[1] Li X, Ma X, Luo X. Principles and applications of metasurfaces with phase modulation[J]. Guangdian Gongcheng/Opto-Electronic Engineering, 2017, 44(3): 255-275.
[2] 罗先刚. 亚波长电磁学[M]. 北京: 科学出版社, 2017: 26-32.
[3] Cui T, Smith D R, Liu R. Metamaterials: Theory, design, and applications[M]. Berlin: Springer, 2010.
[4] Yu N, Genevet P, Kats M A, et al. Light Propagation with Phase Discontinuities : Generalized Laws of Reflection and Refraction[J]. Science, 2011, 334(6054): 333-337.
[5] Akselrod G M, Huang J, Hoang T B, et al. Large-area metasurface perfect absorbers from visible to near-Infrared[J]. Advanced Materials, 2015, 27(48): 8028-8034.
[6] Khorasaninejad M, Capasso F, Zhu A Y, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.
[7] Ni X, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4(1): 1-6.
[8] Zou L, Withayachumnankul W, Shah C M, et al. Dielectric resonator nanoantennas at visible frequencies[J]. 2013, 21(1): 1344-1352.
[9] Sun S, He Q, Hao J, et al. Electromagnetic metasurfaces: physics and applications[J]. Advances in Optics and Photonics, 2019, 11(2): 380.
[10] Ruiz de Galarreta C, Casquero N, Humphreys E, et al. Single-step fabrication of high-performance extraordinary transmission plasmonic metasurfaces employing ultrafast Lasers[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3446-3454.
[11] Sherrott M C, Hon P W C, Fountaine K T, et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 2017, 17(5): 3027-3034.
[12] Pors A, Nielsen M G, Bozhevolnyi S I. Broadband plasmonic half-wave plates in reflection[J]. Optics Letters, 2013, 38(4): 513.
[13] Ming Y, Intaravanne Y, Ahmed H, et al. Creating composite vortex beams with a single geometric metasurface[J]. Advanced Materials, 2022, 34(18): 2109714.
[14] Chang C C, Kort-Kamp W J M, Nogan J, et al. High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting[J]. Nano Letters, 2018, 18(12): 7665-7673.
[15] Sharma N, Bar-David J, Mazurski N, et al. Metasurfaces for enhancing light absorption in thermoelectric photodetectors[J]. ACS Photonics, 2020, 7(9): 2468-2473.
[16] Stewart J W, Vella J H, Li W, et al. Ultrafast pyroelectric photodetection with on-chip spectral filters[J]. Nature Materials, 2020, 19(2): 158-162.
[17] Bagheri S, Strohfeldt N, Sterl F, et al. Large-area low-cost plasmonic perfect absorber chemical sensor fabricated by laser interference lithography[J]. ACS Sensors, 2016, 1(9): 1148-1154.
[18] Pan M, Huang Y, Li Q, et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures[J]. Nano Energy, 2020, 69: 104449.
[19] Zhang J, Li Z, Shao L, et al. Dynamical absorption manipulation in a graphene-based optically transparent and flexible metasurface[J]. Carbon, 2021, 176: 374-382.
[20] Mirshafieyan S S, Gregory D A. Electrically tunable perfect light absorbers as color filters and modulators[J]. Scientific Reports, 2018, 8(1): 2635.
[21] Diem M, Koschny T, Soukoulis C M. Wide-angle perfect absorber/thermal emitter in the terahertz regime[J]. Physical Review B, 2009, 79(3): 033101.
[22] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6(9): 7998-8006.
[23] Staude I, Decker M, Rusak E, et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 2015, 9(4): 4308-4315.
[24] Phys A, Komar A, Fang Z, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J]. Applied Physics Letters, 2017, 110(071109): 1-4.
[25] Kamali S M, Arbabi A, Arbabi E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 2016, 7(11618): 1-7.
[26] Gutruf P, Zou C, Withayachumnankul W, et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies[J]. ACS Nano, 2016, 10: 133-141.
[27] Iyer P P, Pendharkar M, Schuller J A. Electrically reconfigurable metasurfaces using heterojunction resonators[J]. Advanced Optical Materials, 2016, 4(10): 1582-1588.
[28] Shcherbakov M R, Liu S, Zubyuk V V, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces[J]. Nature Communications, 2017, 8(17): 1-5.
[29] Choi C, Lee S, Mun S, et al. Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch[J]. Advanced Optical Materials, 2019, 7(12): 1900171.
[30] Malinauskas M, Žukauskas A, Hasegawa S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 2016, 5(8): e16133-e16133.
[31] 程亚. 超快激光微纳加工-原理技术与应用[M]. 北京: 科学出版社, 2016: 1-2.
[32] Han Z H, Han W N, Liu F R, et al. Ultrafast temporal-spatial dynamics of amorphous-to-crystalline phase transition in Ge2Sb2Te5 thin film triggered by multiple femtosecond laser pulses irradiation[J]. Nanotechnology, 2020, 31(11): 1-23.
[33] Chen G, Zheng J, Wang Z, et al. Fabrication of micro/nano multifunctional patterns on optical glass through chalcogenide heat-mode resist AgInSbTe[J]. Journal of Alloys and Compounds, 2021, 867: 158988.
[34] Bai W, Yang P, Huang J, et al. Near-infrared tunable metalens based on phase change material Ge2Sb2Te5[J]. Scientific Reports, 2019, 9(1): 5368.
[35] Tian X, Li Z Y. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials[J]. Photonics Research, 2016, 4(4): 146.
[36] Chu C H, Tseng M L, Chen J, et al. Active dielectric metasurface based on phase-change medium[J]. Laser and Photonics Reviews, 2016, 10(6): 986-994.
[37] Zhang M, Pu M, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials[J]. Advanced Science, 2018, 5(10): 1-8.
[38] Bai W, Yang P, Wang S, et al. Tunable duplex metalens based on phase-change materials in communication range[J]. Nanomaterials, 2019, 9(7): 1-12.
[39] Wang Q, Maddock J, Rogers E T F, et al. 1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage[J]. Applied Physics Letters, 2014, 104(12): 2012-2015.
[40] Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65.
[41] Li W Q, Liu F R, Guo J C, et al. Crystallization characteristics and local grain abnormal growth of amorphous Ge2Sb2Te5 films induced by a Gaussian picosecond laser[J]. Optics and Laser Technology, 2019, 111: 585-591.
[42] Wang Y, Landreman P, Schoen D, et al. Electrical tuning of phase-change antennas and metasurfaces[J]. Nature Nanotechnology, 2021, 16(6): 667-672.
[43] Zhang Y, Fowler C, Liang J, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J]. Nature Nanotechnology, 2021, 16(6): 661-666.
[44] Chen Y G, Kao T S, Ng B, et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Optics Express, 2013, 21(11): 13691.
[45] Hosseini P, Wright C D, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films[J]. Nature, 2014, 511(7508): 206-211.
[46] Sun X, Ehrhardt M, Lotnyk A, et al. Crystallization of Ge2Sb2Te5 thin films by nano- and femtosecond single laser pulse irradiation[J]. Scientific Reports, 2016, 6(1): 28246.
[47] Wei T, Wei J, Wang Y, et al. Manipulation and simulations of thermal field profiles in laser heat-mode lithography[J]. Journal of Applied Physics, 2017, 122(223107): 1-13.
[48] 梁广飞. 相变存储材料的激光诱导晶化过程研究[D]. 上海: 中国科学院上海光学精密机械研究所博士学位论文, 2013: 67-68.
[49] Kolobov A V, Fons P, Frenkel A I, et al. Understanding the phase-change mechanism of rewritable optical media[J]. Nature Materials, 2004, 3(10): 703-708.
[50] Akola J, Jones R O. Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe[J]. Physical Review B, 2007, 76(23): 235201.
[51] Hegedüs J, Elliott S R. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials[J]. Nature Materials, 2008, 7(5): 399-405.
[52] Sen S, Edwards T G, Cho J Y, et al. Te-centric view of the phase change mechanism in Ge-Sb-Te alloys[J]. Physical Review Letters, 2012, 108(19): 195506.
[53] Kane Yee. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.
[54] De Galarreta C R, Alexeev A M, Au Y Y, et al. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared[J]. Advanced Functional Materials, 2018, 28(10): 1-9.
[55] Karvounis A, Gholipour B, MacDonald K F, et al. All-dielectric phase-change reconfigurable metasurface[J]. Applied Physics Letters, 2016, 109(5): 1-5.
[56] Gholipour B, Karvounis A, Yin J, et al. Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces[J]. NPG Asia Materials, 2018, 10(6): 533-539.
[57] Chulsoo Choi C C, Sun-Je Kim S J K, Jeong-Geun Yun J G Y, et al. Deflection angle switching with a metasurface based on phase-change nanorods [Invited][J]. Chinese Optics Letters, 2018, 16(5): 1-4.
[58] Yin X, Steinle T, Huang L, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17016-e17016.
[59] Cao T, Zheng G, Wang S, et al. Ultrafast beam steering using gradient Au- Ge2Sb2Te5 -Au plasmonic resonators[J]. Optics Express, 2015, 23(14): 18029-18039.
[60] Bliokh K Y, Rodríguez-Fortuño F J, Nori F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 2015, 9(12): 796-808.
[61] Colburn S, Zhan A, Deshmukh S, et al. Metasurfaces based on nano-patterned phase-change memory materials[J]. Conference on Lasers and Electro-Optics, CLEO - Proceedings, 2017: 1-2.
[62] Ríos C, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory[J]. Nature Photonics, 2015, 9(11): 725-732.
[63] Wei T, Wei J, Zhang K, et al. Grayscale image recording on Ge2Sb2Te5 thin films through laser-induced structural evolution[J]. Scientific Reports, 2017, 7(42712): 1-7.
[64] Chen Y, Li X, Sonnefraud Y, et al. Engineering the phase front of light with phase-change material based planar lenses[J]. Scientific Reports, 2015, 5(8660): 1-7.
[65] Forouzmand A, Mosallaei H. Dynamic beam control via Mie-resonance based phase-change metasurface: a theoretical investigation[J]. Optics Express, 2018, 26(14): 17948-17963.
[66] Ee H S, Agarwal R. Electrically programmable multi-purpose nonvolatile metasurface based on phase change materials[J]. Physica Scripta, 2019, 94(2): 1-8.
[67] Yin X, Spagele C M, Tamagnone M, et al. Reconfigurable mid-infrared optical elements using phase change materials[J]. Conference on Lasers and Electro-Optics, CLEO- Proceedings, 2019: 6-7.
[68] Chaudhary K, Tamagnone M, Yin X, et al. Polariton nanophotonics using phase-change materials[J]. Nature Communications, 2019, 10(1): 1-6.
[69] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect Metamaterial Absorber[J]. Physical Review Letters, 2008, 100(20): 207402.
[70] Zhou Y, Qin Z, Liang Z, et al. Ultra-broadband metamaterial absorbers from long to very long infrared regime[J]. Light: Science and Applications, 2021, 10(1): 138.
[71] Liu N, Mesch M, Weiss T, et al. Infrared Perfect Absorber and Its Application As Plasmonic Sensor[J]. Nano Letters, 2010, 10(7): 2342-2348.
[72] Li Z, Stan L, Czaplewski D A, et al. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators[J]. Optics Express, 2018, 26(5): 5616.
[73] Cheng X, Huang R, Xu J, et al. Broadband terahertz near-perfect absorbers[J]. ACS Applied Materials and Interfaces, 2020, 12(29): 33352-33360.
[74] Jang T, Youn H, Shin Y J, et al. Transparent and flexible polarization-independent microwave broadband absorber[J]. ACS Photonics, 2014, 1(3): 279-284.
[75] Xue W, Chen X, Peng Y, et al. Grating-type mid-infrared light absorber based on silicon carbide material[J]. Optics Express, 2016, 24(20): 22596-22605.
[76] Nagarajan A, Vivek K, Shah M, et al. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration[J]. Advanced Optical Materials, 2018, 6(16): 1800253.
[77] Jiang X, Yuan H, Chen D, et al. Metasurface based on inverse design for maximizing solar spectral absorption[J]. Advanced Optical Materials, 2021, 9(19): 2100575.
[78] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature Communications, 2011, 2(1): 517.
[79] Zhang H, Feng X, Luo Y, et al. Colloidal self-assembly based all-metal metasurface absorbers to achieve broadband, polarization-independent light absorption at UV–Vis frequencies[J]. Applied Surface Science, 2022, 584(15): 152624.
[80] Kang S, Qian Z, Rajaram V, et al. Ultra‐narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy[J]. Advanced Optical Materials, 2019, 7(2): 1801236.
[81] Lei L, Li S, Huang H, et al. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial[J]. Optics Express, 2018, 26(5): 5686-5693.
[82] Huang S, Xie Z, Chen W, et al. Metasurface with multi-sized structure for multi-band coherent perfect absorption[J]. Optics Express, 2018, 26(6): 7066.
[83] Shen X, Cui T J, Zhao J, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 2011, 19(10): 9401.
[84] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6(9): 7998-8006.
[85] Ogawa S, Kimata M. Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials[J]. Materials, 2017, 10(5): 493.
[86] He Q, Sun S, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications[J]. Research, 2019, 2019: 1-16.
[87] Mou N, Liu X, Wei T, et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 2020, 12(9): 5374-5379.
[88] Wei M, Song Z, Deng Y, et al. Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces[J]. Materials Letters, 2019, 236: 350-353.
[89] Tian X, Xu J, Xu K, et al. Wavelength-selective, tunable and switchable plasmonic perfect absorbers based on phase change materials Ge2Sb2Te5[J]. EPL (Europhysics Letters), 2020, 128(6): 67001.
[90] Zhang S, Zhou K, Cheng Q, et al. Tunable narrowband shortwave-infrared absorber made of a nanodisk-based metasurface and a phase-change material Ge 2 Sb 2 Te 5 layer[J]. Applied Optics, 2020, 59(21): 6309.
[91] Tittl A, Michel A K U, Schäferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability[J]. Advanced Materials, 2015, 27(31): 4597-4603.
[92] Carrillo S G C, Nash G R, Hayat H, et al. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications[J]. Optics Express, 2016, 24(12): 13563-13573.
[93] Inoue T, De Zoysa M, Asano T, et al. Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters[J]. Applied Physics Express, 2014, 7(1): 012103.
[94] Cao T, Zhang X, Dong W, et al. Tuneable thermal emission using chalcogenide metasurface[J]. Advanced Optical Materials, 2018, 6(16): 1800169.
[95] Qu Y, Cai L, Luo H, et al. Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks[J]. Optics Express, 2018, 26(4): 4279.
[96] Du K, Li Q, Lyu Y, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light: Science & Applications, 2017, 6(1): e16194-e16194.
[97] Matsuno Y, Sakurai A. Perfect infrared absorber and emitter based on a large-area metasurface[J]. Optical Materials Express, 2017, 7(2): 618.
[98] Qian Q, Sun T, Yan Y, et al. Large-area wide-incident-angle metasurface perfect sbsorber in total visible band based on coupled mie resonances[J]. Advanced Optical Materials, 2017, 5(13): 1700064.
[99] Hou W, Yang F, Chen Z, et al. Wide-angle and broadband solar absorber made using highly efficient large-area fabrication strategy[J]. Optics Express, 2022, 30(3): 4424-4433.
[100] Luo M, Shen S, Zhou L, et al. Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime[J]. Optics Express, 2017, 25(14): 16715-16724.
[101] Wu S, Ye Y, Jiang Z, et al. Large-area, ultrathin metasurface exhibiting strong unpolarized ultrabroadband absorption[J]. Advanced Optical Materials, 2019, 7(24): 1-7.
[102] Chirumamilla M, Chirumamilla A, Yang Y, et al. Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars[J]. Advanced Optical Materials, 2017, 5(22): 1-8.
[103] Chi K, Yang L, Liu Z, et al. Large-scale nanostructured low-temperature solar selective absorber[J]. Optics Letters, 2017, 42(10): 1891.
[104] Cao T, Liu K, Lu L, et al. Large-area broadband near-perfect absorption from a thin chalcogenide film coupled to gold nanoparticles[J]. ACS Applied Materials and Interfaces, 2019, 11(5): 5176-5182.
[105] Li D, Zhang J, Xu J, et al. Single-step fabricated disordered pyramidal nanostructures for large-scale broadband visible light absorber with high-temperature stability[J]. Applied Surface Science, 2022, 601(1): 154279.
[106] Lin Y, Hong M H, Chong T C, et al. Ultrafast-laser-induced parallel phase-change nanolithography[J]. Applied Physics Letters, 2006, 89(4): 13-16.
[107] Ni R W, Zeng B J, Huang J Z, et al. Exposure strategy and crystallization of Ge-Sb-Te thin film by maskless phase-change lithography[J]. Optical Engineering, 2015, 54(4): 045103.
[108] Wei J. Laser heat-mode lithography: principle and methods: Vol. 291[M]. Singapore: Springer Singapore, 2019: 30-38.
[109] Deng C, Geng Y, Wu Y, et al. Adhesion effect of interface layers on pattern fabrication with GeSbTe as laser thermal lithography film[J]. Microelectronic Engineering, 2013, 103: 7-11.
[110] Chen G, Zhang K, Wang Z, et al. Positive and negative properties of laser heat-mode resists[C]//Proceedings of SPIE: Vol. 11064. Qingdao, 2019: 33.
[111] Meng Y, Behera J K, Wang Z, et al. Nanostructure patterning of C-Sb2Te3 by maskless thermal lithography using femtosecond laser pulses[J]. Applied Surface Science, 2020, 508: 145228.
[112] Zhang K, Wang Z, Chen G, et al. GeTe photoresist films for both positive and negative heat-mode nanolithography[J]. Materials Letters, 2020, 261(127019): 1-4.
[113] Deng C, Geng Y, Wu Y. XPS study on the selective wet etching mechanism of GeSbTe phase change thin films with tetramethylammonium hydroxide[C]//GAN F, SONG Z. 2012 International Workshop on Information Data Storage and Ninth International Symposium on Optical Storage. Shanghai, China, 2013: 87820N.
[114] Zhang K, Wang Z, Chen G, et al. Laser heat-mode patterning with improved aspect-ratio[J]. Materials Science in Semiconductor Processing, 2021, 134: 106018.
[115] Huang J, Xu K, Xu S, et al. Self‐aligned laser‐induced periodic surface structures for large‐area controllable nanopatterning[J]. Laser & Photonics Reviews, 2022, 16(8): 2200093.
[116] Zhang D, Liu R, Li Z. Irregular LIPSS produced on metals by single linearly polarized femtosecond laser[J]. International Journal of Extreme Manufacturing, 2022, 4(1): 015102.
[117] Barberoglou M, Zorba V, Stratakis E, et al. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Applied Surface Science, 2009, 255(10): 5425-5429.
[118] Vorobyev A Y, Guo C. Laser turns silicon superwicking[J]. Optics Express, 2010, 18(7): 6455-6460.
[119] Vorobyev A Y, Guo C. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters, 2008, 92(4): 041914.
[120] Vorobyev A Y, Guo C. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals[J]. Journal of Applied Physics, 2008, 103(4): 043513.
[121] Dunn A, Wlodarczyk K L, Carstensen J V, et al. Laser surface texturing for high friction contacts[J]. Applied Surface Science, 2015, 357: 2313-2319.
[122] Yada S, Terakawa M. Femtosecond laser induced periodic surface structure on poly-L-lactic acid[J]. Optics Express, 2015, 23(5): 5694-5703.
[123] Ivanova E P, Hasan J, Webb H K, et al. Bactericidal activity of black silicon[J]. Nature Communications, 2013, 4(1): 2838.
[124] Messaoudi H, Das S K, Lange J, et al. Femtosecond laser induced nanostructuring for surface enhanced Raman spectroscopy[C]//HEISTERKAMP A, HERMAN P R, MEUNIER M, et al. SPIE LASE. San Francisco, California, United States, 2014: 89720H.
[125] Skoulas E, Tasolamprou A C, Kenanakis G, et al. Laser induced periodic surface structures as polarizing optical elements[J]. Applied Surface Science, 2021, 541: 148470.
[126] San-Blas A, Martinez-Calderon M, Buencuerpo J, et al. Femtosecond laser fabrication of LIPSS-based waveplates on metallic surfaces[J]. Applied Surface Science, 2020, 520: 146328.
[127] Trofimov P I, Bessonova I G, Lazarenko P I, et al. Rewritable and tunable laser-induced optical gratings in phase-change material films[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 32031-32036.
[128] Kozyukhin S, Smayev M, Sigaev V, et al. Specific features of formation of laser‐induced periodic surface structures on Ge2Sb2Te5 amorphous thin films under illumination by femtosecond laser pulses[J]. Physica Status Solidi (B), 2020, 257(11): 1900617.
[129] Bessonova I G, Trofimov P I, Lazarenko P I, et al. Tunable laser induced periodic surface structures in Ge2Sb2Te5 thin films[J]. Journal of Physics: Conference Series, 2021, 2086(1): 012170.
[130] Trofimov P I, Bessonova I G, Lazarenko P I, et al. Laser induced tunable Ge2Sb2Te5 phase-change gratings[J]. Journal of Physics: Conference Series, 2021, 2015(1): 012154.
[131] Wang Y, Segawa S, Shimizu T, et al. Laser-induced periodic surface structures on Ge2Sb2Te5 irradiated by terahertz free-electron laser vortex beam[C]//2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). Delft, Netherlands: IEEE, 2022: 1-2.
[132] Kobayashi M, Arashida Y, Asakawa K, et al. Ultrafast dynamics in Ge2Sb2Te5 thin films during laser-induced successive surface modification[C]//The 22nd International Conference on Ultrafast Phenomena 2020. Washington, D.C.: Optica Publishing Group, 2020: M4A.23.
[133] Zhong M, Song Z, Liu B, et al. Oxidant addition effect on Ge2Sb2Te5 phase change film chemical mechanical polishing[J]. Journal of The Electrochemical Society, 2008, 155(11): H929-H931.
[134] Tompkins H G, Irene E A. Handbook of ellipsometry[M]. Norwich, NY : Heidelberg, Germany: William Andrew Pub. ; Springer, 2005: 178-181.
[135] Zhu D X, Shen W D, Zhen H Y. Anisotropic optical constants of in-plane oriented polyfluorene thin films on rubbed substrate[J]. Journal of Applied Physics, 2009, 106(8): 084504.
[136] Orava J, Wágner T, Šik J, et al. Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry[J]. Journal of Applied Physics, 2008, 104(4): 043523.
[137] Jellison G E, Modine F A. Parameterization of the optical functions of amorphous materials in the interband region[J]. Applied Physics Letters, 1996, 69(3): 371-373.
[138] Xu Z, Chen C, Wang Z, et al. Optical constants acquisition and phase change properties of Ge2Sb2Te5 thin films based on spectroscopy[J]. RSC Advances, 2018, 8(37): 21040-21046.
[139] Ferlauto A S, Ferreira G M, Pearce J M, et al. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics[J]. Journal of Applied Physics, 2002, 92(5): 2424-2436.
[140] Aspnes D E. Local‐field effects and effective‐medium theory: a microscopic perspective[J]. American Journal of Physics, 1982, 50(8): 704-709.
[141] Guo L, Ma X, Chang Z, et al. Tunable a temperature-dependent GST-based metamaterial absorber for switching and sensing applications[J]. Journal of Materials Research and Technology, 2021, 14: 772-779.
[142] Deng C, Geng Y, Wu Y. Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium[J]. Applied Physics A: Materials Science and Processing, 2011, 104(4): 1091-1097.
[143] Li X, Xie Q, Jiang L, et al. Controllable Si (100) micro/nanostructures by chemical-etching-assisted femtosecond laser single-pulse irradiation[J]. Applied Physics Letters, 2017, 110(18): 181907.
[144] Zhao J J, Liu F R, Han X X, et al. Morphology and crystalline phase characteristics of α-GST films irradiated by a picosecond laser[J]. Applied Surface Science, 2014, 289: 160-166.
[145] Zhang Y Z, Liu F R, Wang Z M, et al. Effect of laser wavelength on the thermal behavior of amorphous GST films irradiated by a single frequency-tripled picosecond laser[J]. Optics and Laser Technology, 2020, 121: 105843.
[146] Guo J C, Liu F R, Li W Q, et al. Microstructure evolution of the crystallization of amorphous Ge2Sb2Te5 thin films induced by single picosecond pulsed laser[J]. Journal of Non-Crystalline Solids, 2018, 498: 1-7.
[147] Choi Y, Jung M, Lee Y K. Effect of heating rate on the activation energy for crystallization of amorphous Ge2Sb2Te5 thin film[J]. Electrochemical and Solid-State Letters, 2009, 12(7): F17-F19.
[148] Jiang L, Tsai H L. Prediction of crater shape in femtosecond laser ablation of dielectrics[J]. Journal of Physics D: Applied Physics, 2004, 37(10): 1492-1496.
[149] Guizard S, Semerok A, Gaudin J, et al. Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles[J]. Applied Surface Science, 2002, 184(1-4): 364-368.
[150] Wu B, Shin Y C. A simple model for high fluence ultra-short pulsed laser metal ablation[J]. Applied Surface Science, 2007, 253(8): 4079-4084.
[151] Wang Z B, Hong M H, Lu Y F, et al. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air[J]. Journal of Applied Physics, 2003, 93(10): 6375-6380.
[152] Nolte S, Momma C, Jacobs H, et al. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America B, 1997, 14(10): 2716-2722.
[153] Matsunaga T, Yamada N, Kubota Y. Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe–Sb2Te3 pseudobinary systems[J]. Acta Crystallographica Section B Structural Science, 2004, 60(6): 685-691.
[154] Zhou Z X, Ye M J, Yu M W, et al. Germanium metasurfaces with lattice Kerker effect in near-infrared photodetectors[J]. ACS Nano, 2022, 16(4): 5994-6001.
[155] Kudyshev Z A, Kildishev A V, Shalaev V M, et al. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization[J]. Applied Physics Reviews, 2020, 7(2): 021407.
[156] Munday J N, Atwater H A. Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings[J]. Nano Letters, 2011, 11(6): 2195-2201.
[157] Palik E. Handbook of Optical Constants of Solids[M]. San Diego: Elsevier, 1998.
[158] Qu Y, Li Q, Du K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST[J]. Laser & Photonics Reviews, 2017, 11(5): 1700091.
[159] Joshi B, Chakrabarty A, Wei Q H. Numerical studies of metal-dielectric-metal nanoantennas[J]. IEEE Transactions on Nanotechnology, 2010, 9(6): 701-707.
[160] Minkowski F, Wang F, Chakrabarty A, et al. Resonant cavity modes of circular plasmonic patch nanoantennas[J]. Applied Physics Letters, 2014, 104(2): 10-14.
[161] Chakrabarty A, Wang F, Minkowski F, et al. Cavity modes and their excitations in elliptical plasmonic patch nanoantennas[J]. Optics Express, 2012, 20(11): 11615-11624.
[162] Michel A K U, Wuttig M, Taubner T. Design parameters for phase-change materials for nanostructure resonance tuning[J]. Advanced Optical Materials, 2017, 5(18): 1700261.
[163] Liu K, Lian M, Qin K, et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface[J]. Light: Advanced Manufacturing, 2021, 2(3): 251-261.
[164] Cui Y., Fung K. H., Xu J., et al. Ultra-broadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447.
[165] Khodasevych I E, Wang L, Mitchell A, et al. Micro- and nanostructured surfaces for selective solar absorption[J]. Advanced Optical Materials, 2015, 3(7): 852-881.
[166] Li Y, Liu Z, Zhang H, et al. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks[J]. Optics Express, 2019, 27(8): 11809-11818.
[167] Huang J, Xu K, Hu J, et al. Self-aligned plasmonic lithography for maskless fabrication of large-area long-range ordered 2D nanostructures[J]. Nano Letters, 2022, 22(15): 6223-6228.
[168] Huang M, Zhao F, Cheng Y, et al. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3(12): 4062-4070.
[169] Dostovalov A, Bronnikov K, Korolkov V, et al. Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications[J]. Nanoscale, 2020, 12(25): 13431-13441.
[170] Drevinskas R, Beresna M, Zhang J, et al. Ultrafast laser-induced metasurfaces for geometric phase manipulation[J]. Advanced Optical Materials, 2017, 5(1): 1-7.
[171] Cerkauskaite A, Drevinskas R, Solodar A, et al. Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring[J]. ACS Photonics, 2017, 4(11): 2944-2951.
[172] Makarov S V, Tsypkin A N, Voytova T A, et al. Self-adjusted all-dielectric metasurfaces for deep ultraviolet femtosecond pulse generation[J]. Nanoscale, 2016, 8(41): 17809-17814.
[173] Cheng H, Liu S, Li P, et al. Femtosecond laser plasmonic nano-printing metasurfaces for multiple-dimensional manipulation of light fields[J]. Optics Letters, 2022, 47(9): 2290-2293.
[174] Zhu X, Engelberg J, Remennik S, et al. Resonant laser printing of optical metasurfaces[J]. Nano Letters, 2022, 22(7): 2786-2792.
[175] Yuan D, Li J, Huang J, et al. Large‐scale laser nanopatterning of multiband tunable mid‐infrared metasurface absorber[J]. Advanced Optical Materials, 2022, 10(22): 2200939.
[176] Bertelli M, Díaz Fattorini A, De Simone S, et al. Structural and electrical properties of annealed Ge2Sb2Te5 films grown on flexible polyimide[J]. Nanomaterials, 2022, 12(12): 2001.
[177] Cao T, Liu K, Lu L, et al. Low‐power phase transition of chalcogenide glass using Au nanoparticle plasmon resonance[J]. Advanced Optical Materials, 2020, 8(6): 1901570.
[178] Liang Y, Peng W, Hu R, et al. Extraordinary optical properties in the subwavelength metallodielectric free-standing grating[J]. Optics Express, 2014, 22(16): 19484-19494.
[179] Cui Y, He Y, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser and Photonics Reviews, 2014, 8(4): 495-520.
修改评论