中文版 | English
题名

磁场与磁性调控的拓扑材料输运性质研究

其他题名
TRANSPORT PROPERTIES OF TOPOLOGICAL MATERIALS TUNED BY MAGNETIC FIELD AND MAGNETISM
姓名
姓名拼音
LI Shuai
学号
11849472
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
卢海舟
导师单位
物理系
论文答辩日期
2023-04-15
论文提交日期
2023-06-19
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

  拓扑物理是本世纪以来凝聚态物理学研究中取得的最大的进展之一。拓扑概念的引入使得人们对物相的分类和认知提升了一个新的台阶。从拓扑概念中衍生出来的第一个拓扑材料即为拓扑绝缘体,它也是拓扑材料中最具代表性的一个。拓扑绝缘体内部的能带结构与外界拓扑不同,因此拓扑相变发生在其界面处,这使其在界面拥有了稳定的界面态。这种拓扑保护的界面态是拓扑材料最广为人知的特性。在拓扑绝缘体发现之后,狄拉克半金属、外尔半金属、节线半金属等拓扑材料被陆续提出并一一实验实现。近年来,研究者开始研究磁性拓扑材料和高阶拓扑材料,并在光学、声学、电路等经典系统中自主设计和制造拓扑系统。因其与传统材料拓扑不同的能带结构,拓扑材料往往展现出各种新奇的物理性质。这使它们成为了研究新一类输运现象的绝佳平台。本论文将具体从以下几个方面研究拓扑材料中的输运特性。

  从量子理论出发,我们研究了多个低能有效模型中各个方向的磁电阻,并考虑了不同杂质势能的影响。通过对磁电阻的解析推导和计算,我们得到了两个重要的结果:第一,在拥有单个狄拉克锥型能带结构的材料中量子极限下的纵向磁电阻反比于磁场强度且不受杂质散射的影响;第二,量子极限下的线性磁电阻并非拥有线性能谱的系统所独有,其同样存在于拥有二次方型能谱的系统中。此外,计算表明长程高斯势能型杂质可以同时带来线性的纵向和横向磁电阻,而屏蔽库伦势能型杂质只能导致线性的横向磁电阻。以上这些结果给出了准一维朗道能带系统中杂质散射的机制和物理意义,并解释了实验上观测到的线性纵向磁电阻。本文中对磁电阻的研究给拓扑半金属的输运性质带来了新的见解,并推动了线性磁电阻方向的研究进展。

  我们发展了磁场中电荷密度波的理论框架,并通过计算发现在ZrTe5中电子和声子之间的相互作用是形成电荷密度波的关键,而费米波矢固定的公度电荷密度波支持了ZrTe5中的量子霍尔平台。这种电荷密度波机制的三维量子霍尔效应的独特之处在于磁场强度同时调控了系统在沿磁场方向发生的序参数相变和在垂直于磁场方向的平面内发生的拓扑相变。本文中的理论分析和计算结果解释了实验在ZrTe5中观测到的三维量子霍尔效应,有助于将无耗散输运早日投入到实际应用中。

  我们提出了通过非局域化测量来区分轴子绝缘体和普通绝缘体的方法,并对比研究了理想轴子绝缘体和反铁磁拓扑绝缘体MnBi2Te4的非局域化电阻值。数值计算表明MnBi2Te4中存在着未量子化的非局域化输运现象,并且其非局域化电阻对费米能量变化、杂质和电极厚度的影响有一定的抵抗力。此外,本论文还发现了奇数层和偶数层的MnBi2Te4器件可以通过不同测量方式下得到的非局域化电阻值加以区分。这些结果为实验上测量MnBi2Te4的非局域化输运以及寻找轴子绝缘体提供了切实可行的方案。

其他摘要

  Topological physics is one of the greatest advancements made in the study of condensed matter physics since this century. The introduction of topology concepts has taken the classification and understanding of matter to a new level. The first topological material derived from the concept of topology is the topological insulator, which is also the most representative one among topological materials. The bulk energy band structure of topological insulators is topologically different from that of the outside; therefore, the topological transition happens at the interface, giving the topological insulator stable interface states. The topologically protected interface states are the most known feature of the topological materials. After the discovery of topological insulators, many other topological materials have been proposed and experimentally realized, including Dirac semimetals, Weyl semimetals, nodal-line semimetals, and so on. In recent years, researchers have started to investigate magnetic topological materials and higher-order topological materials, and design and manufacture topological systems in classical systems such as optical systems, acoustic systems, and electric circuits. Because their energy band structures are topologically different from those of traditional materials, topological materials often exhibit various novel physical properties. This makes them the ideal platform for investigating a new class of transport phenomena. This dissertation will study the transport properties of topological materials from the following aspects.

  Starting from the quantum theory, we have studied the magnetoresistance in various directions in several low-energy effective models, and the effect of different types of impurities has been considered. By the analytical derivation and calculations of the magnetoresistance, we have obtained two important results: first, the longitudinal magnetoresistance in the quantum limit is inversely proportional to the magnetic field strength, independent of impurity scattering, in materials with a single Dirac cone dispersion; second, linear magnetoresistance in the quantum limit is not exclusive to systems with linear energy dispersion, but can also occur in systems with quadratic energy dispersion. In addition, calculations show that the long-range Gaussian-type impurity can induce both linear longitudinal and transverse magnetoresistance, but the screened-Coulomb-type impurity can only induce linear transverse magnetoresistance. The above results reveal the scattering mechanisms and the corresponding physical meaning in the quasi-one-dimensional systems with Landau bands, and explain the linear longitudinal magnetoresistance observed in experiments. The investigation of magnetoresistance in this dissertation brings new insights into the transport properties of topological semimetals and advances research progress in the field of linear magnetoresistance.

  We have developed the theory of the charge density wave under the magnetic field. Calculations show that the electron-phonon interactions in ZrTe5 are responsible for the form of the charge density wave, and the three-dimensional quantum Hall effect of ZrTe5 is supported by a fixed-Fermi-wavevector commensurate charge density wave. The three-dimensional quantum Hall effect supported by the charge density wave is special in that the magnetic field strength simultaneously governs the order parameter phase transition of the system along the magnetic field direction and the topological phase transition perpendicular to the magnetic field direction. Theoretical analysis and calculations in this dissertation can explain the three-dimensional quantum Hall effect observed in ZrTe5 and help to further promote the dissipationless transport into practical applications.

  We have proposed using the nonlocal measurement to distinguish the axion insulators and normal insulators, and comparatively investigated the nonlocal resistance in the ideal axion insulator and the antiferromagnetic MnBi2Te4. Numerical calculations show that there exists non-quantized nonlocal transport in MnBi2Te4, which is robust against Fermi energy change, impurities, and electrode thickness. Additionally, this dissertation discovers that MnBi2Te4 devices of even-number-layer and odd-number-layer can be distinguished based on the nonlocal resistance measured in different ways. The above results provide a practical approach to measuring the nonlocal transport of MnBi2Te4 in experiments and search for axion insulators.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-06
参考文献列表

[1] Martin J D. When Condensed-Matter Physics Became King[J]. Physics Today, 2019, 72(1): 30-37.
[2] Landau L D, Lifshitz E M. Statistical Physics: Volume 5: Vol. 5[M]. 3rd ed. Elsevier, 2013.
[3] Hasan M Z, Kane C L. Colloquium: Topological Insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.
[4] Qi X L, Zhang S C. Topological Insulators and Superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057-1110.
[5] Klitzing K v., Dorda G, Pepper M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J]. Physical Review Letters, 1980, 45(6): 494-497.
[6] Delahaye F, Dominguez D. Precise Comparisons of Quantized Hall Resistances[J]. IEEE Transactions on Instrumentation and Measurement, 1987, IM-36(2): 226-229.
[7] Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized Hall Conductance in a Two-Dimensional Periodic Potential[J]. Physical Review Letters, 1982, 49(6): 405-408.
[8] Laughlin R B. Quantized Hall Conductivity in Two Dimensions[J]. Physical Review B, 1981, 23(10): 5632-5633.
[9] Jeckelmann B, Jeanneret B. The Quantum Hall Effect as an Electrical Resistance Standard[J]. Reports on Progress in Physics, 2001, 64(12): 1603.
[10] Bernevig B A, Hughes T L, Zhang S C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[J]. Science, 2006, 314(5806): 1757-1761.
[11] Kane C L, Mele E J. Quantum Spin Hall Effect in Graphene[J]. Physical Review Letters, 2005, 95(22): 226801.
[12] König M, Wiedmann S, Brüne C, et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells[J]. Science, 2007, 318(5851): 766-770.
[13] He K, Wang Y, Xue Q K. Quantum Anomalous Hall Effect[J]. National Science Review, 2014, 1(1): 38-48.
[14] Lv B Q, Qian T, Ding H. Experimental Perspective on Three-Dimensional Topological Semimetals[J]. Reviews of Modern Physics, 2021, 93(2): 025002.
[15] He K, Wang Y, Xue Q K. Topological Materials: Quantum Anomalous Hall System[J]. Annual Review of Condensed Matter Physics, 2018, 9(1): 329-344.
[16] Tokura Y, Yasuda K, Tsukazaki A. Magnetic Topological Insulators[J]. Nature Reviews Physics, 2019, 1(2): 126-143.
[17] Xie B, Wang H X, Zhang X, et al. Higher-Order Band Topology[J]. Nature Reviews Physics, 2021, 3(7): 520-532.
[18] Yan B, Zhang S C. Topological Materials[J]. Reports on Progress in Physics, 2012, 75(9): 096501.
[19] Yang Z, Gao F, Shi X, et al. Topological Acoustics[J]. Physical Review Letters, 2015, 114(11): 114301.
[20] Huber S D. Topological Mechanics[J]. Nature Physics, 2016, 12(7): 621-623.
[21] Delplace P, Marston J B, Venaille A. Topological Origin of Equatorial Waves[J]. Science, 2017, 358(6366): 1075-1077.
[22] Ozawa T, Price H M, Amo A, et al. Topological Photonics[J]. Reviews of Modern Physics, 2019, 91(1): 015006.
[23] von Klitzing K, Chakraborty T, Kim P, et al. 40 Years of the Quantum Hall Effect[J]. Nature Reviews Physics, 2020, 2(8): 397-401.
[24] Lv B, Qian T, Ding H. Angle-Resolved Photoemission Spectroscopy and Its Application to Topological Materials[J]. Nature Reviews Physics, 2019, 1(10): 609-626.
[25] Roth A, Brüne C, Buhmann H, et al. Nonlocal Transport in the Quantum Spin Hall State[J]. Science, 2009, 325(5938): 294-297.
[26] Knez I, Du R R, Sullivan G. Evidence for Helical Edge Modes in Inverted InAs/GaSb Quantum Wells[J]. Physical Review Letters, 2011, 107(13): 136603.
[27] Du L, Knez I, Sullivan G, et al. Robust Helical Edge Transport in Gated InAs/GaSb Bilayers[J]. Physical Review Letters, 2015, 114(9): 096802.
[28] Shumiya N, Hossain M S, Yin J X, et al. Evidence of a Room-Temperature Quantum Spin Hall Edge State in a Higher-Order Topological Insulator[J]. Nature Materials, 2022, 21(10): 1111-1115.
[29] Hsieh D, Qian D, Wray L, et al. A Topological Dirac Insulator in a Quantum Spin Hall Phase[J]. Nature, 2008, 452(7190): 970-974.
[30] Chen Y L, Analytis J G, Chu J H, et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3[J]. Science, 2009, 325(5937): 178-181.
[31] Xia Y, Qian D, Hsieh D, et al. Observation of a Large-Gap Topological-Insulator Class with a Single Dirac Cone on the Surface[J]. Nature Physics, 2009, 5(6): 398-402.
[32] Fu L, Kane C L. Topological Insulators with Inversion Symmetry[J]. Physical Review B, 2007, 76(4): 045302.
[33] Zhang H, Liu C X, Qi X L, et al. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface[J]. Nature Physics, 2009, 5(6): 438-442.
[34] Liu C, Hughes T L, Qi X L, et al. Quantum Spin Hall Effect in Inverted Type-II Semiconductors[J]. Physical Review Letters, 2008, 100(23): 236601.
[35] Bansil A, Lin H, Das T. Colloquium: Topological Band Theory[J]. Reviews of Modern Physics, 2016, 88(2): 021004.
[36] Fu L, Kane C L, Mele E J. Topological Insulators in Three Dimensions[J]. Physical Review Letters, 2007, 98(10): 106803.
[37] Armitage N P, Mele E J, Vishwanath A. Weyl and Dirac Semimetals in Three-Dimensional Solids[J]. Reviews of Modern Physics, 2018, 90(1): 015001.
[38] Weng H, Dai X, Fang Z. Topological Semimetals Predicted from First-Principles Calculations[J]. Journal of Physics: Condensed Matter, 2016, 28(30): 303001.
[39] Shen S Q. Topological Insulators: Dirac Equation in Condensed Matter[M]. 2nd ed. 2017. Singapore: Springer Singapore : Imprint: Springer, 2017. DOI:10.1007/978-981-10-4606-3.
[40] Wang Z, Weng H, Wu Q, et al. Three-Dimensional Dirac Semimetal and Quantum Transport in Cd3As2[J]. Physical Review B, 2013, 88(12): 125427.
[41] Liu Z K, Zhou B, Zhang Y, et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi[J]. Science, 2014, 343(6173): 864-867.
[42] Xiong J, Kushwaha S K, Liang T, et al. Evidence for the Chiral Anomaly in the Dirac Semimetal Na3Bi[J]. Science, 2015, 350(6259): 413-416.
[43] Tabert C J, Carbotte J P, Nicol E J. Optical and Transport Properties in Three-Dimensional Dirac and Weyl Semimetals[J]. Physical Review B, 2016, 93(8): 085426.
[44] Neubauer D, Carbotte J P, Nateprov A A, et al. Interband Optical Conductivity of the
[001]-Oriented Dirac Semimetal Cd3As2[J]. Physical Review B, 2016, 93(12): 121202.
[45] Crassee I, Sankar R, Lee W L, et al. 3D Dirac Semimetal Cd3As2: A Review of Material Properties[J]. Physical Review Materials, 2018, 2(12): 120302.
[46] Jia S, Xu S Y, Hasan M Z. Weyl Semimetals, Fermi Arcs and Chiral Anomalies[J]. Nature Materials, 2016, 15(11): 1140-1144.
[47] Yang L X, Liu Z K, Sun Y, et al. Weyl Semimetal Phase in the Non-Centrosymmetric Compound TaAs[J]. Nature Physics, 2015, 11(9): 728-732.
[48] Lv B Q, Weng H M, Fu B B, et al. Experimental Discovery of Weyl Semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031013.
[49] Lv B Q, Muff S, Qian T, et al. Observation of Fermi-Arc Spin Texture in TaAs[J]. Physical Review Letters, 2015, 115(21): 217601.
[50] Soluyanov A A, Gresch D, Wang Z, et al. Type-II Weyl Semimetals[J]. Nature, 2015, 527(7579): 495-498.
[51] Volovik G E. Black Hole and Hawking Radiation by Type-II Weyl Fermions[J]. JETP Letters, 2016, 104(9): 645-648.
[52] Huang H, Jin K H, Liu F. Black-Hole Horizon in the Dirac Semimetal Zn2In2S5[J]. Physical Review B, 2018, 98(12): 121110.
[53] Fang C, Gilbert M J, Dai X, et al. Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry[J]. Physical Review Letters, 2012, 108(26): 266802.
[54] Liu Q, Zunger A. Predicted Realization of Cubic Dirac Fermion in Quasi-One-Dimensional Transition-Metal Monochalcogenides[J]. Physical Review X, 2017, 7(2): 021019.
[55] Burkov A A, Hook M D, Balents L. Topological Nodal Semimetals[J]. Physical Review B, 2011, 84(23): 235126.
[56] Yu R, Wu Q, Fang Z, et al. From Nodal Chain Semimetal to Weyl Semimetal in HfC[J]. Physical Review Letters, 2017, 119(3): 036401.
[57] Bzdušek T, Wu Q, Rüegg A, et al. Nodal-Chain Metals[J]. Nature, 2016, 538(7623): 75-78.
[58] Weng H, Liang Y, Xu Q, et al. Topological Node-Line Semimetal in Three-Dimensional Graphene Networks[J]. Physical Review B, 2015, 92(4): 045108.
[59] Liang Q F, Zhou J, Yu R, et al. Node-Surface and Node-Line Fermions from Nonsymmorphic Lattice Symmetries[J]. Physical Review B, 2016, 93(8): 085427.
[60] Katmis F, Lauter V, Nogueira F S, et al. A High-Temperature Ferromagnetic Topological Insulating Phase by Proximity Coupling[J]. Nature, 2016, 533(7604): 513-516.
[61] Chong S K, Han K B, Nagaoka A, et al. Topological Insulator-Based van Der Waals Heterostructures for Effective Control of Massless and Massive Dirac Fermions[J]. Nano Letters, 2018, 18(12): 8047-8053.
[62] Chang C Z, Zhang J, Feng X, et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator[J]. Science, 2013, 340(6129): 167-170.
[63] Chen T, Liu W, Zheng F, et al. High-Mobility Sm-Doped Bi2Se3 Ferromagnetic Topological Insulators and Robust Exchange Coupling[J]. Advanced Materials, 2015, 27(33): 4823-4829.
[64] Chang C Z, Zhao W, Kim D Y, et al. High-Precision Realization of Robust Quantum Anomalous Hall State in a Hard Ferromagnetic Topological Insulator[J]. Nature Materials, 2015, 14(5): 473-477.
[65] Wang P, Ge J, Li J, et al. Intrinsic Magnetic Topological Insulators[J]. The Innovation, 2021, 2(2): 100098.
[66] Chang C Z, Liu C X, MacDonald A H. Colloquium: Quantum Anomalous Hall Effect[J]. Reviews of Modern Physics, 2023, 95(1): 011002.
[67] Hao Y J, Liu P, Feng Y, et al. Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4[J]. Physical Review X, 2019, 9(4): 041038.
[68] Li J, Li Y, Du S, et al. Intrinsic Magnetic Topological Insulators in van Der Waals Layered MnBi2Te4-Family Materials[J]. Science Advances, 2019, 5(6): eaaw5685.
[69] Lee D S, Kim T H, Park C H, et al. Crystal Structure, Properties and Nanostructuring of a New Layered Chalcogenide Semiconductor, Bi2MnTe4[J]. CrystEngComm, 2013, 15(27): 5532-5538.
[70] Zhang D, Shi M, Zhu T, et al. Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect[J]. Physical Review Letters, 2019, 122(20): 206401.
[71] Otrokov M M, Rusinov I P, Blanco-Rey M, et al. Unique Thickness-Dependent Properties of the van Der Waals Interlayer Antiferromagnet MnBi2Te4 Films[J]. Physical Review Letters, 2019, 122(10): 107202.
[72] Gong Y, Guo J, Li J, et al. Experimental Realization of an Intrinsic Magnetic Topological Insulator[J]. Chinese Physics Letters, 2019, 36(7): 076801.
[73] Otrokov M M, Klimovskikh I I, Bentmann H, et al. Prediction and Observation of an Antiferromagnetic Topological Insulator[J]. Nature, 2019, 576(7787): 416-422.
[74] Lee S H, Zhu Y, Wang Y, et al. Spin Scattering and Noncollinear Spin Structure-Induced Intrinsic Anomalous Hall Effect in Antiferromagnetic Topological Insulator MnBi2Te4[J]. Physical Review Research, 2019, 1(1): 012011.
[75] Vidal R C, Bentmann H, Peixoto T R F, et al. Surface States and Rashba-Type Spin Polarization in Antiferromagnetic MnBi2Te4(0001)[J]. Physical Review B, 2019, 100(12): 121104.
[76] Chen Y J, Xu L X, Li J H, et al. Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4[J]. Physical Review X, 2019, 9(4): 041040.
[77] Li H, Gao S Y, Duan S F, et al. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1[J]. Physical Review X, 2019, 9(4): 041039.
[78] Garnica M, Otrokov M M, Aguilar P C, et al. Native Point Defects and Their Implications for the Dirac Point Gap at MnBi2Te4(0001)[J]. npj Quantum Materials, 2022, 7(1): 1-9.
[79] Nevola D, Li H X, Yan J Q, et al. Coexistence of Surface Ferromagnetism and a Gapless Topological State in MnBi2Te4[J]. Physical Review Letters, 2020, 125(11): 117205.
[80] Ning W, Mao Z. Recent Advancements in the Study of Intrinsic Magnetic Topological Insulators and Magnetic Weyl Semimetals[J]. APL Materials, 2020, 8(9): 090701.
[81] Bernevig B A, Felser C, Beidenkopf H. Progress and Prospects in Magnetic Topological Materials[J]. Nature, 2022, 603(7899): 41-51.
[82] Tang P, Zhou Q, Xu G, et al. Dirac Fermions in an Antiferromagnetic Semimetal[J]. Nature Physics, 2016, 12(12): 1100-1104.
[83] Liu E, Sun Y, Kumar N, et al. Giant Anomalous Hall Effect in a Ferromagnetic Kagome-Lattice Semimetal[J]. Nature Physics, 2018, 14(11): 1125-1131.
[84] Wang Q, Xu Y, Lou R, et al. Large Intrinsic Anomalous Hall Effect in Half-Metallic Ferromagnet Co3Sn2S2 with Magnetic Weyl Fermions[J]. Nature Communications, 2018, 9(1): 3681.
[85] Liu D F, Liang A J, Liu E K, et al. Magnetic Weyl Semimetal Phase in a Kagomé Crystal[J]. Science, 2019, 365(6459): 1282-1285.
[86] Morali N, Batabyal R, Nag P K, et al. Fermi-Arc Diversity on Surface Terminations of the Magnetic Weyl Semimetal Co3Sn2S2[J]. Science, 2019, 365(6459): 1286-1291.
[87] Guin S N, Vir P, Zhang Y, et al. Zero-Field Nernst Effect in a Ferromagnetic Kagome-Lattice Weyl-Semimetal Co3Sn2S2[J]. Advanced Materials, 2019, 31(25): 1806622.
[88] Sakai A, Mizuta Y P, Nugroho A A, et al. Giant Anomalous Nernst Effect and Quantum-Critical Scaling in a Ferromagnetic Semimetal[J]. Nature Physics, 2018, 14(11): 1119-1124.
[89] Belopolski I, Manna K, Sanchez D S, et al. Discovery of Topological Weyl Fermion Lines and Drumhead Surface States in a Room Temperature Magnet[J]. Science, 2019, 365(6459): 1278-1281.
[90] Li P, Koo J, Ning W, et al. Giant Room Temperature Anomalous Hall Effect and Tunable Topology in a Ferromagnetic Topological Semimetal Co2MnAl[J]. Nature Communications, 2020, 11(1): 3476.
[91] Hirschberger M, Kushwaha S, Wang Z, et al. The Chiral Anomaly and Thermopower of Weyl Fermions in the Half-Heusler GdPtBi[J]. Nature Materials, 2016, 15(11): 1161-1165.
[92] Kang M, Ye L, Fang S, et al. Dirac Fermions and Flat Bands in the Ideal Kagome Metal FeSn[J]. Nature Materials, 2020, 19(2): 163-169.
[93] Benalcazar W A, Bernevig B A, Hughes T L. Quantized Electric Multipole Insulators[J]. Science, 2017, 357(6346): 61-66.
[94] Schindler F, Cook A M, Vergniory M G, et al. Higher-Order Topological Insulators[J]. Science Advances, 2018, 4(6): eaat0346.
[95] Wieder B J, Wang Z, Cano J, et al. Strong and Fragile Topological Dirac Semimetals with Higher-Order Fermi Arcs[J]. Nature Communications, 2020, 11(1): 627.
[96] Fang Y, Cano J. Classification of Dirac Points with Higher-Order Fermi Arcs[J]. Physical Review B, 2021, 104(24): 245101.
[97] Tang F, Po H C, Vishwanath A, et al. Efficient Topological Materials Discovery Using Symmetry Indicators[J]. Nature Physics, 2019, 15(5): 470-476.
[98] Yoon C, Liu C C, Min H, et al. Quasi-One-Dimensional Higher-Order Topological Insulators[M]. arXiv, 2020
[2022-12-15]. http://arxiv.org/abs/2005.14710. DOI:10.48550/arXiv.2005.14710.
[99] Haldane F D M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”[J]. Physical Review Letters, 1988, 61(18): 2015-2018.
[100] Jotzu G, Messer M, Desbuquois R, et al. Experimental Realization of the Topological Haldane Model with Ultracold Fermions[J]. Nature, 2014, 515(7526): 237-240.
[101] Imhof S, Berger C, Bayer F, et al. Topolectrical-Circuit Realization of Topological Corner Modes[J]. Nature Physics, 2018, 14(9): 925-929.
[102] Lee C H, Imhof S, Berger C, et al. Topolectrical Circuits[J]. Communications Physics, 2018, 1(1): 1-9.
[103] Zhao E. Topological Circuits of Inductors and Capacitors[J]. Annals of Physics, 2018, 399: 289-313.
[104] Chen Y, Yin Y, Lin Z K, et al. Observation of Topological P-Orbital Disclination States in Non-Euclidean Acoustic Metamaterials[J]. Physical Review Letters, 2022, 129(15): 154301.
[105] Xue H, Yang Y, Zhang B. Topological Acoustics[J]. Nature Reviews Materials, 2022, 7(12): 974-990.
[106] Haldane F D M, Raghu S. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry[J]. Physical Review Letters, 2008, 100(1): 013904.
[107] Ozawa T, Price H M. Topological Quantum Matter in Synthetic Dimensions[J]. Nature Reviews Physics, 2019, 1(5): 349-357.
[108] Devescovi C, García-Díez M, Robredo I, et al. Cubic 3D Chern Photonic Insulators with Orientable Large Chern Vectors[J]. Nature Communications, 2021, 12(1): 7330.
[109] Devescovi C, García-Díez M, Bradlyn B, et al. Vectorial Bulk-Boundary Correspondence for 3D Photonic Chern Insulators[J]. Advanced Optical Materials, 2022, 10(20): 2200475.
[110] Liu G G, Gao Z, Wang Q, et al. Topological Chern Vectors in Three-Dimensional Photonic Crystals[J]. Nature, 2022, 609(7929): 925-930.
[111] Ovchinnikov D, Huang X, Lin Z, et al. Intertwined Topological and Magnetic Orders in Atomically Thin Chern Insulator MnBi2Te4[J]. Nano Letters, 2021, 21(6): 2544-2550.
[112] Mahan G D. Many-Particle Physics[M]. 3rd ed. New York: Kluwer Academic/Plenum Publishers, 2000.
[113] Datta S. Electronic Transport in Mesoscopic Systems[M]. 1. paperback ed. (with corr.), 8. print. Cambridge: Cambridge Univ. Press, 2009.
[114] Groth C W, Wimmer M, Akhmerov A R, et al. Kwant: A Software Package for Quantum Transport[J]. New Journal of Physics, 2014, 16(6): 063065.
[115] Kumar C, Birkbeck J, Sulpizio J A, et al. Imaging Hydrodynamic Electrons Flowing without Landauer–Sharvin Resistance[J]. Nature, 2022, 609(7926): 276-281.
[116] Kane C L. Quantized Nonlinear Conductance in Ballistic Metals[J]. Physical Review Letters, 2022, 128(7): 076801.
[117] van Wees B J, van Houten H, Beenakker C W J, et al. Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas[J]. Physical Review Letters, 1988, 60(9): 848-850.
[118] Yu R, Zhang W, Zhang H J, et al. Quantized Anomalous Hall Effect in Magnetic Topological Insulators[J]. Science, 2010, 329(5987): 61-64.
[119] Kou X, Guo S T, Fan Y, et al. Scale-Invariant Quantum Anomalous Hall Effect in Magnetic Topological Insulators beyond the Two-Dimensional Limit[J]. Physical Review Letters, 2014, 113(13): 137201.
[120] Bestwick A J, Fox E J, Kou X, et al. Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field[J]. Physical Review Letters, 2015, 114(18): 187201.
[121] Deng Y, Yu Y, Shi M Z, et al. Quantum Anomalous Hall Effect in Intrinsic Magnetic Topological Insulator MnBi2Te4[J]. Science, 2020, 367(6480): 895-900.
[122] Serlin M, Tschirhart C L, Polshyn H, et al. Intrinsic Quantized Anomalous Hall Effect in a Moiré Heterostructure[J]. Science, 2020, 367(6480): 900-903.
[123] Li T, Jiang S, Shen B, et al. Quantum Anomalous Hall Effect from Intertwined Moiré Bands[J]. Nature, 2021, 600(7890): 641-646.
[124] Mogi M, Yoshimi R, Tsukazaki A, et al. Magnetic Modulation Doping in Topological Insulators toward Higher-Temperature Quantum Anomalous Hall Effect[J]. Applied Physics Letters, 2015, 107(18): 182401.
[125] Xiao D, Chang M C, Niu Q. Berry Phase Effects on Electronic Properties[J]. Reviews of Modern Physics, 2010, 82(3): 1959-2007.
[126] Hu J, Xu S Y, Ni N, et al. Transport of Topological Semimetals[J]. Annual Review of Materials Research, 2019, 49(1): 207-252.
[127] Burkov A A. Anomalous Hall Effect in Weyl Metals[J]. Physical Review Letters, 2014, 113(18): 187202.
[128] Nielsen H B, Ninomiya M. The Adler-Bell-Jackiw Anomaly and Weyl Fermions in a Crystal[J]. Physics Letters B, 1983, 130(6): 389-396.
[129] Son D T, Spivak B Z. Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals[J]. Physical Review B, 2013, 88(10): 104412.
[130] Burkov A A. Chiral Anomaly and Transport in Weyl Metals[J]. Journal of Physics: Condensed Matter, 2015, 27(11): 113201.
[131] Ong N P, Liang S. Experimental Signatures of the Chiral Anomaly in Dirac–Weyl Semimetals[J]. Nature Reviews Physics, 2021, 3(6): 394-404.
[132] Deng M X, Qi G Y, Ma R, et al. Quantum Oscillations of the Positive Longitudinal Magnetoconductivity: A Fingerprint for Identifying Weyl Semimetals[J]. Physical Review Letters, 2019, 122(3): 036601.
[133] Zhang C L, Xu S Y, Belopolski I, et al. Signatures of the Adler–Bell–Jackiw Chiral Anomaly in a Weyl Fermion Semimetal[J]. Nature Communications, 2016, 7(1): 10735.
[134] Li Q, Kharzeev D E, Zhang C, et al. Chiral Magnetic Effect in ZrTe5[J]. Nature Physics, 2016, 12(6): 550-554.
[135] Wang Y, Liu E, Liu H, et al. Gate-Tunable Negative Longitudinal Magnetoresistance in the Predicted Type-II Weyl Semimetal WTe2[J]. Nature Communications, 2016, 7(1): 13142.
[136] Wang H, Wang J. Electron Transport in Dirac and Weyl Semimetals[J]. Chinese Physics B, 2018, 27(10): 107402.
[137] Abrikosov A A. Quantum Magnetoresistance[J]. Physical Review B, 1998, 58(5): 2788-2794.
[138] Zhao Y, Liu H, Zhang C, et al. Anisotropic Fermi Surface and Quantum Limit Transport in High Mobility Three-Dimensional Dirac Semimetal Cd3As2[J]. Physical Review X, 2015, 5(3): 031037.
[139] Du Z Z, Lu H Z, Xie X C. Nonlinear Hall Effects[J]. Nature Reviews Physics, 2021, 3(11): 744-752.
[140] Li S, Wang C M, Du Z Z, et al. 3D Quantum Hall Effects and Nonlinear Hall Effect[J]. npj Quantum Materials, 2021, 6(1): 1-5.
[141] Ma Q, Xu S Y, Shen H, et al. Observation of the Nonlinear Hall Effect under Time-Reversal-Symmetric Conditions[J]. Nature, 2019, 565(7739): 337-342.
[142] Sodemann I, Fu L. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials[J]. Physical Review Letters, 2015, 115(21): 216806.
[143] Du Z Z, Wang C M, Lu H Z, et al. Band Signatures for Strong Nonlinear Hall Effect in Bilayer WTe2[J]. Physical Review Letters, 2018, 121(26): 266601.
[144] Wang C M, Lu H Z, Shen S Q. Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals[J]. Physical Review Letters, 2016, 117(7): 077201.
[145] Li C, Wang C M, Wan B, et al. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals[J]. Physical Review Letters, 2018, 120(14): 146602.
[146] Zhao Y F, Zhang R, Mei R, et al. Tuning the Chern Number in Quantum Anomalous Hall Insulators[J]. Nature, 2020, 588(7838): 419-423.
[147] Zhao Y F, Zhang R, Zhou L J, et al. Zero Magnetic Field Plateau Phase Transition in Higher Chern Number Quantum Anomalous Hall Insulators[J]. Physical Review Letters, 2022, 128(21): 216801.
[148] Tang F, Ren Y, Wang P, et al. Three-Dimensional Quantum Hall Effect and Metal–Insulator Transition in ZrTe5[J]. Nature, 2019, 569(7757): 537-541.
[149] Chu R L, Shi J, Shen S Q. Surface Edge State and Half-Quantized Hall Conductance in Topological Insulators[J]. Physical Review B, 2011, 84(8): 085312.
[150] Nenno D M, Garcia C A C, Gooth J, et al. Axion Physics in Condensed-Matter Systems[J]. Nature Reviews Physics, 2020, 2(12): 682-696.
[151] Mogi M, Okamura Y, Kawamura M, et al. Experimental Signature of the Parity Anomaly in a Semi-Magnetic Topological Insulator[J]. Nature Physics, 2022, 18(4): 390-394.
[152] Xu R, Husmann A, Rosenbaum T F, et al. Large Magnetoresistance in Non-Magnetic Silver Chalcogenides[J]. Nature, 1997, 390(6655): 57-60.
[153] Chen R Y, Chen Z G, Song X Y, et al. Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe5[J]. Physical Review Letters, 2015, 115(17): 176404.
[154] Manzoni G, Gragnaniello L, Autès G, et al. Evidence for a Strong Topological Insulator Phase in ZrTe5[J]. Physical Review Letters, 2016, 117(23): 237601.
[155] Alekseev P S, Dmitriev A P, Gornyi I V, et al. Magnetoresistance in Two-Component Systems[J]. Physical Review Letters, 2015, 114(15): 156601.
[156] Alekseev P S, Dmitriev A P, Gornyi I V, et al. Magnetoresistance of Compensated Semimetals in Confined Geometries[J]. Physical Review B, 2017, 95(16): 165410.
[157] Song J C W, Refael G, Lee P A. Linear Magnetoresistance in Metals: Guiding Center Diffusion in a Smooth Random Potential[J]. Physical Review B, 2015, 92(18): 180204.
[158] Xiao C, Chen H, Gao Y, et al. Linear Magnetoresistance Induced by Intra-Scattering Semiclassics of Bloch Electrons[J]. Physical Review B, 2020, 101(20): 201410.
[159] Bruus H, Flensberg K. Many-Body Quantum Theory in Condensed Matter Physics: An Introduction[M]. Oxford ; New York: Oxford University Press, 2004.
[160] Sakurai J J, Napolitano J. Modern Quantum Mechanics[M]. 2nd ed. Boston: Addison-Wesley, 2011.
[161] Shoenberg D. Magnetic Oscillations in Metals[M]. Cambridge [Cambridgeshire] ; New York: Cambridge University Press, 1984.
[162] Parish M M, Littlewood P B. Non-Saturating Magnetoresistance in Heavily Disordered Semiconductors[J]. Nature, 2003, 426(6963): 162-165.
[163] He L P, Hong X C, Dong J K, et al. Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2[J]. Physical Review Letters, 2014, 113(24): 246402.
[164] Narayanan A, Watson M D, Blake S F, et al. Linear Magnetoresistance Caused by Mobility Fluctuations in N-Doped Cd3As2[J]. Physical Review Letters, 2015, 114(11): 117201.
[165] Xiang Z J, Zhao D, Jin Z, et al. Angular-Dependent Phase Factor of Shubnikov--de Haas Oscillations in the Dirac Semimetal Cd3As2[J]. Physical Review Letters, 2015, 115(22): 226401.
[166] Takiguchi K, Wakabayashi Y K, Irie H, et al. Quantum Transport Evidence of Weyl Fermions in an Epitaxial Ferromagnetic Oxide[J]. Nature Communications, 2020, 11(1): 4969.
[167] Laha A, Mardanya S, Singh B, et al. Magnetotransport Properties of the Topological Nodal-Line Semimetal CaCdSn[J]. Physical Review B, 2020, 102(3): 035164.
[168] Yang J, Song Z Y, Guo L, et al. Nontrivial Giant Linear Magnetoresistance in Nodal-Line Semimetal ZrGeSe 2D Layers[J]. Nano Letters, 2021, 21(23): 10139-10145.
[169] Wu J, Li Y, Pan D, et al. Effect of Grain Boundaries on Charge Transport in CVD-Grown Bilayer Graphene[J]. Carbon, 2019, 147: 434-440.
[170] Niu Q, Yu W C, Yip K Y, et al. Quasilinear Quantum Magnetoresistance in Pressure-Induced Nonsymmorphic Superconductor Chromium Arsenide[J]. Nature Communications, 2017, 8(1): 15358.
[171] Giraldo-Gallo P, Galvis J A, Stegen Z, et al. Scale-Invariant Magnetoresistance in a Cuprate Superconductor[J]. Science, 2018, 361(6401): 479-481.
[172] Sarkar T, Mandal P R, Poniatowski N R, et al. Correlation between Scale-Invariant Normal-State Resistivity and Superconductivity in an Electron-Doped Cuprate[J]. Science Advances, 2019, 5(5): eaav6753.
[173] Maksimovic N, Hayes I M, Nagarajan V, et al. Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe2(As1-xPx)2[J]. Physical Review X, 2020, 10(4): 041062.
[174] Lei X, Zhou L, Hao Z Y, et al. Surface-Induced Linear Magnetoresistance in the Antiferromagnetic Topological Insulator MnBi2Te4[J]. Physical Review B, 2020, 102(23): 235431.
[175] Campbell D J, Collini J, Sławińska J, et al. Topologically Driven Linear Magnetoresistance in Helimagnetic FeP[J]. npj Quantum Materials, 2021, 6(1): 1-7.
[176] Klier J, Gornyi I V, Mirlin A D. Transversal Magnetoresistance in Weyl Semimetals[J]. Physical Review B, 2015, 92(20): 205113.
[177] Xiao X, Law K T, Lee P A. Magnetoconductivity in Weyl Semimetals: Effect of Chemical Potential and Temperature[J]. Physical Review B, 2017, 96(16): 165101.
[178] Könye V, Ogata M. Magnetoresistance of a Three-Dimensional Dirac Gas[J]. Physical Review B, 2018, 98(19): 195420.
[179] Rodionov Ya I, Kugel K I, Aronzon B A, et al. Effect of Disorder on the Transverse Magnetoresistance of Weyl Semimetals[J]. Physical Review B, 2020, 102(20): 205105.
[180] Parish M M, Littlewood P B. Classical Magnetotransport of Inhomogeneous Conductors[J]. Physical Review B, 2005, 72(9): 094417.
[181] Hu J, Parish M M, Rosenbaum T F. Nonsaturating Magnetoresistance of Inhomogeneous Conductors: Comparison of Experiment and Simulation[J]. Physical Review B, 2007, 75(21): 214203.
[182] Xu J, Zhang D, Yang F, et al. A Three-Dimensional Resistor Network Model for the Linear Magnetoresistance of Ag2+δSe and Ag2+δTe Bulks[J]. Journal of Applied Physics, 2008, 104(11): 113922.
[183] Ramakrishnan N, Lai Y T, Lara S, et al. Equivalence of Effective Medium and Random Resistor Network Models for Disorder-Induced Unsaturating Linear Magnetoresistance[J]. Physical Review B, 2017, 96(22): 224203.
[184] Chen S S, Yang Y, Yang F. Analytical Formula Describing the Non-Saturating Linear Magnetoresistance in Inhomogeneous Conductors[J]. Chinese Physics B, 2022, 31(8): 087303.
[185] Kisslinger F, Ott C, Weber H B. Origin of Nonsaturating Linear Magnetoresistivity[J]. Physical Review B, 2017, 95(2): 024204.
[186] Chandan, Islam S, Venkataraman V, et al. Observation of Linear Magneto-Resistance with Small Cross-over Field at Room Temperature in Bismuth[J]. Journal of Physics D: Applied Physics, 2020, 53(42): 425102.
[187] Zhu W L, Cao Y, Guo P J, et al. Linear Magnetoresistance Induced by Mobility Fluctuations in Iodine-Intercalated Tungsten Ditelluride[J]. Physical Review B, 2022, 105(12): 125116.
[188] Murzin S S. Electron Transport in the Extreme Quantum Limit in Applied Magnetic Field[J]. Physics-Uspekhi, 2000, 43(4): 349.
[189] Black-Schaffer A M, Balatsky A V, Fransson J. Filling of Magnetic-Impurity-Induced Gap in Topological Insulators by Potential Scattering[J]. Physical Review B, 2015, 91(20): 201411.
[190] Xu Y, Chiu J, Miao L, et al. Disorder Enabled Band Structure Engineering of a Topological Insulator Surface[J]. Nature Communications, 2017, 8(1): 14081.
[191] Li S, Wang C, Zheng S H, et al. Dynamic Conductivity Modified by Impurity Resonant States in Doping Three-Dimensional Dirac Semimetals[J]. Frontiers of Physics, 2017, 13(2): 137303.
[192] Santos Pires J P, João S M, Ferreira A, et al. Anomalous Transport Signatures in Weyl Semimetals with Point Defects[J]. Physical Review Letters, 2022, 129(19): 196601.
[193] Störmer H L, Eisenstein J P, Gossard A C, et al. Quantization of the Hall Effect in an Anisotropic Three-Dimensional Electronic System[J]. Physical Review Letters, 1986, 56(1): 85-88.
[194] Halperin B I. Possible States for a Three-Dimensional Electron Gas in a Strong Magnetic Field[J]. Japanese Journal of Applied Physics, 1987, 26(S3-3): 1913.
[195] Kohmoto M, Halperin B I, Wu Y S. Quantized Hall Effect in 3D Periodic Systems[J]. Physica B: Condensed Matter, 1993, 184(1): 30-33.
[196] Bernevig B A, Hughes T L, Raghu S, et al. Theory of the Three-Dimensional Quantum Hall Effect in Graphite[J]. Physical Review Letters, 2007, 99(14): 146804.
[197] Wang C M, Sun H P, Lu H Z, et al. 3D Quantum Hall Effect of Fermi Arcs in Topological Semimetals[J]. Physical Review Letters, 2017, 119(13): 136806.
[198] Zhang C, Zhang Y, Yuan X, et al. Quantum Hall Effect Based on Weyl Orbits in Cd3As2[J]. Nature, 2019, 565(7739): 331-336.
[199] Jiang Y, Dun Z L, Zhou H D, et al. Landau-Level Spectroscopy of Massive Dirac Fermions in Single-Crystalline ZrTe5 Thin Flakes[J]. Physical Review B, 2017, 96(4): 041101.
[200] Zhang J L, Wang C M, Guo C Y, et al. Anomalous Thermoelectric Effects of ZrTe5 in and beyond the Quantum Limit[J]. Physical Review Letters, 2019, 123(19): 196602.
[201] Grüner G. Density Waves in Solids[M]. First issued in hardback. London: CRC Press, 2019.
[202] Geng H, Qi G Y, Sheng L, et al. Theoretical Study of the Three-Dimensional Quantum Hall Effect in a Periodic Electron System[J]. Physical Review B, 2021, 104(20): 205305.
[203] Peccei R D, Quinn H R. CP Conservation in the Presence of Pseudoparticles[J]. Physical Review Letters, 1977, 38(25): 1440-1443.
[204] Zhao Y, Liu Q. Routes to Realize the Axion-Insulator Phase in MnBi2Te4(Bi2Te3)n Family[J]. Applied Physics Letters, 2021, 119(6): 060502.
[205] Sekine A, Nomura K. Axion Electrodynamics in Topological Materials[J]. Journal of Applied Physics, 2021, 129(14): 141101.
[206] Yan J Q, Zhang Q, Heitmann T, et al. Crystal Growth and Magnetic Structure of MnBi2Te4[J]. Physical Review Materials, 2019, 3(6): 064202.
[207] Zhang R X, Wu F, Das Sarma S. Möbius Insulator and Higher-Order Topology in MnBi2nTe3n+1[J]. Physical Review Letters, 2020, 124(13): 136407.
[208] Griffiths D J. Introduction to Quantum Mechanics[M]. 2. ed., new internat. ed. Harlow: Pearson Education, 2014.
[209] Chen R, Li S, Sun H P, et al. Using Nonlocal Surface Transport to Identify the Axion Insulator[J]. Physical Review B, 2021, 103(24): L241409.
[210] Zhou H, Li H, Xu D H, et al. Transport Theory of Half-Quantized Hall Conductance in a Semimagnetic Topological Insulator[J]. Physical Review Letters, 2022, 129(9): 096601.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543819
专题理学院_物理系
推荐引用方式
GB/T 7714
李帅. 磁场与磁性调控的拓扑材料输运性质研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849472-李帅-物理系.pdf(6314KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李帅]的文章
百度学术
百度学术中相似的文章
[李帅]的文章
必应学术
必应学术中相似的文章
[李帅]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。