中文版 | English
题名

镜像痛的脊髓机制研究

其他题名
DISSECTION OF SPINAL MECHANISMS UNDERLYING MIRROR-IMAGE PAIN
姓名
姓名拼音
Ma Quan
学号
11849493
学位类型
博士
学位专业
071006 神经生物学
学科门类/专业学位类别
07 理学
导师
程龙珍
导师单位
神经生物学系
论文答辩日期
2023-04-12
论文提交日期
2023-06-14
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

机械型触诱发痛包含轻度毛刷诱导的动态和轻度压力诱导的点状两种形式,是外周炎症或神经损伤后引起的一种常见且使全世界数百万人变得虚弱的痛反应。在大多数情况下,痛觉敏化会局限在损伤侧,但在某些炎症或神经损伤的条件下,痛觉敏化会蔓延到对侧(通常称为镜像痛),甚至造成全身广泛的痛觉敏化。例如,单侧腕管综合征患者可出现双侧机械型触诱发痛,但仅有少部分复杂区域疼痛综合征患者可以诱导出双侧机械型触诱发痛。单侧注射完全弗氏佐剂或角叉菜胶能够诱导出大鼠的双侧机械型触诱发痛,而大部分情况下神经损伤仅诱导出小鼠的单侧机械型触诱发痛。

局部损伤是如何诱导产生双侧的机械型触诱发痛?迄今为止,人们对这种偏侧性是如何被调节的还知之甚少。机械型触诱发痛的通路是本来就存在,但正常情况下在脊髓背角是被门控的。有关机械型触诱发痛的偏侧性控制的机制可以通过研究双侧机械型触诱发痛的门控机制方面进行研究。根据疼痛的门控理论,脊髓背角痛觉传递神经元(T神经元)接受来自低阈值Aβ机械型感受器的输入。然而,低阈值Aβ机械型感受器的输入通常在脊髓背角被抑制性神经元门控。由外周炎症或神经损伤引起痛觉传递神经元兴奋性输出的增强或抑制性神经元的去抑制可以打开脊髓背角的门控,进而使非痛机械型刺激引起痛觉反应。部分研究探讨了T神经元和抑制性神经元在躯体感觉机械型触诱发痛中的作用,这些研究进一步支持门控理论。

尽管目前关于脊髓背角痛传递神经元(T神经元)和抑制性神经元类型的鉴定取得了进展,但仍有一个尚未解决的主要问题:是什么驱动和影响T神经元和抑制性神经元的兴奋性,进而影响双侧机械型触诱发痛中脊髓背角的门控。研究表明双侧机械型触诱发痛可能是通过调节脊髓背角T神经元和抑制性神经元的兴奋性,进而介导由双侧下行调节的脊髓背角的神经环路。在外周炎症或神经损伤后激活的胶质细胞也可能影响脊髓背角T神经元和抑制性神经元的兴奋性。多个研究团队的研究结果也指出激活的星型胶质细胞在双侧的机械型触诱发痛的发展过程中发挥了关键性的作用。然而,小胶质细胞在调控机械型触诱发痛偏侧性中的作用仍然是存在争议的。例如,研究指出鞘内注射小胶质细胞激活的选择性抑制剂-米诺环素能够抑制角叉菜胶诱导的对侧机械型触诱发痛。与此相反,另一份研究指出激活脊髓的小胶质细胞阻止角叉菜胶诱导大鼠对侧的机械型触诱发痛的发展。

论文的第一部分研究(第三章和第四章)旨在探究小胶质细胞在镜像痛中的作用。为了探究小胶质细胞在镜像痛中的作用:(1)本研究筛选出六种单侧损伤诱导双侧动态或点状的机械型触诱发痛小鼠模型进行功能丧失的研究;(2)为了探究双侧机械型触诱发痛的表型与脊髓背角门控的双侧改变是否高度相关,本研究在六种小鼠模型的“背根神经节-背根-脊髓切片”中记录低阈值Aβ纤维刺激诱发的脊髓背角浅层神经元的输入和输出;(3)本研究使用遗传策略来耗尽这些转基因小鼠的小胶质细胞。出人意料的是,中枢神经系统小胶质细胞的敲除不能阻止双侧动态或点状的机械型触诱发痛。此外,与行为学结果一致的是小胶质细胞敲除不能阻止脊髓背角双侧Aβ门控的开放。这些研究结果表明小胶质细胞在启动双侧机械型触诱发痛的过程中并不是必需的。本研究的第一部分结果挑战了小胶质细胞在控制小鼠双侧机械型触诱发痛偏侧性过程中的作用。进一步研究需要深入探究小胶质细胞在调控双侧机械型触诱发痛偏侧性过程中是否是病因学或物种特异的。

论文的第二部分研究(第五章)旨在探究调控双侧机械型触诱发痛偏侧性过程中的神经机制。第五章研究脊髓κ阿片受体(KOR)在调控小鼠双侧机械型触诱发痛偏侧性过程中的作用。为了探究脊髓背角κ阿片受体在调控小鼠机械型触诱发痛中的作用:(1)本研究进行全细胞膜片钳记录脊髓背角κ阿片受体神经元,结果表明在辣椒素处理后对侧脊髓背角KOR神经元的兴奋性增加;(2)鞘内注射KOR拮抗剂可以阻止辣椒素模型小鼠中脊髓背角Aβ门控的开放,此部分结果表明脊髓背角κ阿片受体在辣椒素模型小鼠诱导对侧Aβ门控的开放是必需的;(3)与鞘内注射κ阿片受体拮抗剂实验结果一致的是,采用Lbx1Cre/Oprk1fl/fl 小鼠敲除脊髓背角κ阿片受体同样可以阻止辣椒素模型小鼠中脊髓背角Aβ门控的开放。这些研究结果表明通过调节脊髓背角κ阿片受体神经元的兴奋性进而调控机械型触诱发痛的偏侧性。

综上所述,这些研究结果共同表明小胶质细胞无论在伤害刺激诱导的触诱发痛的过程中是否发挥作用,小胶质细胞对于镜像痛的诱导并不是必需的。与此同时,脊髓背角神经元中的KORs控制镜像痛的发生发展可能是通过提高此类神经元的兴奋性进而打开对侧介导镜像痛的脊髓背角的门控。因此,脊髓背角神经元中的KORs而非小胶质细胞在镜像痛的发展过程中是扮演重要的角色。在后续的研究中,需要进一步解析脊髓背角KORs介导镜像痛发生发展的分子细胞和神经机制。

其他摘要

Mechanical allodynia (MA), which includes gentle brushing-evoked dynamic and light pressure-evoked punctate forms, is a common and debilitating symptom experienced by millions of patients worldwide following peripheral inflammation or nerve injury. In both humans and animals, some local unilateral injuries lead to full-blown bilateral MA; however, most unilateral injuries in human patients and commonly used inflammatory and neuropathic pain models in animals usually manifest mechanical allodynia on the side ipsilateral to the injury (called mirror-image pain), but not the contralateral uninjured side. For example, patients with unilateral carpal tunnel syndrome can experience bilateral MA, but only a minority of patients with complex regional pain syndrome do so. Unilateral injection of complete Freund's adjuvant (CFA) or carrageenan can induce bilateral MA in rats, while nerve injury in most cases only evokes unilateral MA in mice.

How can certain unilateral injuries produce bilateral MA? To date, how such laterality is controlled remains poorly understood. MA pathways pre-exist, but normally “gated” in the spinal dorsal horn. The question of the control of MA laterality can be addressed by examining the gate control mechanisms of the bilaterality of MA. According to the gate control theory of pain, pain transmission neurons (T neurons) in the spinal dorsal horn (SDH) receive inputs from low-threshold Aβ mechanoreceptors; however, these inputs are normally gated by inhibitory neurons (INs) in the SDH. Enhanced excitatory outputs from T neurons or disinhibition of INs caused by peripheral inflammation or nerve injury can open the gate, allowing non-painful mechanical stimuli to generate the perception of pain. Several studies have addressed the identities of T neurons and INs involved in somatosensory MA that support the gate control theory of pain.

Despite recent progress regarding the identities of T neurons and INs, one major unanswered question remains: what are the main forces that drive and influence the excitability of T neurons and INs, to subsequently affect the gate control of bilateral MA pathways in the SDH? Some studies suggest that bilateral MA is mediated by bilateral descending modulation of dorsal horn circuits, presumably by modulating the excitability of T neurons and INs in the SDH. Activated glial cells may also influence the excitability of T neurons and INs in the SDH following peripheral inflammation or nerve injury. Several groups have supported the critical role of activated astrocytes in the development of bilateral MA. However, the role of microglia in the control of MA laterality remains controversial. For instance, Schreiber et al., reported that intrathecal administration of minocycline, a selective inhibitor of microglial activation, inhibits the development of carrageenan-induced contralateral MA in mice. In contrast, Choi et al., reported that activated spinal microglia prevent the development of carrageenan-induced contralateral MA in rats.

   The first part of this thesis (Chapters 3 and 4) aimed to investigate the role of microglia in the control of MA in mice. To this end, (1) we screened behavioral phenotypes in 6 pain models of unilateral injury-induced bilateral dynamic and punctate MA to perform loss-of-function studies; (2) to determine whether the behavioral signs of bilateral MA are correlated with a bilateral change in the gate control within the SDH, in dorsal root ganglion (DRG)–dorsal root–sagittal spinal cord slice preparations, we recorded low-threshold Aβ-fiber stimulation-evoked inputs and outputs of SDH neurons in the 6 MA models; and (3) we used genetic strategies to deplete microglia in these transgenic mice. Surprisingly, central microglial depletion did not prevent the induction of bilateral dynamic or punctate MA. Moreover, consistent with the behavioral tests, microglial depletion did not prevent the opening of bilateral gates for Aβ pathways in the superficial dorsal horn. These results suggest that microglia are not required for the initiation of bilateral MA in mice. The first part of this study challenges the role of microglia in the control of MA laterality in mice. Future studies are needed to further understand whether role of microglia in the control of MA laterality is etiology- or species-specific.

The second part of this thesis (Chapter 5) went on to explore neural mechanisms underlying laterality control of mechanical allodynia. Chapter 5 examined the role of spinal kappa opioid receptors (KORs) in the laterality control of MA in mice. To this end, (1) we performed whole-cell patch clamp recording of KOR+ neurons in the spinal dorsal horn and found increased excitability of contralateral KOR+ neurons upon hindpaw capsaicin injection; (2) i.t application of KOR antagonist nor-BNI before hindpaw capsaicin injection prevented the opening of contralateral Aβ pathways, suggesting that spinal KORs are required for the induction of contralateral Aβ pathways in hindpaw capsaicin model; and (3) consistent with i.t. injection of KOR antagonist, genetic knockout of KORs from dorsal horn neurons with Lbx1Cre/Oprk1fl/fl mice also prevented the opening of contralateral Aβ pathways in hindpaw capsaicin model. These results demonstrate that spinal KORs could control the laterality of mechanical allodynia via modulating the excitability of KOR+ neurons in the spinal dorsal horn.

Overall, these data collectively show that microglia, no matter what kind of role they may play in nociception-induced mechanical allodynia, they are not required for the initiation of contralateral allodynia; in the meantime, KORs from dorsal horn neurons control the laterality of mechanical allodynia, possibility via increasing the excitability of these neurons and subsequently opened the gate for contralateral mechanical allodynia pathways. Therefore, KORs from dorsal horn neurons, but not microglia, are required for the development of mirror-image pain. In the future, more experiments are warranted to further dissect the underlying mechanisms for the laterality control of mirror-image pain by dorsal horn KORs.

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-06
参考文献列表

[1] HU S W, HU Q, XIA SH, et al. Contralateral Projection of Anterior Cingulate Cortex Contributes to Mirror-Image Pain[J]. J Neurosci, 2021, 41(48): 9988-10003.
[2] JIANG Y M, SUN D D, WANG Z G, et al. Analgesic effect and central mechanisms of CQ prescription on cancer invasion induced mirror image pain in model mice[J]. Zhongguo Zhong Yao Za Zhi, 2017, 42(4): 739-745.
[3] ROTPENPIAN N, TAPECHUM S, VATTARAKORN A, et al. Evolution of mirror-image pain in temporomandibular joint osteoarthritis mouse model[J]. J Appl Oral Sci, 2021, 29: e20200575.
[4] SU Y S, MEI H R, WANG C H, et al. Peripheral 5-HT3 mediates mirror-image pain by a cross-talk with acid-sensing ion channel 3[J]. Neuropharmacology, 2018, 130: 92-104.
[5] ESSER M J, CHASE T, ALLEN G V, et al. Chronic administration of amitriptyline and caffeine in a rat model of neuropathic pain: multiple interactions[J]. Eur J Pharmacol, 2001, 430(2-3): 211-218.
[6] KOLTZENBURG M, WALL P D, MCMAHON S B. Does the right side know what the left is doing?[J]. Trends Neurosci, 1999, 22(3): 122-127.
[7] LI D, YANG H, MEYERSON B A, et al. Response to spinal cord stimulation in variants of the spared nerve injury pain model[J]. Neurosci Lett, 2006, 400(1-2): 115-120.
[8] MAO-YING Q LL, ZHAO J, DONG Z Q, et al. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells[J]. Biochem Biophys Res Commun, 2006, 345(4): 1292-1298.
[9] PAULSON P E, MORROW T J, CASEY K L. Bilateral behavioral and regional cerebral blood flow changes during painful peripheral mononeuropathy in the rat[J]. Pain, 2000, 84(2-3): 233-245.
[10] KUMAR A, KONAR S, HUSSAIN N, et al. Mirror meningioma at foramen magnum: Enigma in management of a very rare case[J]. Surg Neurol Int, 2019, 10: 230.
[11] LI Q Y, ChEN S X, LIU J Y, et al. Neuroinflammation in the anterior cingulate cortex: the potential supraspinal mechanism underlying the mirror-image pain following motor fiber injury[J]. J Neuroinflammation, 2022, 19(1): 162.
[12] MOLLER M, MÖSER C V, WEIß U, et al. The Role of AlphalphaSynuclein in Mouse Models of Acute, Inflammatory and Neuropathic Pain[J]. Cells, 2022, 11(12)
[13] NAKATSUKA K, MATSUOKA Y, KURITA M, et al. Intrathecal Administration of the alpha1 Adrenergic Antagonist Phentolamine Upregulates Spinal GLT-1 and Improves Mirror Image Pain in SNI Model Rats[J]. Acta Med Okayama, 2022, 76(3): 255-263.
[14] MALEKI J, LEBEL A A, BENNETT G J, et al. Patterns of spread in complex regional pain syndrome, type I (reflex sympathetic dystrophy)[J]. Pain, 2000, 88(3): 259-266.
[15] SHIR Y, SELTZER Z. Effects of sympathectomy in a model of causalgiform pain produced by partial sciatic nerve injury in rats[J]. Pain, 1991, 45(3): 309-320.
[16] WODA A, PIONCHON P. A unified concept of idiopathic orofacial pain: pathophysiologic features[J]. J Orofac Pain, 2000, 14(3): 196-212.
[17] SCHONEBOOM B A, PERRY S M, BARNHILL W K, et al. Answering the call to address chronic pain in military service members and veterans: Progress in improving pain care and restoring health[J]. Nurs Outlook, 2016, 64(5): 459-484.
[18] PETERSEN K L, RICE F L, FARHADI M, et al. Natural history of cutaneous innervation following herpes zoster[J]. Pain, 2010, 150(1): 75-82.
[19] GOVER-CHAMLOU A, TSAO J W. Telepain Management of Phantom Limb Pain Using Mirror Therapy[J]. Telemed J E Health, 2016, 22(2): 176-179.
[20] SINNOTT C J, GARFIELD J M, STRICHARTZ G R. Differential efficacy of intravenous lidocaine in alleviating ipsilateral versus contralateral neuropathic pain in the rat[J]. Pain, 1999, 80(3): 521-531.
[21] SOMERS D L, CLEMENTE F R. Contralateral high or a combination of high- and low-frequency transcutaneous electrical nerve stimulation reduces mechanical allodynia and alters dorsal horn neurotransmitter content in neuropathic rats[J]. J Pain, 2009, 10(2): 221-229.
[22] CABIOGLU M T, CETIN B E. Acupuncture and immunomodulation[J]. Am J Chin Med, 2008, 36(1): 25-36.
[23] DAI Y, KONDO E, FUKUOKA T, et al. The effect of electroacupuncture on pain behaviors and noxious stimulus-evoked Fos expression in a rat model of neuropathic pain[J]. J Pain, 2001, 2(3): 151-159.
[24] KOO S T, LIM K S, CHUNG K, et al. Electroacupuncture-induced analgesia in a rat model of ankle sprain pain is mediated by spinal alpha-adrenoceptors[J]. Pain, 2008, 135(1-2): 11-19.
[25] KOO S T, PARK Y L, LIM K S, et al. Acupuncture analgesia in a new rat model of ankle sprain pain[J]. Pain, 2002, 99(3): 423-431.
[26] LIN J G, CHEN W L. Acupuncture analgesia: a review of its mechanisms of actions[J]. Am J Chin Med, 2008, 36(4): 635-645.
[27] ZHENG Z, GUO R J, HELME R D, et al. The effect of electroacupuncture on opioid-like medication consumption by chronic pain patients: a pilot randomized controlled clinical trial[J]. Eur J Pain, 2008, 12(5): 671-676.
[28] HAN J S. Acupuncture and endorphins[J]. Neurosci Lett, 2004, 361(1-3): 258-261.
[29] SJOLUND B, TERENIUS L, ERIKSSON M. Increased cerebrospinal fluid levels of endorphins after electro-acupuncture[J]. Acta Physiol Scand, 1977, 100(3): 382-384.
[30] WANG J Y, CHEN S P, LI Y H, et al. Observation on the accumulative analgesic effect of electroacupuncture and the expression of protein kinase A in hypothalamus and hippocampus in chronic pain or/and ovariectomized rats[J]. Zhen Ci Yan Jiu, 2008, 33(2): 80-87.
[31] ZHAO H, DU L N, JIANG J W, et al. Neuroimmunal regulation of electroacupuncture (EA) on the traumatic rats[J]. Acupunct Electrother Res, 2002, 27(1): 15-27.
[32] ARGUIS M J, PEREZ J, MARTÍNEZ G, et al. Contralateral neuropathic pain following a surgical model of unilateral nerve injury in rats[J]. Reg Anesth Pain Med, 2008, 33(3): 211-216.
[33] DUBOVY P, TUCKOVA L, JANCALEK R, et al. Increased invasion of ED-1 positive macrophages in both ipsi- and contralateral dorsal root ganglia following unilateral nerve injuries[J]. Neurosci Lett, 2007, 427(2): 88-93.
[34] WALLER A. Experiments on the Section of the Glosso-Pharyngeal and Hypoglossal Nerves of the Frog, and Observations of the Alterations Produced Thereby in the Structure of Their Primitive Fibres[J]. Edinb Med Surg J, 1851, 76(189): 369-376.
[35] CHEEPUDOMWIT T, GÜZELSU E, ZHOU C, et al. Comparison of cytokine expression profile during Wallerian degeneration of myelinated and unmyelinated peripheral axons[J]. Neurosci Lett, 2008, 430(3): 230-235.
[36] WEINSTEIN S M. Phantom limb pain and related disorders[J]. Neurol Clin, 1998, 16(4): 919-936.
[37] KIM S Y, KIM Y Y. Mirror therapy for phantom limb pain[J]. Korean J Pain, 2012, 25(4): 272-274.
[38] GANDHI D B, STERBA A, KHATTER H, et al. Mirror Therapy in Stroke Rehabilitation: Current Perspectives[J]. Ther Clin Risk Manag, 2020, 16: 75-85.
[39] COLMENERO L H, MARMOL J M, GARCÍA C M, et al. Effectiveness of mirror therapy, motor imagery, and virtual feedback on phantom limb pain following amputation: A systematic review[J]. Prosthet Orthot Int, 2018, 42(3): 288-298.
[40] LEE D, LEE G. Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial[J]. Eur J Phys Rehabil Med, 2019, 55(4): 442-449.
[41] MADHOUN H Y, TAN B, FENG Y, et al. Task-based mirror therapy enhances the upper limb motor function in subacute stroke patients: a randomized control trial[J]. Eur J Phys Rehabil Med, 2020, 56(3): 265-271.
[42] CARLEN P L, WALL P D, NADVORNA H, et al. Phantom limbs and related phenomena in recent traumatic amputations[J]. Neurology, 1978, 28(3): 211-217.
[43] HAYES C, ARMSTRONG-BROWN A, BURSTAL R. Perioperative intravenous ketamine infusion for the prevention of persistent post-amputation pain: a randomized, controlled trial[J]. Anaesth Intensive Care, 2004, 32(3): 330-338.
[44] WEEKS S R, ANDERSON-BARNE V C, TSAO J W. Phantom limb pain: theories and therapies[J]. Neurologist, 2010, 16(5): 277-286.
[45] NIKOLAJSEN L, KRØNER K, CHRISTENSEN J H, et al. The influence of preamputation pain on postamputation stump and phantom pain[J]. Pain, 1997, 72(3): 393-405.
[46] HUBBARD R D, CHEN Z, WINKELSTEIN B A. Transient cervical nerve root compression modulates pain: load thresholds for allodynia and sustained changes in spinal neuropeptide expression[J]. J Biomech, 2008, 41(3): 677-685.
[47] HUBBARD R D, WINKELSTEIN B A. Transient cervical nerve root compression in the rat induces bilateral forepaw allodynia and spinal glial activation: mechanical factors in painful neck injuries[J]. Spine (Phila Pa 1976), 2005, 30(17): 1924-1932.
[48] BAI Z T, LIU T, CHAI Z F. Rat pain-related responses induced by experimental scorpion BmK sting[J]. Eur J Pharmacol, 2006, 552(1-3): 67-77.
[49] BAI Z T, LIU T, PANG X Y, et al. Functional depletion of capsaicin-sensitive primary afferent fibers attenuates rat pain-related behaviors and paw edema induced by the venom of scorpion Buthus martensi Karch[J]. Neurosci Res, 2008, 62(2): 78-85.
[50] GARRISON C J, DOUGHERTY P M, KAJANDER K C, et al. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury[J]. Brain Res, 1991, 565(1): 1-7.
[51] HASHIZUME H, DELEO J A, COLBURN R W, et al. Spinal glial activation and cytokine expression after lumbar root injury in the rat[J]. Spine (Phila Pa 1976), 2000, 25(10): 1206-1217.
[52] ISHIKAWA T, ETO K, KIM S K, et al. Cortical astrocytes prime the induction of spine plasticity and mirror image pain[J]. Pain, 2018, 159(8): 1592-1606.
[53] NENT E, NOZAKI C, SCHMÖLE A C, et al. CB2 receptor deletion on myeloid cells enhanced mechanical allodynia in a mouse model of neuropathic pain[J]. Sci Rep, 2019, 9(1): 7468.
[54] SU Y S, MEI H R, WANG C H, et al. Peripheral 5-HT(3) mediates mirror-image pain by a cross-talk with acid-sensing ion channel 3[J]. Neuropharmacology, 2018, 130: 92-104.
[55] YUAN Q, LIU X D, XIAN Y F, et al. Satellite glia activation in dorsal root ganglion contributes to mechanical allodynia after selective motor fiber injury in adult rats[J]. Biomed Pharmacother, 2020, 127: 110187.
[56] COYLE D E. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior[J]. Glia, 1998, 23(1): 75-83.
[57] BURSTON J J, VALDES A M, WOODHAMS S G, et al. The impact of anxiety on chronic musculoskeletal pain and the role of astrocyte activation[J]. Pain, 2019, 160(3): 658-669.
[58] WANG J Y, GAO Y H, QIAO L N, et al. Repeated electroacupuncture treatment attenuated hyperalgesia through suppression of spinal glial activation in chronic neuropathic pain rats[J]. BMC Complement Altern Med, 2018, 18(1): 74.
[59] DENG M Y, AHMAD K A, HAN Q Q, et al. Thalidomide alleviates neuropathic pain through microglial IL-10/beta-endorphin signaling pathway[J]. Biochem Pharmacol, 2021, 192: 114727.
[60] FATTORI V, PINHO-RIBEIRO F A, STAURENGO-FERRARI L, et al. The specialised pro-resolving lipid mediator maresin 1 reduces inflammatory pain with a long-lasting analgesic effect[J]. Br J Pharmacol, 2019, 176(11): 1728-1744.
[61] LI L, BAI L Y, YANG K L, et al. KDM6B epigenetically regulated-interleukin-6 expression in the dorsal root ganglia and spinal dorsal horn contributes to the development and maintenance of neuropathic pain following peripheral nerve injury in male rats[J]. Brain Behav Immun, 2021, 98: 265-282.
[62] WANG J, ZHOU F, ZHANG S S, et al. Participation of transient receptor potential vanilloid 1 in the analgesic effect of duloxetine for paclitaxel induced peripheral neuropathic pain[J]. Neurosci Lett, 2022, 773: 136512.
[63] WEI J, SU W F, ZHAO Y Y, et al. Maresin 1 promotes nerve regeneration and alleviates neuropathic pain after nerve injury[J]. J Neuroinflammation, 2022, 19(1): 32.
[64] ZHUANG Z Y, KAWASAKI Y, TAN P H, et al. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine[J]. Brain Behav Immun, 2007, 21(5): 642-651.
[65] HIOKI T, TOKUDA H, NAKASHIMA D, et al. HSP90 inhibitors strengthen extracellular ATP-stimulated synthesis of interleukin-6 in osteoblasts: Amplification of p38 MAP kinase[J]. Cell Biochem Funct, 2021, 39(1): 88-97.
[66] KOYAMA R, SMAGA I, SUROWKA P, et al. Pannexin 1-Mediated ATP Signaling in the Trigeminal Spinal Subnucleus Caudalis Is Involved in Tongue Cancer Pain[J]. Int J Mol Sci, 2021, 22(21)
[67] PAIGE C, MARUTHY G B, MEJIA G, et al. Spinal Inhibition of P2XR or p38 Signaling Disrupts Hyperalgesic Priming in Male, but not Female, Mice[J]. Neuroscience, 2018, 385: 133-142.
[68] PARK W S, LEE J, NA G, et al. Benzyl Isothiocyanate Attenuates Inflammasome Activation in Pseudomonas aeruginosa LPS-Stimulated THP-1 Cells and Exerts Regulation through the MAPKs/NF-kappaB Pathway[J]. Int J Mol Sci, 2022, 23(3)
[69] GUO Y J, LI H N, DING C P, et al. Red nucleus interleukin-1beta evokes tactile allodynia through activation of JAK/STAT3 and JNK signaling pathways[J]. J Neurosci Res, 2018, 96(12): 1847-1861.
[70] JIANG L, MA D, GRUBB B D, et al. ROS/TRPA1/CGRP signaling mediates cortical spreading depression[J]. J Headache Pain, 2019, 20(1): 25.
[71] YANG L, WANG S H, HU Y, et al. Effects of Repetitive Transcranial Magnetic Stimulation on Astrocytes Proliferation and nNOS Expression in Neuropathic Pain Rats[J]. Curr Med Sci, 2018, 38(3): 482-490.
[72] ALI U, APRYANI E, WU H Y, et al. Low frequency electroacupuncture alleviates neuropathic pain by activation of spinal microglial IL-10/beta-endorphin pathway[J]. Biomed Pharmacother, 2020, 125: 109898.
[73] TANSLEY S, GU N, GUZMÁN A U, et al. Microglia-mediated degradation of perineuronal nets promotes pain[J]. Science, 2022, 377(6601): 80-86.
[74] FALCIGLIA F, BASIGLINI, AULISA A G, et al. Superficial peroneal nerve entrapment in ankle sprain in childhood and adolescence[J]. Sci Rep, 2021, 11(1): 15123.
[75] SONG E J, PARK J S, RYU K N, et al. Perineural Spread Along Spinal and Obturator Nerves in Primary Vaginal Carcinoma: A Case Report[J]. World Neurosurg, 2018, 115: 85-88.
[76] FITZGERALD M. Alterations in the ipsi- and contralateral afferent inputs of dorsal horn cells produced by capsaicin treatment of one sciatic nerve in the rat[J]. Brain Res, 1982, 248(1): 97-107.
[77] FITZGERALD M. The contralateral input to the dorsal horn of the spinal cord in the decerebrate spinal rat[J]. Brain Res, 1982, 236(2): 275-287.
[78] CODERRE T J, MELZACK R. Increased pain sensitivity following heat injury involves a central mechanism[J]. Behav Brain Res, 1985, 15(3): 259-262.
[79] SHERRINGTON C S. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing[J]. J Physiol, 1910, 40(1-2): 28-121.
[80] FITZGERALD M. Influences of contralateral nerve and skin stimulation on neurones in the substantia gelatinosa of the rat spinal cord[J]. Neurosci Lett, 1983, 36(2): 139-143.
[81] RITZ L A, MURRAT C R, FOLI K. Crossed and uncrossed projections to the cat sacrocaudal spinal cord: III. Axons expressing calcitonin gene-related peptide immunoreactivity[J]. J Comp Neurol, 2001, 438(4): 388-398.
[82] ARNETT F C, EDWORTHY S M, BLOCH D A, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis[J]. Arthritis Rheum, 1988, 31(3): 315-324.
[83] KIDD B L, CRUWYS S C, GARRETT N E, et al. Neurogenic influences on contralateral responses during experimental rat monoarthritis[J]. Brain Res, 1995, 688(1-2): 72-76.
[84] LEVINE J D, BASBAUM A I. Neurogenic mechanism for symmetrical arthritis[J]. Lancet, 1990, 335(8692): 795.
[85] DONALDSON L F, MCQUEEN D S, SECKL J R. Neuropeptide gene expression and capsaicin-sensitive primary afferents: maintenance and spread of adjuvant arthritis in the rat[J]. J Physiol, 1995, 486 ( Pt 2): 473-482.
[86] KELLY S, DUNHAM J P, DONALDSON L F. Sensory nerves have altered function contralateral to a monoarthritis and may contribute to the symmetrical spread of inflammation[J]. Eur J Neurosci, 2007, 26(4): 935-942.
[87] OLSSON Y. Studies on vascular permeability in peripheral nerves. I. Distribution of circulating fluorescent serum albumin in normal, crushed and sectioned rat sciatic nerve[J]. Acta Neuropathol, 1966, 7(1): 1-15.
[88] BRISBY H, OLMARKER K, LARSSON K, et al. Proinflammatory cytokines in cerebrospinal fluid and serum in patients with disc herniation and sciatica[J]. Eur Spine J, 2002, 11(1): 62-66.
[89] KLEINSCHNITZ C, BRINKHOFF J, SOMMER C, et al. Contralateral cytokine gene induction after peripheral nerve lesions: dependence on the mode of injury and NMDA receptor signaling[J]. Brain Res Mol Brain Res, 2005, 136(1-2): 23-28.
[90] CORNEFJORD M, NYBERG F, ROSENGREN L, et al. Cerebrospinal fluid biomarkers in experimental spinal nerve root injury[J]. Spine (Phila Pa 1976), 2004, 29(17): 1862-1868.
[91] NGUYEN C, HAUGHTON V M, HO K C, et al. Contrast enhancement in spinal nerve roots: an experimental study[J]. AJNR Am J Neuroradiol, 1995, 16(2): 265-268.
[92] SKOUEN J S, BRISBY H, OLMARKER K, et al. Protein markers in cerebrospinal fluid in experimental nerve root injury. A study of slow-onset chronic compression effects or the biochemical effects of nucleus pulposus on sacral nerve roots[J]. Spine (Phila Pa 1976), 1999, 24(21): 2195-2200.
[93] DE SEZE S, GUILLAUME J. The distant results of sensitive radicotomies for sciatica by posterior herniated disc[J]. Sem Hop, 1946, 22: 1055-1070.
[94] AHONEN A, MYLLYLA V V, HOKKANEN E. Cerebrospinal fluid protein findings in various lower back pain syndromes[J]. Acta Neurol Scand, 1979, 60(2): 93-99.
[95] SKOUEN J S, LARSEN J L, VOLLSET S E. Cerebrospinal fluid proteins as indicators of nerve root compression in patients with sciatica caused by disc herniation[J]. Spine (Phila Pa 1976), 1993, 18(1): 72-79.
[96] TUNEVALL T G. Cerebrospinal fluid protein--an aid in the diagnosis of herniated discs[J]. Acta Chir Scand Suppl, 1984, 520: 85-86.
[97] MILLIGAN E D, O'CONNOR K A, NGUYEN K T, et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines[J]. J Neurosci, 2001, 21(8): 2808-2819.
[98] BRISBY H, OLMARKER K, ROSENGREN L, et al. Markers of nerve tissue injury in the cerebrospinal fluid in patients with lumbar disc herniation and sciatica[J]. Spine (Phila Pa 1976), 1999, 24(8): 742-746.
[99] BRUUNSGAARD H, PEDERSEN M, PEDERSEN B K. Aging and proinflammatory cytokines[J]. Curr Opin Hematol, 2001, 8(3): 131-136.
[100] O'CONNOR M F, MOTIVALA S J, VALLADARES E M, et al. Sex differences in monocyte expression of IL-6: role of autonomic mechanisms[J]. Am J Physiol Regul Integr Comp Physiol, 2007, 293(1): R145-151.
[101] SAURWEIN-TEISSL M, BLASKO L, ZISTERER K, et al. An imbalance between pro- and anti-inflammatory cytokines, a characteristic feature of old age[J]. Cytokine, 2000, 12(7): 1160-1161.
[102] ALLEN J A, ROTH B L. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors[J]. Annu Rev Pharmacol Toxicol, 2011, 51: 117-144.
[103] MA P, ZEMMEL R. Value of novelty?[J]. Nat Rev Drug Discov, 2002, 1(8): 571-572.
[104] KENAKIN T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals[J]. Trends Pharmacol Sci, 1995, 16(7): 232-238.
[105] MONOD J, WYMAN J, CHANGEUS J P. On the Nature of Allosteric Transitions: A Plausible Model[J]. J Mol Biol, 1965, 12: 88-118.
[106] DEUPI X, KOBILKA B K. Energy landscapes as a tool to integrate GPCR structure, dynamics, and function[J]. Physiology (Bethesda), 2010, 25(5): 293-303.
[107] WACKER D, WANG C, KATRITCH V, et al. Structural features for functional selectivity at serotonin receptors[J]. Science, 2013, 340(6132): 615-619.
[108] NYGAARD R, ZOU Y, DROR R O, et al. The dynamic process of beta(2)-adrenergic receptor activation[J]. Cell, 2013, 152(3): 532-542.
[109] BROWNSTEIN M J. A brief history of opiates, opioid peptides, and opioid receptors[J]. Proc Natl Acad Sci U S A, 1993, 90(12): 5391-5393.
[110] WILLIAMS J T, INGRAM S L, HENDERSON G, et al. Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance[J]. Pharmacol Rev, 2013, 65(1): 223-254.
[111] CHAVKIN C, JAMES L F, GOLDSTEIN A. Dynorphin is a specific endogenous ligand of the kappa opioid receptor[J]. Science, 1982, 215(4531): 413-415.
[112] GOLDSTEIN A, TACHIBANA S, LOWNEY L I, et al. Dynorphin-(1-13), an extraordinarily potent opioid peptide[J]. Proc Natl Acad Sci U S A, 1979, 76(12): 6666-6670.
[113] CARLEZON W A, THOME J, OLSON V G, et al. Regulation of cocaine reward by CREB[J]. Science, 1998, 282(5397): 2272-2275.
[114] PFEIFFER A, BRANTL V, HERZ A, et al. Psychotomimesis mediated by kappa opiate receptors[J]. Science, 1986, 233(4765): 774-776.
[115] ROTH B L, BANER K, WESTKAEMPER R, et al. Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist[J]. Proc Natl Acad Sci U S A, 2002, 99(18): 11934-11939.
[116] BRUCHAS M R, SCHINDLER A G, SHANKAR H, et al. Selective p38alpha MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction[J]. Neuron, 2011, 71(3): 498-511.
[117] SCHINDLER A G, MESSENGER D I, SMITH J S, et al. Stress produces aversion and potentiates cocaine reward by releasing endogenous dynorphins in the ventral striatum to locally stimulate serotonin reuptake[J]. J Neurosci, 2012, 32(49): 17582-17596.
[118] TEJEDA H A, COUNOTTE D S, OH E, et al. Prefrontal cortical kappa-opioid receptor modulation of local neurotransmission and conditioned place aversion[J]. Neuropsychopharmacology, 2013, 38(9): 1770-1779.
[119] ARVIDSSON U, RIEDL M R, CHAKRABARTI S, et al. The kappa-opioid receptor is primarily postsynaptic: combined immunohistochemical localization of the receptor and endogenous opioids[J]. Proc Natl Acad Sci U S A, 1995, 92(11): 5062-5066.
[120] LEITL M D, ONVANI S, BOWERS M, et al. Pain-related depression of the mesolimbic dopamine system in rats: expression, blockade by analgesics, and role of endogenous kappa-opioids[J]. Neuropsychopharmacology, 2014, 39(3): 614-624.
[121] SIMONIN F, GAVÉRIAUX-RUFF C, BEFORT K, et al. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system[J]. Proc Natl Acad Sci U S A, 1995, 92(15): 7006-7010.
[122] LEKNES S, TRACEY I. A common neurobiology for pain and pleasure[J]. Nat Rev Neurosci, 2008, 9(4): 314-320.
[123] DI CHIARA G, IMPERATO A. Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats[J]. J Pharmacol Exp Ther, 1988, 244(3): 1067-1080.
[124] NARITA M, FUNADA M, SUZUKI T. Regulations of opioid dependence by opioid receptor types[J]. Pharmacol Ther, 2001, 89(1): 1-15.
[125] SPANAGEL R, HERZ A, SHIPPENBERG T S. The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study[J]. J Neurochem, 1990, 55(5): 1734-1740.
[126] MENG I D, JOHANSEN J P, HARASAWA I, et al. Kappa opioids inhibit physiologically identified medullary pain modulating neurons and reduce morphine antinociception[J]. J Neurophysiol, 2005, 93(3): 1138-1144.
[127] DORTCH-CARNES J, POTTER D E. Bremazocine: a kappa-opioid agonist with potent analgesic and other pharmacologic properties[J]. CNS Drug Rev, 2005, 11(2): 195-212.
[128] NEGUS S S. Core Outcome Measures in Preclinical Assessment of Candidate Analgesics[J]. Pharmacol Rev, 2019, 71(2): 225-266.
[129] DEUIS J R, DVORAKOVA L S, VETTER I. Methods Used to Evaluate Pain Behaviors in Rodents[J]. Front Mol Neurosci, 2017, 10: 284.
[130] HAYES A G, SHEEHAN M J, TYERS M B. Differential sensitivity of models of antinociception in the rat, mouse and guinea-pig to mu- and kappa-opioid receptor agonists[J]. Br J Pharmacol, 1987, 91(4): 823-832.
[131] LEIGHTON G E, RODRIGUEZ R E, HILL R G, et al. kappa-Opioid agonists produce antinociception after i.v. and i.c.v. but not intrathecal administration in the rat[J]. Br J Pharmacol, 1988, 93(3): 553-560.
[132] SEGUIN L, MAROUILLE-GIRARDON S L, MILLAN M J. Antinociceptive profiles of non-peptidergic neurokinin1 and neurokinin2 receptor antagonists: a comparison to other classes of antinociceptive agent[J]. Pain, 1995, 61(2): 325-343.
[133] TYERS M B. A classification of opiate receptors that mediate antinociception in animals[J]. Br J Pharmacol, 1980, 69(3): 503-512.
[134] BARBER A, BARTOSZYK G D, BENDER H M, et al. A pharmacological profile of the novel, peripherally-selective kappa-opioid receptor agonist, EMD 61753[J]. Br J Pharmacol, 1994, 113(4): 1317-1327.
[135] DOGRA S, YADAV P N. Biased agonism at kappa opioid receptors: Implication in pain and mood disorders[J]. Eur J Pharmacol, 2015, 763(Pt B): 184-190.
[136] BECK T C, LI Z, ZHUO X, et al. Targeting peripheral varkappa-opioid receptors for the non-addictive treatment of pain[J]. Future Drug Discov, 2019, 1(2)
[137] BRIGGS S L, RECH R H, SAWYER D C. Kappa antinociceptive activity of spiradoline in the cold-water tail-flick assay in rats[J]. Pharmacol Biochem Behav, 1998, 60(2): 467-472.
[138] EDWARDS K A, HAVELIN J J, MCINTOSH M I, et al. A Kappa Opioid Receptor Agonist Blocks Bone Cancer Pain Without Altering Bone Loss, Tumor Size, or Cancer Cell Proliferation in a Mouse Model of Cancer-Induced Bone Pain[J]. J Pain, 2018, 19(6): 612-625.
[139] ESCUDERO-LARA A, CABAÑERO D, MALDONADO R. Kappa opioid receptor modulation of endometriosis pain in mice[J]. Neuropharmacology, 2021, 195: 108677.
[140] PANDE A C, PYKE R E, GREINER M, et al. Analgesic efficacy of the kappa-receptor agonist, enadoline, in dental surgery pain[J]. Clin Neuropharmacol, 1996, 19(1): 92-97.
[141] PANDE A C, PYKE R E, GREINER M, et al. Analgesic efficacy of enadoline versus placebo or morphine in postsurgical pain[J]. Clin Neuropharmacol, 1996, 19(5): 451-456.
[142] ALBERT-VARTANIAN A, BOYD M R, HALL A L, et al. Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential?[J]. J Clin Pharm Ther, 2016, 41(4): 371-382.
[143] LEMBO A. Peripheral opioids for functional GI disease: a reappraisal[J]. Dig Dis, 2006, 24(1-2): 91-98.
[144] MACHELSKA H, PFLÜGER M, WEBER W, et al. Peripheral effects of the kappa-opioid agonist EMD 61753 on pain and inflammation in rats and humans[J]. J Pharmacol Exp Ther, 1999, 290(1): 354-361.
[145] ZHAO M, WANG J Y, JIA H, et al. Roles of different subtypes of opioid receptors in mediating the ventrolateral orbital cortex opioid-induced inhibition of mirror-neuropathic pain in the rat[J]. Neuroscience, 2007, 144(4): 1486-1494.
[146] ZHANG Y, LIU S, ZHANG Y, et al. Timing Mechanisms Underlying Gate Control by Feedforward Inhibition[J]. Neuron, 2018, 99(5): 941-955 e944.
[147] CHENG L, DUAN B, HUANG T, et al. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain[J]. Nat Neurosci, 2017, 20(6): 804-814.
[148] BONIN R P, BORIES C, KONINCK Y D. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments[J]. Mol Pain, 2014, 10: 26.
[149] KOLTZENBURG M, LUNDBERG L E, TOREBJÖRK E H. Dynamic and static components of mechanical hyperalgesia in human hairy skin[J]. Pain, 1992, 51(2): 207-219.
[150] OCHOA J L, YARNITSKY D. Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes[J]. Ann Neurol, 1993, 33(5): 465-472.
[151] TSANG A, KORFF M V, LEE S, et al. Common chronic pain conditions in developed and developing countries: gender and age differences and comorbidity with depression-anxiety disorders[J]. J Pain, 2008, 9(10): 883-891.
[152] CHOI H S, ROH D H, YOON S Y, et al. Microglial interleukin-1beta in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain[J]. Pain, 2015, 156(6): 1046-1059.
[153] FERNANDEZ-DE-LAS-PENAS C, LLAVE-RINCÓN A I, FERNÁNDEZ-CARNERO I, et al. Bilateral widespread mechanical pain sensitivity in carpal tunnel syndrome: evidence of central processing in unilateral neuropathy[J]. Brain, 2009, 132(Pt 6): 1472-1479.
[154] GAO Y J, XU Z Z, LIU Y C, et al. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition[J]. Pain, 2010, 148(2): 309-319.
[155] KONOPKA K H, HARBERS M, HOUGHTON A, et al. Bilateral sensory abnormalities in patients with unilateral neuropathic pain; a quantitative sensory testing (QST) study[J]. PLoS One, 2012, 7(5): e37524.
[156] CHRISTIDIS N, NILSSON A, KOPP S, et al. Intramuscular injection of granisetron into the masseter muscle increases the pressure pain threshold in healthy participants and patients with localized myalgia[J]. Clin J Pain, 2007, 23(6): 467-472.
[157] CICHON J, BLANCK T J, GAN W B, et al. Activation of cortical somatostatin interneurons prevents the development of neuropathic pain[J]. Nat Neurosci, 2017, 20(8): 1122-1132.
[158] ENAX-KRUMOVA E K, POHL S, WESTERMANN A, et al. Ipsilateral and contralateral sensory changes in healthy subjects after experimentally induced concomitant sensitization and hypoesthesia[J]. BMC Neurol, 2017, 17(1): 60.
[159] JANIG W, BARON R. Complex regional pain syndrome: mystery explained?[J]. Lancet Neurol, 2003, 2(11): 687-697.
[160] KAYAOGLU G, EKICI M, ALTUNKAYNAK B. Mechanical Allodynia in Healthy Teeth Adjacent and Contralateral to Endodontically Diseased Teeth: A Clinical Study[J]. J Endod, 2020, 46(5): 611-618.
[161] MASGORET P, SOTO I D, CABALLERO A, et al. Incidence of contralateral neurosensitive changes and persistent postoperative pain 6 months after mastectomy: A prospective, observational investigation[J]. Medicine (Baltimore), 2020, 99(11): e19101.
[162] ROMMEL O, MALIN J P, ZENZ M, et al. Quantitative sensory testing, neurophysiological and psychological examination in patients with complex regional pain syndrome and hemisensory deficits[J]. Pain, 2001, 93(3): 279-293.
[163] SHENKER N G, HAIGH R C, MAP P I, et al. Contralateral hyperalgesia and allodynia following intradermal capsaicin injection in man[J]. Rheumatology (Oxford), 2008, 47(9): 1417-1421.
[164] VELDMAN P, GORIS J A R. Multiple reflex sympathetic dystrophy. Which patients are at risk for developing a recurrence of reflex sympathetic dystrophy in the same or another limb[J]. Pain, 1996, 64(3): 463-466.
[165] MELZACK R, WALL P D. Pain mechanisms: a new theory[J]. Science, 1965, 150(3699): 971-979.
[166] MENDELL L M. Constructing and deconstructing the gate theory of pain[J]. Pain, 2014, 155(2): 210-216.
[167] BABA H, JI R R, KOHNO T, et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn[J]. Mol Cell Neurosci, 2003, 24(3): 818-830.
[168] BRAZ J, SOLORZANO C, WANG X, et al. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control[J]. Neuron, 2014, 82(3): 522-536.
[169] JI R R, NACKLEY A, HUH Y, et al. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain[J]. Anesthesiology, 2018, 129(2): 343-366.
[170] KOCH S C, ACTON D, GOULDING M. Spinal Circuits for Touch, Pain, and Itch[J]. Annu Rev Physiol, 2018, 80: 189-217.
[171] PEIRS C, DALLEL R, TODD A. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia[J]. J Neural Transm (Vienna), 2020, 127(4): 505-525.
[172] PRICE T J, CERVERO F, GOLD M S, et al. Chloride regulation in the pain pathway[J]. Brain Res Rev, 2009, 60(1): 149-170.
[173] SADLER K E, MOGIL J S, STUCKY C L. Innovations and advances in modelling and measuring pain in animals[J]. Nat Rev Neurosci, 2022, 23(2): 70-85.
[174] TODD A J. Neuronal circuitry for pain processing in the dorsal horn[J]. Nat Rev Neurosci, 2010, 11(12): 823-836.
[175] TORSNEY C, MACDERMOTT A B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord[J]. J Neurosci, 2006, 26(6): 1833-1843.
[176] WOOLF C J. Central sensitization: implications for the diagnosis and treatment of pain[J]. Pain, 2011, 152(3 Suppl): S2-S15.
[177] CUI L, MIAO X, LIANG L, et al. Identification of Early RET+ Deep Dorsal Spinal Cord Interneurons in Gating Pain[J]. Neuron, 2016, 91(5): 1137-1153.
[178] DUAN B, CHENG L, BOURANE S, et al. Identification of spinal circuits transmitting and gating mechanical pain[J]. Cell, 2014, 159(6): 1417-1432.
[179] FOSTER E, WILDNER H, TUDEAU L, et al. Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch[J]. Neuron, 2015, 85(6): 1289-1304.
[180] LU Y, DONG H, GAO Y, et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia[J]. J Clin Invest, 2013, 123(9): 4050-4062.
[181] PEIRS C, WILLIAMS S P, ZHAO X, et al. Mechanical Allodynia Circuitry in the Dorsal Horn Is Defined by the Nature of the Injury[J]. Neuron, 2021, 109(1): 73-90 e77.
[182] PEIRS C, WILLIAMS S P, ZHAO X, et al. Dorsal Horn Circuits for Persistent Mechanical Pain[J]. Neuron, 2015, 87(4): 797-812.
[183] PETITJEAN H, PAWLOWSKI S A, FRAINE S L, et al. Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury[J]. Cell Rep, 2015, 13(6): 1246-1257.
[184] GOUZE-DECARIS E, PHILIPPE L, MINN A, et al. Neurophysiological basis for neurogenic-mediated articular cartilage anabolism alteration[J]. Am J Physiol Regul Integr Comp Physiol, 2001, 280(1): R115-122.
[185] HUANG J, GADOTTI V M, CHEN L, et al. A neuronal circuit for activating descending modulation of neuropathic pain[J]. Nat Neurosci, 2019, 22(10): 1659-1668.
[186] SUGIMOTO M, TAKAHASHI Y, SUGIMURA Y L, et al. Active role of the central amygdala in widespread mechanical sensitization in rats with facial inflammatory pain[J]. Pain, 2021, 162(8): 2273-2286.
[187] CHENG C F, CHENG J K, CHEN C Y, et al. Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor alpha-activated satellite glia after peripheral nerve injury[J]. Pain, 2014, 155(5): 906-920.
[188] HUANG D, YU B. The mirror-image pain: an unclered phenomenon and its possible mechanism[J]. Neurosci Biobehav Rev, 2010, 34(4): 528-532.
[189] JI R R, BERTA T, NEDERGAARD M. Glia and pain: is chronic pain a gliopathy?[J]. Pain, 2013, 154 Suppl 1: S10-S28.
[190] MILLIGAN E D, TWINING C, CHACUR M, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats[J]. J Neurosci, 2003, 23(3): 1026-1040.
[191] SCHREIBER K, BEITZ A J, WILCOX G L. Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia[J]. Neurosci Lett, 2008, 440(1): 63-67.
[192] TWINING C M, SLOANE E M, MILLIGAN E D, et al. Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in rats[J]. Pain, 2004, 110(1-2): 299-309.
[193] WATKINS L R, MAIER S F. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states[J]. Physiol Rev, 2002, 82(4): 981-1011.
[194] CLARK A K, GENTRY C, BRADBURY E J, et al. Role of spinal microglia in rat models of peripheral nerve injury and inflammation[J]. Eur J Pain, 2007, 11(2): 223-230.
[195] LEDEBOER A, SLOANE E, MILLIGAN E D, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation[J]. Pain, 2005, 115(1-2): 71-83.
[196] HAN J, ZHU K, ZHOU K, et al. Sex-Specific Effects of Microglia-Like Cell Engraftment during Experimental Autoimmune Encephalomyelitis[J]. Int J Mol Sci, 2020, 21(18)
[197] PENG J, GU N, ZHOU L, et al. Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury[J]. Nat Commun, 2016, 7: 12029.
[198] ATTAL N, FERMANIAN C, FERMANIAN M, et al. Neuropathic pain: are there distinct subtypes depending on the aetiology or anatomical lesion?[J]. Pain, 2008, 138(2): 343-353.
[199] BOUHASSIRA D, ATTAL N, ALCHAAR H, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4)[J]. Pain, 2005, 114(1-2): 29-36.
[200] TRUINI A, GARCIA-LARREA L, CRUCCU G. Reappraising neuropathic pain in humans--how symptoms help disclose mechanisms[J]. Nat Rev Neurol, 2013, 9(10): 572-582.
[201] HANSSON E. Could chronic pain and spread of pain sensation be induced and maintained by glial activation?[J]. Acta Physiol (Oxf), 2006, 187(1-2): 321-327.
[202] ECHEVERRY S, SHI X Q, YANG M, et al. Spinal microglia are required for long-term maintenance of neuropathic pain[J]. Pain, 2017, 158(9): 1792-1801.
[203] TU Y, MULEY M M, BEGGS S, et al. Microglia-independent peripheral neuropathic pain in male and female mice[J]. Pain, 2022, 163(11): e1129-e1144.
[204] GEISSMANN F, JUNG S, LITTMAN D R. Blood monocytes consist of two principal subsets with distinct migratory properties[J]. Immunity, 2003, 19(1): 71-82.
[205] JUNG S, ALIBERTI J, GRAEMMEL P, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion[J]. Mol Cell Biol, 2000, 20(11): 4106-4114.
[206] GOLDMANN T, WIEGHOFER P, MÜLLER P F, et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation[J]. Nat Neurosci, 2013, 16(11): 1618-1626.
[207] YONA S, KIM K W, WOLF Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis[J]. Immunity, 2013, 38(1): 79-91.
[208] YU X, LIU H, HAMEL K A, et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain[J]. Nat Commun, 2020, 11(1): 264.

所在学位评定分委会
生物学
国内图书分类号
Q189
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543807
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
马佺. 镜像痛的脊髓机制研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849493-马佺-生物系.pdf(6358KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[马佺]的文章
百度学术
百度学术中相似的文章
[马佺]的文章
必应学术
必应学术中相似的文章
[马佺]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。