles: oxidative C-C/N-N bond-formation cascade [J]. Angewandte Chemie International Edition, 2010, 49(42): 7790-7794.
[138] GLASS R S. Sulfur Radicals and Their Application [J]. Topics in Current Chemistry, 2018, 376(22): 1-42.

所在学位评定分委会
化学
国内图书分类号
O625.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543805
专题理学院_化学系
推荐引用方式
GB/T 7714
鱼章龙. 铜催化的二醇类化合物自由基对映选择性去对称化反应研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849562-鱼章龙-化学系.pdf(16569KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[鱼章龙]的文章
百度学术
百度学术中相似的文章
[鱼章龙]的文章
必应学术
必应学术中相似的文章
[鱼章龙]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。