[1] HU S W, HU Q, XIA SH, et al. Contralateral Projection of Anterior Cingulate Cortex Contributes to Mirror-Image Pain[J]. J Neurosci, 2021, 41(48): 9988-10003.
[2] JIANG Y M, SUN D D, WANG Z G, et al. Analgesic effect and central mechanisms of CQ prescription on cancer invasion induced mirror image pain in model mice[J]. Zhongguo Zhong Yao Za Zhi, 2017, 42(4): 739-745.
[3] ROTPENPIAN N, TAPECHUM S, VATTARAKORN A, et al. Evolution of mirror-image pain in temporomandibular joint osteoarthritis mouse model[J]. J Appl Oral Sci, 2021, 29: e20200575.
[4] SU Y S, MEI H R, WANG C H, et al. Peripheral 5-HT3 mediates mirror-image pain by a cross-talk with acid-sensing ion channel 3[J]. Neuropharmacology, 2018, 130: 92-104.
[5] ESSER M J, CHASE T, ALLEN G V, et al. Chronic administration of amitriptyline and caffeine in a rat model of neuropathic pain: multiple interactions[J]. Eur J Pharmacol, 2001, 430(2-3): 211-218.
[6] KOLTZENBURG M, WALL P D, MCMAHON S B. Does the right side know what the left is doing?[J]. Trends Neurosci, 1999, 22(3): 122-127.
[7] LI D, YANG H, MEYERSON B A, et al. Response to spinal cord stimulation in variants of the spared nerve injury pain model[J]. Neurosci Lett, 2006, 400(1-2): 115-120.
[8] MAO-YING Q LL, ZHAO J, DONG Z Q, et al. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells[J]. Biochem Biophys Res Commun, 2006, 345(4): 1292-1298.
[9] PAULSON P E, MORROW T J, CASEY K L. Bilateral behavioral and regional cerebral blood flow changes during painful peripheral mononeuropathy in the rat[J]. Pain, 2000, 84(2-3): 233-245.
[10] KUMAR A, KONAR S, HUSSAIN N, et al. Mirror meningioma at foramen magnum: Enigma in management of a very rare case[J]. Surg Neurol Int, 2019, 10: 230.
[11] LI Q Y, ChEN S X, LIU J Y, et al. Neuroinflammation in the anterior cingulate cortex: the potential supraspinal mechanism underlying the mirror-image pain following motor fiber injury[J]. J Neuroinflammation, 2022, 19(1): 162.
[12] MOLLER M, MÖSER C V, WEIß U, et al. The Role of AlphalphaSynuclein in Mouse Models of Acute, Inflammatory and Neuropathic Pain[J]. Cells, 2022, 11(12)
[13] NAKATSUKA K, MATSUOKA Y, KURITA M, et al. Intrathecal Administration of the alpha1 Adrenergic Antagonist Phentolamine Upregulates Spinal GLT-1 and Improves Mirror Image Pain in SNI Model Rats[J]. Acta Med Okayama, 2022, 76(3): 255-263.
[14] MALEKI J, LEBEL A A, BENNETT G J, et al. Patterns of spread in complex regional pain syndrome, type I (reflex sympathetic dystrophy)[J]. Pain, 2000, 88(3): 259-266.
[15] SHIR Y, SELTZER Z. Effects of sympathectomy in a model of causalgiform pain produced by partial sciatic nerve injury in rats[J]. Pain, 1991, 45(3): 309-320.
[16] WODA A, PIONCHON P. A unified concept of idiopathic orofacial pain: pathophysiologic features[J]. J Orofac Pain, 2000, 14(3): 196-212.
[17] SCHONEBOOM B A, PERRY S M, BARNHILL W K, et al. Answering the call to address chronic pain in military service members and veterans: Progress in improving pain care and restoring health[J]. Nurs Outlook, 2016, 64(5): 459-484.
[18] PETERSEN K L, RICE F L, FARHADI M, et al. Natural history of cutaneous innervation following herpes zoster[J]. Pain, 2010, 150(1): 75-82.
[19] GOVER-CHAMLOU A, TSAO J W. Telepain Management of Phantom Limb Pain Using Mirror Therapy[J]. Telemed J E Health, 2016, 22(2): 176-179.
[20] SINNOTT C J, GARFIELD J M, STRICHARTZ G R. Differential efficacy of intravenous lidocaine in alleviating ipsilateral versus contralateral neuropathic pain in the rat[J]. Pain, 1999, 80(3): 521-531.
[21] SOMERS D L, CLEMENTE F R. Contralateral high or a combination of high- and low-frequency transcutaneous electrical nerve stimulation reduces mechanical allodynia and alters dorsal horn neurotransmitter content in neuropathic rats[J]. J Pain, 2009, 10(2): 221-229.
[22] CABIOGLU M T, CETIN B E. Acupuncture and immunomodulation[J]. Am J Chin Med, 2008, 36(1): 25-36.
[23] DAI Y, KONDO E, FUKUOKA T, et al. The effect of electroacupuncture on pain behaviors and noxious stimulus-evoked Fos expression in a rat model of neuropathic pain[J]. J Pain, 2001, 2(3): 151-159.
[24] KOO S T, LIM K S, CHUNG K, et al. Electroacupuncture-induced analgesia in a rat model of ankle sprain pain is mediated by spinal alpha-adrenoceptors[J]. Pain, 2008, 135(1-2): 11-19.
[25] KOO S T, PARK Y L, LIM K S, et al. Acupuncture analgesia in a new rat model of ankle sprain pain[J]. Pain, 2002, 99(3): 423-431.
[26] LIN J G, CHEN W L. Acupuncture analgesia: a review of its mechanisms of actions[J]. Am J Chin Med, 2008, 36(4): 635-645.
[27] ZHENG Z, GUO R J, HELME R D, et al. The effect of electroacupuncture on opioid-like medication consumption by chronic pain patients: a pilot randomized controlled clinical trial[J]. Eur J Pain, 2008, 12(5): 671-676.
[28] HAN J S. Acupuncture and endorphins[J]. Neurosci Lett, 2004, 361(1-3): 258-261.
[29] SJOLUND B, TERENIUS L, ERIKSSON M. Increased cerebrospinal fluid levels of endorphins after electro-acupuncture[J]. Acta Physiol Scand, 1977, 100(3): 382-384.
[30] WANG J Y, CHEN S P, LI Y H, et al. Observation on the accumulative analgesic effect of electroacupuncture and the expression of protein kinase A in hypothalamus and hippocampus in chronic pain or/and ovariectomized rats[J]. Zhen Ci Yan Jiu, 2008, 33(2): 80-87.
[31] ZHAO H, DU L N, JIANG J W, et al. Neuroimmunal regulation of electroacupuncture (EA) on the traumatic rats[J]. Acupunct Electrother Res, 2002, 27(1): 15-27.
[32] ARGUIS M J, PEREZ J, MARTÍNEZ G, et al. Contralateral neuropathic pain following a surgical model of unilateral nerve injury in rats[J]. Reg Anesth Pain Med, 2008, 33(3): 211-216.
[33] DUBOVY P, TUCKOVA L, JANCALEK R, et al. Increased invasion of ED-1 positive macrophages in both ipsi- and contralateral dorsal root ganglia following unilateral nerve injuries[J]. Neurosci Lett, 2007, 427(2): 88-93.
[34] WALLER A. Experiments on the Section of the Glosso-Pharyngeal and Hypoglossal Nerves of the Frog, and Observations of the Alterations Produced Thereby in the Structure of Their Primitive Fibres[J]. Edinb Med Surg J, 1851, 76(189): 369-376.
[35] CHEEPUDOMWIT T, GÜZELSU E, ZHOU C, et al. Comparison of cytokine expression profile during Wallerian degeneration of myelinated and unmyelinated peripheral axons[J]. Neurosci Lett, 2008, 430(3): 230-235.
[36] WEINSTEIN S M. Phantom limb pain and related disorders[J]. Neurol Clin, 1998, 16(4): 919-936.
[37] KIM S Y, KIM Y Y. Mirror therapy for phantom limb pain[J]. Korean J Pain, 2012, 25(4): 272-274.
[38] GANDHI D B, STERBA A, KHATTER H, et al. Mirror Therapy in Stroke Rehabilitation: Current Perspectives[J]. Ther Clin Risk Manag, 2020, 16: 75-85.
[39] COLMENERO L H, MARMOL J M, GARCÍA C M, et al. Effectiveness of mirror therapy, motor imagery, and virtual feedback on phantom limb pain following amputation: A systematic review[J]. Prosthet Orthot Int, 2018, 42(3): 288-298.
[40] LEE D, LEE G. Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial[J]. Eur J Phys Rehabil Med, 2019, 55(4): 442-449.
[41] MADHOUN H Y, TAN B, FENG Y, et al. Task-based mirror therapy enhances the upper limb motor function in subacute stroke patients: a randomized control trial[J]. Eur J Phys Rehabil Med, 2020, 56(3): 265-271.
[42] CARLEN P L, WALL P D, NADVORNA H, et al. Phantom limbs and related phenomena in recent traumatic amputations[J]. Neurology, 1978, 28(3): 211-217.
[43] HAYES C, ARMSTRONG-BROWN A, BURSTAL R. Perioperative intravenous ketamine infusion for the prevention of persistent post-amputation pain: a randomized, controlled trial[J]. Anaesth Intensive Care, 2004, 32(3): 330-338.
[44] WEEKS S R, ANDERSON-BARNE V C, TSAO J W. Phantom limb pain: theories and therapies[J]. Neurologist, 2010, 16(5): 277-286.
[45] NIKOLAJSEN L, KRØNER K, CHRISTENSEN J H, et al. The influence of preamputation pain on postamputation stump and phantom pain[J]. Pain, 1997, 72(3): 393-405.
[46] HUBBARD R D, CHEN Z, WINKELSTEIN B A. Transient cervical nerve root compression modulates pain: load thresholds for allodynia and sustained changes in spinal neuropeptide expression[J]. J Biomech, 2008, 41(3): 677-685.
[47] HUBBARD R D, WINKELSTEIN B A. Transient cervical nerve root compression in the rat induces bilateral forepaw allodynia and spinal glial activation: mechanical factors in painful neck injuries[J]. Spine (Phila Pa 1976), 2005, 30(17): 1924-1932.
[48] BAI Z T, LIU T, CHAI Z F. Rat pain-related responses induced by experimental scorpion BmK sting[J]. Eur J Pharmacol, 2006, 552(1-3): 67-77.
[49] BAI Z T, LIU T, PANG X Y, et al. Functional depletion of capsaicin-sensitive primary afferent fibers attenuates rat pain-related behaviors and paw edema induced by the venom of scorpion Buthus martensi Karch[J]. Neurosci Res, 2008, 62(2): 78-85.
[50] GARRISON C J, DOUGHERTY P M, KAJANDER K C, et al. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury[J]. Brain Res, 1991, 565(1): 1-7.
[51] HASHIZUME H, DELEO J A, COLBURN R W, et al. Spinal glial activation and cytokine expression after lumbar root injury in the rat[J]. Spine (Phila Pa 1976), 2000, 25(10): 1206-1217.
[52] ISHIKAWA T, ETO K, KIM S K, et al. Cortical astrocytes prime the induction of spine plasticity and mirror image pain[J]. Pain, 2018, 159(8): 1592-1606.
[53] NENT E, NOZAKI C, SCHMÖLE A C, et al. CB2 receptor deletion on myeloid cells enhanced mechanical allodynia in a mouse model of neuropathic pain[J]. Sci Rep, 2019, 9(1): 7468.
[54] SU Y S, MEI H R, WANG C H, et al. Peripheral 5-HT(3) mediates mirror-image pain by a cross-talk with acid-sensing ion channel 3[J]. Neuropharmacology, 2018, 130: 92-104.
[55] YUAN Q, LIU X D, XIAN Y F, et al. Satellite glia activation in dorsal root ganglion contributes to mechanical allodynia after selective motor fiber injury in adult rats[J]. Biomed Pharmacother, 2020, 127: 110187.
[56] COYLE D E. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior[J]. Glia, 1998, 23(1): 75-83.
[57] BURSTON J J, VALDES A M, WOODHAMS S G, et al. The impact of anxiety on chronic musculoskeletal pain and the role of astrocyte activation[J]. Pain, 2019, 160(3): 658-669.
[58] WANG J Y, GAO Y H, QIAO L N, et al. Repeated electroacupuncture treatment attenuated hyperalgesia through suppression of spinal glial activation in chronic neuropathic pain rats[J]. BMC Complement Altern Med, 2018, 18(1): 74.
[59] DENG M Y, AHMAD K A, HAN Q Q, et al. Thalidomide alleviates neuropathic pain through microglial IL-10/beta-endorphin signaling pathway[J]. Biochem Pharmacol, 2021, 192: 114727.
[60] FATTORI V, PINHO-RIBEIRO F A, STAURENGO-FERRARI L, et al. The specialised pro-resolving lipid mediator maresin 1 reduces inflammatory pain with a long-lasting analgesic effect[J]. Br J Pharmacol, 2019, 176(11): 1728-1744.
[61] LI L, BAI L Y, YANG K L, et al. KDM6B epigenetically regulated-interleukin-6 expression in the dorsal root ganglia and spinal dorsal horn contributes to the development and maintenance of neuropathic pain following peripheral nerve injury in male rats[J]. Brain Behav Immun, 2021, 98: 265-282.
[62] WANG J, ZHOU F, ZHANG S S, et al. Participation of transient receptor potential vanilloid 1 in the analgesic effect of duloxetine for paclitaxel induced peripheral neuropathic pain[J]. Neurosci Lett, 2022, 773: 136512.
[63] WEI J, SU W F, ZHAO Y Y, et al. Maresin 1 promotes nerve regeneration and alleviates neuropathic pain after nerve injury[J]. J Neuroinflammation, 2022, 19(1): 32.
[64] ZHUANG Z Y, KAWASAKI Y, TAN P H, et al. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine[J]. Brain Behav Immun, 2007, 21(5): 642-651.
[65] HIOKI T, TOKUDA H, NAKASHIMA D, et al. HSP90 inhibitors strengthen extracellular ATP-stimulated synthesis of interleukin-6 in osteoblasts: Amplification of p38 MAP kinase[J]. Cell Biochem Funct, 2021, 39(1): 88-97.
[66] KOYAMA R, SMAGA I, SUROWKA P, et al. Pannexin 1-Mediated ATP Signaling in the Trigeminal Spinal Subnucleus Caudalis Is Involved in Tongue Cancer Pain[J]. Int J Mol Sci, 2021, 22(21)
[67] PAIGE C, MARUTHY G B, MEJIA G, et al. Spinal Inhibition of P2XR or p38 Signaling Disrupts Hyperalgesic Priming in Male, but not Female, Mice[J]. Neuroscience, 2018, 385: 133-142.
[68] PARK W S, LEE J, NA G, et al. Benzyl Isothiocyanate Attenuates Inflammasome Activation in Pseudomonas aeruginosa LPS-Stimulated THP-1 Cells and Exerts Regulation through the MAPKs/NF-kappaB Pathway[J]. Int J Mol Sci, 2022, 23(3)
[69] GUO Y J, LI H N, DING C P, et al. Red nucleus interleukin-1beta evokes tactile allodynia through activation of JAK/STAT3 and JNK signaling pathways[J]. J Neurosci Res, 2018, 96(12): 1847-1861.
[70] JIANG L, MA D, GRUBB B D, et al. ROS/TRPA1/CGRP signaling mediates cortical spreading depression[J]. J Headache Pain, 2019, 20(1): 25.
[71] YANG L, WANG S H, HU Y, et al. Effects of Repetitive Transcranial Magnetic Stimulation on Astrocytes Proliferation and nNOS Expression in Neuropathic Pain Rats[J]. Curr Med Sci, 2018, 38(3): 482-490.
[72] ALI U, APRYANI E, WU H Y, et al. Low frequency electroacupuncture alleviates neuropathic pain by activation of spinal microglial IL-10/beta-endorphin pathway[J]. Biomed Pharmacother, 2020, 125: 109898.
[73] TANSLEY S, GU N, GUZMÁN A U, et al. Microglia-mediated degradation of perineuronal nets promotes pain[J]. Science, 2022, 377(6601): 80-86.
[74] FALCIGLIA F, BASIGLINI, AULISA A G, et al. Superficial peroneal nerve entrapment in ankle sprain in childhood and adolescence[J]. Sci Rep, 2021, 11(1): 15123.
[75] SONG E J, PARK J S, RYU K N, et al. Perineural Spread Along Spinal and Obturator Nerves in Primary Vaginal Carcinoma: A Case Report[J]. World Neurosurg, 2018, 115: 85-88.
[76] FITZGERALD M. Alterations in the ipsi- and contralateral afferent inputs of dorsal horn cells produced by capsaicin treatment of one sciatic nerve in the rat[J]. Brain Res, 1982, 248(1): 97-107.
[77] FITZGERALD M. The contralateral input to the dorsal horn of the spinal cord in the decerebrate spinal rat[J]. Brain Res, 1982, 236(2): 275-287.
[78] CODERRE T J, MELZACK R. Increased pain sensitivity following heat injury involves a central mechanism[J]. Behav Brain Res, 1985, 15(3): 259-262.
[79] SHERRINGTON C S. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing[J]. J Physiol, 1910, 40(1-2): 28-121.
[80] FITZGERALD M. Influences of contralateral nerve and skin stimulation on neurones in the substantia gelatinosa of the rat spinal cord[J]. Neurosci Lett, 1983, 36(2): 139-143.
[81] RITZ L A, MURRAT C R, FOLI K. Crossed and uncrossed projections to the cat sacrocaudal spinal cord: III. Axons expressing calcitonin gene-related peptide immunoreactivity[J]. J Comp Neurol, 2001, 438(4): 388-398.
[82] ARNETT F C, EDWORTHY S M, BLOCH D A, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis[J]. Arthritis Rheum, 1988, 31(3): 315-324.
[83] KIDD B L, CRUWYS S C, GARRETT N E, et al. Neurogenic influences on contralateral responses during experimental rat monoarthritis[J]. Brain Res, 1995, 688(1-2): 72-76.
[84] LEVINE J D, BASBAUM A I. Neurogenic mechanism for symmetrical arthritis[J]. Lancet, 1990, 335(8692): 795.
[85] DONALDSON L F, MCQUEEN D S, SECKL J R. Neuropeptide gene expression and capsaicin-sensitive primary afferents: maintenance and spread of adjuvant arthritis in the rat[J]. J Physiol, 1995, 486 ( Pt 2): 473-482.
[86] KELLY S, DUNHAM J P, DONALDSON L F. Sensory nerves have altered function contralateral to a monoarthritis and may contribute to the symmetrical spread of inflammation[J]. Eur J Neurosci, 2007, 26(4): 935-942.
[87] OLSSON Y. Studies on vascular permeability in peripheral nerves. I. Distribution of circulating fluorescent serum albumin in normal, crushed and sectioned rat sciatic nerve[J]. Acta Neuropathol, 1966, 7(1): 1-15.
[88] BRISBY H, OLMARKER K, LARSSON K, et al. Proinflammatory cytokines in cerebrospinal fluid and serum in patients with disc herniation and sciatica[J]. Eur Spine J, 2002, 11(1): 62-66.
[89] KLEINSCHNITZ C, BRINKHOFF J, SOMMER C, et al. Contralateral cytokine gene induction after peripheral nerve lesions: dependence on the mode of injury and NMDA receptor signaling[J]. Brain Res Mol Brain Res, 2005, 136(1-2): 23-28.
[90] CORNEFJORD M, NYBERG F, ROSENGREN L, et al. Cerebrospinal fluid biomarkers in experimental spinal nerve root injury[J]. Spine (Phila Pa 1976), 2004, 29(17): 1862-1868.
[91] NGUYEN C, HAUGHTON V M, HO K C, et al. Contrast enhancement in spinal nerve roots: an experimental study[J]. AJNR Am J Neuroradiol, 1995, 16(2): 265-268.
[92] SKOUEN J S, BRISBY H, OLMARKER K, et al. Protein markers in cerebrospinal fluid in experimental nerve root injury. A study of slow-onset chronic compression effects or the biochemical effects of nucleus pulposus on sacral nerve roots[J]. Spine (Phila Pa 1976), 1999, 24(21): 2195-2200.
[93] DE SEZE S, GUILLAUME J. The distant results of sensitive radicotomies for sciatica by posterior herniated disc[J]. Sem Hop, 1946, 22: 1055-1070.
[94] AHONEN A, MYLLYLA V V, HOKKANEN E. Cerebrospinal fluid protein findings in various lower back pain syndromes[J]. Acta Neurol Scand, 1979, 60(2): 93-99.
[95] SKOUEN J S, LARSEN J L, VOLLSET S E. Cerebrospinal fluid proteins as indicators of nerve root compression in patients with sciatica caused by disc herniation[J]. Spine (Phila Pa 1976), 1993, 18(1): 72-79.
[96] TUNEVALL T G. Cerebrospinal fluid protein--an aid in the diagnosis of herniated discs[J]. Acta Chir Scand Suppl, 1984, 520: 85-86.
[97] MILLIGAN E D, O'CONNOR K A, NGUYEN K T, et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines[J]. J Neurosci, 2001, 21(8): 2808-2819.
[98] BRISBY H, OLMARKER K, ROSENGREN L, et al. Markers of nerve tissue injury in the cerebrospinal fluid in patients with lumbar disc herniation and sciatica[J]. Spine (Phila Pa 1976), 1999, 24(8): 742-746.
[99] BRUUNSGAARD H, PEDERSEN M, PEDERSEN B K. Aging and proinflammatory cytokines[J]. Curr Opin Hematol, 2001, 8(3): 131-136.
[100] O'CONNOR M F, MOTIVALA S J, VALLADARES E M, et al. Sex differences in monocyte expression of IL-6: role of autonomic mechanisms[J]. Am J Physiol Regul Integr Comp Physiol, 2007, 293(1): R145-151.
[101] SAURWEIN-TEISSL M, BLASKO L, ZISTERER K, et al. An imbalance between pro- and anti-inflammatory cytokines, a characteristic feature of old age[J]. Cytokine, 2000, 12(7): 1160-1161.
[102] ALLEN J A, ROTH B L. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors[J]. Annu Rev Pharmacol Toxicol, 2011, 51: 117-144.
[103] MA P, ZEMMEL R. Value of novelty?[J]. Nat Rev Drug Discov, 2002, 1(8): 571-572.
[104] KENAKIN T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals[J]. Trends Pharmacol Sci, 1995, 16(7): 232-238.
[105] MONOD J, WYMAN J, CHANGEUS J P. On the Nature of Allosteric Transitions: A Plausible Model[J]. J Mol Biol, 1965, 12: 88-118.
[106] DEUPI X, KOBILKA B K. Energy landscapes as a tool to integrate GPCR structure, dynamics, and function[J]. Physiology (Bethesda), 2010, 25(5): 293-303.
[107] WACKER D, WANG C, KATRITCH V, et al. Structural features for functional selectivity at serotonin receptors[J]. Science, 2013, 340(6132): 615-619.
[108] NYGAARD R, ZOU Y, DROR R O, et al. The dynamic process of beta(2)-adrenergic receptor activation[J]. Cell, 2013, 152(3): 532-542.
[109] BROWNSTEIN M J. A brief history of opiates, opioid peptides, and opioid receptors[J]. Proc Natl Acad Sci U S A, 1993, 90(12): 5391-5393.
[110] WILLIAMS J T, INGRAM S L, HENDERSON G, et al. Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance[J]. Pharmacol Rev, 2013, 65(1): 223-254.
[111] CHAVKIN C, JAMES L F, GOLDSTEIN A. Dynorphin is a specific endogenous ligand of the kappa opioid receptor[J]. Science, 1982, 215(4531): 413-415.
[112] GOLDSTEIN A, TACHIBANA S, LOWNEY L I, et al. Dynorphin-(1-13), an extraordinarily potent opioid peptide[J]. Proc Natl Acad Sci U S A, 1979, 76(12): 6666-6670.
[113] CARLEZON W A, THOME J, OLSON V G, et al. Regulation of cocaine reward by CREB[J]. Science, 1998, 282(5397): 2272-2275.
[114] PFEIFFER A, BRANTL V, HERZ A, et al. Psychotomimesis mediated by kappa opiate receptors[J]. Science, 1986, 233(4765): 774-776.
[115] ROTH B L, BANER K, WESTKAEMPER R, et al. Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist[J]. Proc Natl Acad Sci U S A, 2002, 99(18): 11934-11939.
[116] BRUCHAS M R, SCHINDLER A G, SHANKAR H, et al. Selective p38alpha MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction[J]. Neuron, 2011, 71(3): 498-511.
[117] SCHINDLER A G, MESSENGER D I, SMITH J S, et al. Stress produces aversion and potentiates cocaine reward by releasing endogenous dynorphins in the ventral striatum to locally stimulate serotonin reuptake[J]. J Neurosci, 2012, 32(49): 17582-17596.
[118] TEJEDA H A, COUNOTTE D S, OH E, et al. Prefrontal cortical kappa-opioid receptor modulation of local neurotransmission and conditioned place aversion[J]. Neuropsychopharmacology, 2013, 38(9): 1770-1779.
[119] ARVIDSSON U, RIEDL M R, CHAKRABARTI S, et al. The kappa-opioid receptor is primarily postsynaptic: combined immunohistochemical localization of the receptor and endogenous opioids[J]. Proc Natl Acad Sci U S A, 1995, 92(11): 5062-5066.
[120] LEITL M D, ONVANI S, BOWERS M, et al. Pain-related depression of the mesolimbic dopamine system in rats: expression, blockade by analgesics, and role of endogenous kappa-opioids[J]. Neuropsychopharmacology, 2014, 39(3): 614-624.
[121] SIMONIN F, GAVÉRIAUX-RUFF C, BEFORT K, et al. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system[J]. Proc Natl Acad Sci U S A, 1995, 92(15): 7006-7010.
[122] LEKNES S, TRACEY I. A common neurobiology for pain and pleasure[J]. Nat Rev Neurosci, 2008, 9(4): 314-320.
[123] DI CHIARA G, IMPERATO A. Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats[J]. J Pharmacol Exp Ther, 1988, 244(3): 1067-1080.
[124] NARITA M, FUNADA M, SUZUKI T. Regulations of opioid dependence by opioid receptor types[J]. Pharmacol Ther, 2001, 89(1): 1-15.
[125] SPANAGEL R, HERZ A, SHIPPENBERG T S. The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study[J]. J Neurochem, 1990, 55(5): 1734-1740.
[126] MENG I D, JOHANSEN J P, HARASAWA I, et al. Kappa opioids inhibit physiologically identified medullary pain modulating neurons and reduce morphine antinociception[J]. J Neurophysiol, 2005, 93(3): 1138-1144.
[127] DORTCH-CARNES J, POTTER D E. Bremazocine: a kappa-opioid agonist with potent analgesic and other pharmacologic properties[J]. CNS Drug Rev, 2005, 11(2): 195-212.
[128] NEGUS S S. Core Outcome Measures in Preclinical Assessment of Candidate Analgesics[J]. Pharmacol Rev, 2019, 71(2): 225-266.
[129] DEUIS J R, DVORAKOVA L S, VETTER I. Methods Used to Evaluate Pain Behaviors in Rodents[J]. Front Mol Neurosci, 2017, 10: 284.
[130] HAYES A G, SHEEHAN M J, TYERS M B. Differential sensitivity of models of antinociception in the rat, mouse and guinea-pig to mu- and kappa-opioid receptor agonists[J]. Br J Pharmacol, 1987, 91(4): 823-832.
[131] LEIGHTON G E, RODRIGUEZ R E, HILL R G, et al. kappa-Opioid agonists produce antinociception after i.v. and i.c.v. but not intrathecal administration in the rat[J]. Br J Pharmacol, 1988, 93(3): 553-560.
[132] SEGUIN L, MAROUILLE-GIRARDON S L, MILLAN M J. Antinociceptive profiles of non-peptidergic neurokinin1 and neurokinin2 receptor antagonists: a comparison to other classes of antinociceptive agent[J]. Pain, 1995, 61(2): 325-343.
[133] TYERS M B. A classification of opiate receptors that mediate antinociception in animals[J]. Br J Pharmacol, 1980, 69(3): 503-512.
[134] BARBER A, BARTOSZYK G D, BENDER H M, et al. A pharmacological profile of the novel, peripherally-selective kappa-opioid receptor agonist, EMD 61753[J]. Br J Pharmacol, 1994, 113(4): 1317-1327.
[135] DOGRA S, YADAV P N. Biased agonism at kappa opioid receptors: Implication in pain and mood disorders[J]. Eur J Pharmacol, 2015, 763(Pt B): 184-190.
[136] BECK T C, LI Z, ZHUO X, et al. Targeting peripheral varkappa-opioid receptors for the non-addictive treatment of pain[J]. Future Drug Discov, 2019, 1(2)
[137] BRIGGS S L, RECH R H, SAWYER D C. Kappa antinociceptive activity of spiradoline in the cold-water tail-flick assay in rats[J]. Pharmacol Biochem Behav, 1998, 60(2): 467-472.
[138] EDWARDS K A, HAVELIN J J, MCINTOSH M I, et al. A Kappa Opioid Receptor Agonist Blocks Bone Cancer Pain Without Altering Bone Loss, Tumor Size, or Cancer Cell Proliferation in a Mouse Model of Cancer-Induced Bone Pain[J]. J Pain, 2018, 19(6): 612-625.
[139] ESCUDERO-LARA A, CABAÑERO D, MALDONADO R. Kappa opioid receptor modulation of endometriosis pain in mice[J]. Neuropharmacology, 2021, 195: 108677.
[140] PANDE A C, PYKE R E, GREINER M, et al. Analgesic efficacy of the kappa-receptor agonist, enadoline, in dental surgery pain[J]. Clin Neuropharmacol, 1996, 19(1): 92-97.
[141] PANDE A C, PYKE R E, GREINER M, et al. Analgesic efficacy of enadoline versus placebo or morphine in postsurgical pain[J]. Clin Neuropharmacol, 1996, 19(5): 451-456.
[142] ALBERT-VARTANIAN A, BOYD M R, HALL A L, et al. Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential?[J]. J Clin Pharm Ther, 2016, 41(4): 371-382.
[143] LEMBO A. Peripheral opioids for functional GI disease: a reappraisal[J]. Dig Dis, 2006, 24(1-2): 91-98.
[144] MACHELSKA H, PFLÜGER M, WEBER W, et al. Peripheral effects of the kappa-opioid agonist EMD 61753 on pain and inflammation in rats and humans[J]. J Pharmacol Exp Ther, 1999, 290(1): 354-361.
[145] ZHAO M, WANG J Y, JIA H, et al. Roles of different subtypes of opioid receptors in mediating the ventrolateral orbital cortex opioid-induced inhibition of mirror-neuropathic pain in the rat[J]. Neuroscience, 2007, 144(4): 1486-1494.
[146] ZHANG Y, LIU S, ZHANG Y, et al. Timing Mechanisms Underlying Gate Control by Feedforward Inhibition[J]. Neuron, 2018, 99(5): 941-955 e944.
[147] CHENG L, DUAN B, HUANG T, et al. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain[J]. Nat Neurosci, 2017, 20(6): 804-814.
[148] BONIN R P, BORIES C, KONINCK Y D. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments[J]. Mol Pain, 2014, 10: 26.
[149] KOLTZENBURG M, LUNDBERG L E, TOREBJÖRK E H. Dynamic and static components of mechanical hyperalgesia in human hairy skin[J]. Pain, 1992, 51(2): 207-219.
[150] OCHOA J L, YARNITSKY D. Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes[J]. Ann Neurol, 1993, 33(5): 465-472.
[151] TSANG A, KORFF M V, LEE S, et al. Common chronic pain conditions in developed and developing countries: gender and age differences and comorbidity with depression-anxiety disorders[J]. J Pain, 2008, 9(10): 883-891.
[152] CHOI H S, ROH D H, YOON S Y, et al. Microglial interleukin-1beta in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain[J]. Pain, 2015, 156(6): 1046-1059.
[153] FERNANDEZ-DE-LAS-PENAS C, LLAVE-RINCÓN A I, FERNÁNDEZ-CARNERO I, et al. Bilateral widespread mechanical pain sensitivity in carpal tunnel syndrome: evidence of central processing in unilateral neuropathy[J]. Brain, 2009, 132(Pt 6): 1472-1479.
[154] GAO Y J, XU Z Z, LIU Y C, et al. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition[J]. Pain, 2010, 148(2): 309-319.
[155] KONOPKA K H, HARBERS M, HOUGHTON A, et al. Bilateral sensory abnormalities in patients with unilateral neuropathic pain; a quantitative sensory testing (QST) study[J]. PLoS One, 2012, 7(5): e37524.
[156] CHRISTIDIS N, NILSSON A, KOPP S, et al. Intramuscular injection of granisetron into the masseter muscle increases the pressure pain threshold in healthy participants and patients with localized myalgia[J]. Clin J Pain, 2007, 23(6): 467-472.
[157] CICHON J, BLANCK T J, GAN W B, et al. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain[J]. Nat Neurosci, 2017, 20(8): 1122-1132.
[158] ENAX-KRUMOVA E K, POHL S, WESTERMANN A, et al. Ipsilateral and contralateral sensory changes in healthy subjects after experimentally induced concomitant sensitization and hypoesthesia[J]. BMC Neurol, 2017, 17(1): 60.
[159] JANIG W, BARON R. Complex regional pain syndrome: mystery explained?[J]. Lancet Neurol, 2003, 2(11): 687-697.
[160] KAYAOGLU G, EKICI M, ALTUNKAYNAK B. Mechanical Allodynia in Healthy Teeth Adjacent and Contralateral to Endodontically Diseased Teeth: A Clinical Study[J]. J Endod, 2020, 46(5): 611-618.
[161] MASGORET P, SOTO I D, CABALLERO A, et al. Incidence of contralateral neurosensitive changes and persistent postoperative pain 6 months after mastectomy: A prospective, observational investigation[J]. Medicine (Baltimore), 2020, 99(11): e19101.
[162] ROMMEL O, MALIN J P, ZENZ M, et al. Quantitative sensory testing, neurophysiological and psychological examination in patients with complex regional pain syndrome and hemisensory deficits[J]. Pain, 2001, 93(3): 279-293.
[163] SHENKER N G, HAIGH R C, MAP P I, et al. Contralateral hyperalgesia and allodynia following intradermal capsaicin injection in man[J]. Rheumatology (Oxford), 2008, 47(9): 1417-1421.
[164] VELDMAN P, GORIS J A R. Multiple reflex sympathetic dystrophy. Which patients are at risk for developing a recurrence of reflex sympathetic dystrophy in the same or another limb[J]. Pain, 1996, 64(3): 463-466.
[165] MELZACK R, WALL P D. Pain mechanisms: a new theory[J]. Science, 1965, 150(3699): 971-979.
[166] MENDELL L M. Constructing and deconstructing the gate theory of pain[J]. Pain, 2014, 155(2): 210-216.
[167] BABA H, JI R R, KOHNO T, et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn[J]. Mol Cell Neurosci, 2003, 24(3): 818-830.
[168] BRAZ J, SOLORZANO C, WANG X, et al. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control[J]. Neuron, 2014, 82(3): 522-536.
[169] JI R R, NACKLEY A, HUH Y, et al. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain[J]. Anesthesiology, 2018, 129(2): 343-366.
[170] KOCH S C, ACTON D, GOULDING M. Spinal Circuits for Touch, Pain, and Itch[J]. Annu Rev Physiol, 2018, 80: 189-217.
[171] PEIRS C, DALLEL R, TODD A. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia[J]. J Neural Transm (Vienna), 2020, 127(4): 505-525.
[172] PRICE T J, CERVERO F, GOLD M S, et al. Chloride regulation in the pain pathway[J]. Brain Res Rev, 2009, 60(1): 149-170.
[173] SADLER K E, MOGIL J S, STUCKY C L. Innovations and advances in modelling and measuring pain in animals[J]. Nat Rev Neurosci, 2022, 23(2): 70-85.
[174] TODD A J. Neuronal circuitry for pain processing in the dorsal horn[J]. Nat Rev Neurosci, 2010, 11(12): 823-836.
[175] TORSNEY C, MACDERMOTT A B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord[J]. J Neurosci, 2006, 26(6): 1833-1843.
[176] WOOLF C J. Central sensitization: implications for the diagnosis and treatment of pain[J]. Pain, 2011, 152(3 Suppl): S2-S15.
[177] CUI L, MIAO X, LIANG L, et al. Identification of Early RET+ Deep Dorsal Spinal Cord Interneurons in Gating Pain[J]. Neuron, 2016, 91(5): 1137-1153.
[178] DUAN B, CHENG L, BOURANE S, et al. Identification of spinal circuits transmitting and gating mechanical pain[J]. Cell, 2014, 159(6): 1417-1432.
[179] FOSTER E, WILDNER H, TUDEAU L, et al. Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch[J]. Neuron, 2015, 85(6): 1289-1304.
[180] LU Y, DONG H, GAO Y, et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia[J]. J Clin Invest, 2013, 123(9): 4050-4062.
[181] PEIRS C, WILLIAMS S P, ZHAO X, et al. Mechanical Allodynia Circuitry in the Dorsal Horn Is Defined by the Nature of the Injury[J]. Neuron, 2021, 109(1): 73-90 e77.
[182] PEIRS C, WILLIAMS S P, ZHAO X, et al. Dorsal Horn Circuits for Persistent Mechanical Pain[J]. Neuron, 2015, 87(4): 797-812.
[183] PETITJEAN H, PAWLOWSKI S A, FRAINE S L, et al. Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury[J]. Cell Rep, 2015, 13(6): 1246-1257.
[184] GOUZE-DECARIS E, PHILIPPE L, MINN A, et al. Neurophysiological basis for neurogenic-mediated articular cartilage anabolism alteration[J]. Am J Physiol Regul Integr Comp Physiol, 2001, 280(1): R115-122.
[185] HUANG J, GADOTTI V M, CHEN L, et al. A neuronal circuit for activating descending modulation of neuropathic pain[J]. Nat Neurosci, 2019, 22(10): 1659-1668.
[186] SUGIMOTO M, TAKAHASHI Y, SUGIMURA Y L, et al. Active role of the central amygdala in widespread mechanical sensitization in rats with facial inflammatory pain[J]. Pain, 2021, 162(8): 2273-2286.
[187] CHENG C F, CHENG J K, CHEN C Y, et al. Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor alpha-activated satellite glia after peripheral nerve injury[J]. Pain, 2014, 155(5): 906-920.
[188] HUANG D, YU B. The mirror-image pain: an unclered phenomenon and its possible mechanism[J]. Neurosci Biobehav Rev, 2010, 34(4): 528-532.
[189] JI R R, BERTA T, NEDERGAARD M. Glia and pain: is chronic pain a gliopathy?[J]. Pain, 2013, 154 Suppl 1: S10-S28.
[190] MILLIGAN E D, TWINING C, CHACUR M, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats[J]. J Neurosci, 2003, 23(3): 1026-1040.
[191] SCHREIBER K, BEITZ A J, WILCOX G L. Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia[J]. Neurosci Lett, 2008, 440(1): 63-67.
[192] TWINING C M, SLOANE E M, MILLIGAN E D, et al. Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats[J]. Pain, 2004, 110(1-2): 299-309.
[193] WATKINS L R, MAIER S F. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states[J]. Physiol Rev, 2002, 82(4): 981-1011.
[194] CLARK A K, GENTRY C, BRADBURY E J, et al. Role of spinal microglia in rat models of peripheral nerve injury and inflammation[J]. Eur J Pain, 2007, 11(2): 223-230.
[195] LEDEBOER A, SLOANE E, MILLIGAN E D, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation[J]. Pain, 2005, 115(1-2): 71-83.
[196] HAN J, ZHU K, ZHOU K, et al. Sex-Specific Effects of Microglia-Like Cell Engraftment during Experimental Autoimmune Encephalomyelitis[J]. Int J Mol Sci, 2020, 21(18)
[197] PENG J, GU N, ZHOU L, et al. Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury[J]. Nat Commun, 2016, 7: 12029.
[198] ATTAL N, FERMANIAN C, FERMANIAN M, et al. Neuropathic pain: are there distinct subtypes depending on the aetiology or anatomical lesion?[J]. Pain, 2008, 138(2): 343-353.
[199] BOUHASSIRA D, ATTAL N, ALCHAAR H, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4)[J]. Pain, 2005, 114(1-2): 29-36.
[200] TRUINI A, GARCIA-LARREA L, CRUCCU G. Reappraising neuropathic pain in humans--how symptoms help disclose mechanisms[J]. Nat Rev Neurol, 2013, 9(10): 572-582.
[201] HANSSON E. Could chronic pain and spread of pain sensation be induced and maintained by glial activation?[J]. Acta Physiol (Oxf), 2006, 187(1-2): 321-327.
[202] ECHEVERRY S, SHI X Q, YANG M, et al. Spinal microglia are required for long-term maintenance of neuropathic pain[J]. Pain, 2017, 158(9): 1792-1801.
[203] TU Y, MULEY M M, BEGGS S, et al. Microglia-independent peripheral neuropathic pain in male and female mice[J]. Pain, 2022, 163(11): e1129-e1144.
[204] GEISSMANN F, JUNG S, LITTMAN D R. Blood monocytes consist of two principal subsets with distinct migratory properties[J]. Immunity, 2003, 19(1): 71-82.
[205] JUNG S, ALIBERTI J, GRAEMMEL P, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion[J]. Mol Cell Biol, 2000, 20(11): 4106-4114.
[206] GOLDMANN T, WIEGHOFER P, MÜLLER P F, et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation[J]. Nat Neurosci, 2013, 16(11): 1618-1626.
[207] YONA S, KIM K W, WOLF Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis[J]. Immunity, 2013, 38(1): 79-91.
[208] YU X, LIU H, HAMEL K A, et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain[J]. Nat Commun, 2020, 11(1): 264.
修改评论