[1] Martin J D. When Condensed-Matter Physics Became King[J]. Physics Today, 2019, 72(1): 30-37.
[2] Landau L D, Lifshitz E M. Statistical Physics: Volume 5: Vol. 5[M]. 3rd ed. Elsevier, 2013.
[3] Hasan M Z, Kane C L. Colloquium: Topological Insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067.
[4] Qi X L, Zhang S C. Topological Insulators and Superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057-1110.
[5] Klitzing K v., Dorda G, Pepper M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J]. Physical Review Letters, 1980, 45(6): 494-497.
[6] Delahaye F, Dominguez D. Precise Comparisons of Quantized Hall Resistances[J]. IEEE Transactions on Instrumentation and Measurement, 1987, IM-36(2): 226-229.
[7] Thouless D J, Kohmoto M, Nightingale M P, et al. Quantized Hall Conductance in a Two-Dimensional Periodic Potential[J]. Physical Review Letters, 1982, 49(6): 405-408.
[8] Laughlin R B. Quantized Hall Conductivity in Two Dimensions[J]. Physical Review B, 1981, 23(10): 5632-5633.
[9] Jeckelmann B, Jeanneret B. The Quantum Hall Effect as an Electrical Resistance Standard[J]. Reports on Progress in Physics, 2001, 64(12): 1603.
[10] Bernevig B A, Hughes T L, Zhang S C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[J]. Science, 2006, 314(5806): 1757-1761.
[11] Kane C L, Mele E J. Quantum Spin Hall Effect in Graphene[J]. Physical Review Letters, 2005, 95(22): 226801.
[12] König M, Wiedmann S, Brüne C, et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells[J]. Science, 2007, 318(5851): 766-770.
[13] He K, Wang Y, Xue Q K. Quantum Anomalous Hall Effect[J]. National Science Review, 2014, 1(1): 38-48.
[14] Lv B Q, Qian T, Ding H. Experimental Perspective on Three-Dimensional Topological Semimetals[J]. Reviews of Modern Physics, 2021, 93(2): 025002.
[15] He K, Wang Y, Xue Q K. Topological Materials: Quantum Anomalous Hall System[J]. Annual Review of Condensed Matter Physics, 2018, 9(1): 329-344.
[16] Tokura Y, Yasuda K, Tsukazaki A. Magnetic Topological Insulators[J]. Nature Reviews Physics, 2019, 1(2): 126-143.
[17] Xie B, Wang H X, Zhang X, et al. Higher-Order Band Topology[J]. Nature Reviews Physics, 2021, 3(7): 520-532.
[18] Yan B, Zhang S C. Topological Materials[J]. Reports on Progress in Physics, 2012, 75(9): 096501.
[19] Yang Z, Gao F, Shi X, et al. Topological Acoustics[J]. Physical Review Letters, 2015, 114(11): 114301.
[20] Huber S D. Topological Mechanics[J]. Nature Physics, 2016, 12(7): 621-623.
[21] Delplace P, Marston J B, Venaille A. Topological Origin of Equatorial Waves[J]. Science, 2017, 358(6366): 1075-1077.
[22] Ozawa T, Price H M, Amo A, et al. Topological Photonics[J]. Reviews of Modern Physics, 2019, 91(1): 015006.
[23] von Klitzing K, Chakraborty T, Kim P, et al. 40 Years of the Quantum Hall Effect[J]. Nature Reviews Physics, 2020, 2(8): 397-401.
[24] Lv B, Qian T, Ding H. Angle-Resolved Photoemission Spectroscopy and Its Application to Topological Materials[J]. Nature Reviews Physics, 2019, 1(10): 609-626.
[25] Roth A, Brüne C, Buhmann H, et al. Nonlocal Transport in the Quantum Spin Hall State[J]. Science, 2009, 325(5938): 294-297.
[26] Knez I, Du R R, Sullivan G. Evidence for Helical Edge Modes in Inverted InAs/GaSb Quantum Wells[J]. Physical Review Letters, 2011, 107(13): 136603.
[27] Du L, Knez I, Sullivan G, et al. Robust Helical Edge Transport in Gated InAs/GaSb Bilayers[J]. Physical Review Letters, 2015, 114(9): 096802.
[28] Shumiya N, Hossain M S, Yin J X, et al. Evidence of a Room-Temperature Quantum Spin Hall Edge State in a Higher-Order Topological Insulator[J]. Nature Materials, 2022, 21(10): 1111-1115.
[29] Hsieh D, Qian D, Wray L, et al. A Topological Dirac Insulator in a Quantum Spin Hall Phase[J]. Nature, 2008, 452(7190): 970-974.
[30] Chen Y L, Analytis J G, Chu J H, et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3[J]. Science, 2009, 325(5937): 178-181.
[31] Xia Y, Qian D, Hsieh D, et al. Observation of a Large-Gap Topological-Insulator Class with a Single Dirac Cone on the Surface[J]. Nature Physics, 2009, 5(6): 398-402.
[32] Fu L, Kane C L. Topological Insulators with Inversion Symmetry[J]. Physical Review B, 2007, 76(4): 045302.
[33] Zhang H, Liu C X, Qi X L, et al. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface[J]. Nature Physics, 2009, 5(6): 438-442.
[34] Liu C, Hughes T L, Qi X L, et al. Quantum Spin Hall Effect in Inverted Type-II Semiconductors[J]. Physical Review Letters, 2008, 100(23): 236601.
[35] Bansil A, Lin H, Das T. Colloquium: Topological Band Theory[J]. Reviews of Modern Physics, 2016, 88(2): 021004.
[36] Fu L, Kane C L, Mele E J. Topological Insulators in Three Dimensions[J]. Physical Review Letters, 2007, 98(10): 106803.
[37] Armitage N P, Mele E J, Vishwanath A. Weyl and Dirac Semimetals in Three-Dimensional Solids[J]. Reviews of Modern Physics, 2018, 90(1): 015001.
[38] Weng H, Dai X, Fang Z. Topological Semimetals Predicted from First-Principles Calculations[J]. Journal of Physics: Condensed Matter, 2016, 28(30): 303001.
[39] Shen S Q. Topological Insulators: Dirac Equation in Condensed Matter[M]. 2nd ed. 2017. Singapore: Springer Singapore : Imprint: Springer, 2017. DOI:10.1007/978-981-10-4606-3.
[40] Wang Z, Weng H, Wu Q, et al. Three-Dimensional Dirac Semimetal and Quantum Transport in Cd3As2[J]. Physical Review B, 2013, 88(12): 125427.
[41] Liu Z K, Zhou B, Zhang Y, et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi[J]. Science, 2014, 343(6173): 864-867.
[42] Xiong J, Kushwaha S K, Liang T, et al. Evidence for the Chiral Anomaly in the Dirac Semimetal Na3Bi[J]. Science, 2015, 350(6259): 413-416.
[43] Tabert C J, Carbotte J P, Nicol E J. Optical and Transport Properties in Three-Dimensional Dirac and Weyl Semimetals[J]. Physical Review B, 2016, 93(8): 085426.
[44] Neubauer D, Carbotte J P, Nateprov A A, et al. Interband Optical Conductivity of the
[001]-Oriented Dirac Semimetal Cd3As2[J]. Physical Review B, 2016, 93(12): 121202.
[45] Crassee I, Sankar R, Lee W L, et al. 3D Dirac Semimetal Cd3As2: A Review of Material Properties[J]. Physical Review Materials, 2018, 2(12): 120302.
[46] Jia S, Xu S Y, Hasan M Z. Weyl Semimetals, Fermi Arcs and Chiral Anomalies[J]. Nature Materials, 2016, 15(11): 1140-1144.
[47] Yang L X, Liu Z K, Sun Y, et al. Weyl Semimetal Phase in the Non-Centrosymmetric Compound TaAs[J]. Nature Physics, 2015, 11(9): 728-732.
[48] Lv B Q, Weng H M, Fu B B, et al. Experimental Discovery of Weyl Semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031013.
[49] Lv B Q, Muff S, Qian T, et al. Observation of Fermi-Arc Spin Texture in TaAs[J]. Physical Review Letters, 2015, 115(21): 217601.
[50] Soluyanov A A, Gresch D, Wang Z, et al. Type-II Weyl Semimetals[J]. Nature, 2015, 527(7579): 495-498.
[51] Volovik G E. Black Hole and Hawking Radiation by Type-II Weyl Fermions[J]. JETP Letters, 2016, 104(9): 645-648.
[52] Huang H, Jin K H, Liu F. Black-Hole Horizon in the Dirac Semimetal Zn2In2S5[J]. Physical Review B, 2018, 98(12): 121110.
[53] Fang C, Gilbert M J, Dai X, et al. Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry[J]. Physical Review Letters, 2012, 108(26): 266802.
[54] Liu Q, Zunger A. Predicted Realization of Cubic Dirac Fermion in Quasi-One-Dimensional Transition-Metal Monochalcogenides[J]. Physical Review X, 2017, 7(2): 021019.
[55] Burkov A A, Hook M D, Balents L. Topological Nodal Semimetals[J]. Physical Review B, 2011, 84(23): 235126.
[56] Yu R, Wu Q, Fang Z, et al. From Nodal Chain Semimetal to Weyl Semimetal in HfC[J]. Physical Review Letters, 2017, 119(3): 036401.
[57] Bzdušek T, Wu Q, Rüegg A, et al. Nodal-Chain Metals[J]. Nature, 2016, 538(7623): 75-78.
[58] Weng H, Liang Y, Xu Q, et al. Topological Node-Line Semimetal in Three-Dimensional Graphene Networks[J]. Physical Review B, 2015, 92(4): 045108.
[59] Liang Q F, Zhou J, Yu R, et al. Node-Surface and Node-Line Fermions from Nonsymmorphic Lattice Symmetries[J]. Physical Review B, 2016, 93(8): 085427.
[60] Katmis F, Lauter V, Nogueira F S, et al. A High-Temperature Ferromagnetic Topological Insulating Phase by Proximity Coupling[J]. Nature, 2016, 533(7604): 513-516.
[61] Chong S K, Han K B, Nagaoka A, et al. Topological Insulator-Based van Der Waals Heterostructures for Effective Control of Massless and Massive Dirac Fermions[J]. Nano Letters, 2018, 18(12): 8047-8053.
[62] Chang C Z, Zhang J, Feng X, et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator[J]. Science, 2013, 340(6129): 167-170.
[63] Chen T, Liu W, Zheng F, et al. High-Mobility Sm-Doped Bi2Se3 Ferromagnetic Topological Insulators and Robust Exchange Coupling[J]. Advanced Materials, 2015, 27(33): 4823-4829.
[64] Chang C Z, Zhao W, Kim D Y, et al. High-Precision Realization of Robust Quantum Anomalous Hall State in a Hard Ferromagnetic Topological Insulator[J]. Nature Materials, 2015, 14(5): 473-477.
[65] Wang P, Ge J, Li J, et al. Intrinsic Magnetic Topological Insulators[J]. The Innovation, 2021, 2(2): 100098.
[66] Chang C Z, Liu C X, MacDonald A H. Colloquium: Quantum Anomalous Hall Effect[J]. Reviews of Modern Physics, 2023, 95(1): 011002.
[67] Hao Y J, Liu P, Feng Y, et al. Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4[J]. Physical Review X, 2019, 9(4): 041038.
[68] Li J, Li Y, Du S, et al. Intrinsic Magnetic Topological Insulators in van Der Waals Layered MnBi2Te4-Family Materials[J]. Science Advances, 2019, 5(6): eaaw5685.
[69] Lee D S, Kim T H, Park C H, et al. Crystal Structure, Properties and Nanostructuring of a New Layered Chalcogenide Semiconductor, Bi2MnTe4[J]. CrystEngComm, 2013, 15(27): 5532-5538.
[70] Zhang D, Shi M, Zhu T, et al. Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect[J]. Physical Review Letters, 2019, 122(20): 206401.
[71] Otrokov M M, Rusinov I P, Blanco-Rey M, et al. Unique Thickness-Dependent Properties of the van Der Waals Interlayer Antiferromagnet MnBi2Te4 Films[J]. Physical Review Letters, 2019, 122(10): 107202.
[72] Gong Y, Guo J, Li J, et al. Experimental Realization of an Intrinsic Magnetic Topological Insulator[J]. Chinese Physics Letters, 2019, 36(7): 076801.
[73] Otrokov M M, Klimovskikh I I, Bentmann H, et al. Prediction and Observation of an Antiferromagnetic Topological Insulator[J]. Nature, 2019, 576(7787): 416-422.
[74] Lee S H, Zhu Y, Wang Y, et al. Spin Scattering and Noncollinear Spin Structure-Induced Intrinsic Anomalous Hall Effect in Antiferromagnetic Topological Insulator MnBi2Te4[J]. Physical Review Research, 2019, 1(1): 012011.
[75] Vidal R C, Bentmann H, Peixoto T R F, et al. Surface States and Rashba-Type Spin Polarization in Antiferromagnetic MnBi2Te4(0001)[J]. Physical Review B, 2019, 100(12): 121104.
[76] Chen Y J, Xu L X, Li J H, et al. Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4[J]. Physical Review X, 2019, 9(4): 041040.
[77] Li H, Gao S Y, Duan S F, et al. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1[J]. Physical Review X, 2019, 9(4): 041039.
[78] Garnica M, Otrokov M M, Aguilar P C, et al. Native Point Defects and Their Implications for the Dirac Point Gap at MnBi2Te4(0001)[J]. npj Quantum Materials, 2022, 7(1): 1-9.
[79] Nevola D, Li H X, Yan J Q, et al. Coexistence of Surface Ferromagnetism and a Gapless Topological State in MnBi2Te4[J]. Physical Review Letters, 2020, 125(11): 117205.
[80] Ning W, Mao Z. Recent Advancements in the Study of Intrinsic Magnetic Topological Insulators and Magnetic Weyl Semimetals[J]. APL Materials, 2020, 8(9): 090701.
[81] Bernevig B A, Felser C, Beidenkopf H. Progress and Prospects in Magnetic Topological Materials[J]. Nature, 2022, 603(7899): 41-51.
[82] Tang P, Zhou Q, Xu G, et al. Dirac Fermions in an Antiferromagnetic Semimetal[J]. Nature Physics, 2016, 12(12): 1100-1104.
[83] Liu E, Sun Y, Kumar N, et al. Giant Anomalous Hall Effect in a Ferromagnetic Kagome-Lattice Semimetal[J]. Nature Physics, 2018, 14(11): 1125-1131.
[84] Wang Q, Xu Y, Lou R, et al. Large Intrinsic Anomalous Hall Effect in Half-Metallic Ferromagnet Co3Sn2S2 with Magnetic Weyl Fermions[J]. Nature Communications, 2018, 9(1): 3681.
[85] Liu D F, Liang A J, Liu E K, et al. Magnetic Weyl Semimetal Phase in a Kagomé Crystal[J]. Science, 2019, 365(6459): 1282-1285.
[86] Morali N, Batabyal R, Nag P K, et al. Fermi-Arc Diversity on Surface Terminations of the Magnetic Weyl Semimetal Co3Sn2S2[J]. Science, 2019, 365(6459): 1286-1291.
[87] Guin S N, Vir P, Zhang Y, et al. Zero-Field Nernst Effect in a Ferromagnetic Kagome-Lattice Weyl-Semimetal Co3Sn2S2[J]. Advanced Materials, 2019, 31(25): 1806622.
[88] Sakai A, Mizuta Y P, Nugroho A A, et al. Giant Anomalous Nernst Effect and Quantum-Critical Scaling in a Ferromagnetic Semimetal[J]. Nature Physics, 2018, 14(11): 1119-1124.
[89] Belopolski I, Manna K, Sanchez D S, et al. Discovery of Topological Weyl Fermion Lines and Drumhead Surface States in a Room Temperature Magnet[J]. Science, 2019, 365(6459): 1278-1281.
[90] Li P, Koo J, Ning W, et al. Giant Room Temperature Anomalous Hall Effect and Tunable Topology in a Ferromagnetic Topological Semimetal Co2MnAl[J]. Nature Communications, 2020, 11(1): 3476.
[91] Hirschberger M, Kushwaha S, Wang Z, et al. The Chiral Anomaly and Thermopower of Weyl Fermions in the Half-Heusler GdPtBi[J]. Nature Materials, 2016, 15(11): 1161-1165.
[92] Kang M, Ye L, Fang S, et al. Dirac Fermions and Flat Bands in the Ideal Kagome Metal FeSn[J]. Nature Materials, 2020, 19(2): 163-169.
[93] Benalcazar W A, Bernevig B A, Hughes T L. Quantized Electric Multipole Insulators[J]. Science, 2017, 357(6346): 61-66.
[94] Schindler F, Cook A M, Vergniory M G, et al. Higher-Order Topological Insulators[J]. Science Advances, 2018, 4(6): eaat0346.
[95] Wieder B J, Wang Z, Cano J, et al. Strong and Fragile Topological Dirac Semimetals with Higher-Order Fermi Arcs[J]. Nature Communications, 2020, 11(1): 627.
[96] Fang Y, Cano J. Classification of Dirac Points with Higher-Order Fermi Arcs[J]. Physical Review B, 2021, 104(24): 245101.
[97] Tang F, Po H C, Vishwanath A, et al. Efficient Topological Materials Discovery Using Symmetry Indicators[J]. Nature Physics, 2019, 15(5): 470-476.
[98] Yoon C, Liu C C, Min H, et al. Quasi-One-Dimensional Higher-Order Topological Insulators[M]. arXiv, 2020
[2022-12-15]. http://arxiv.org/abs/2005.14710. DOI:10.48550/arXiv.2005.14710.
[99] Haldane F D M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”[J]. Physical Review Letters, 1988, 61(18): 2015-2018.
[100] Jotzu G, Messer M, Desbuquois R, et al. Experimental Realization of the Topological Haldane Model with Ultracold Fermions[J]. Nature, 2014, 515(7526): 237-240.
[101] Imhof S, Berger C, Bayer F, et al. Topolectrical-Circuit Realization of Topological Corner Modes[J]. Nature Physics, 2018, 14(9): 925-929.
[102] Lee C H, Imhof S, Berger C, et al. Topolectrical Circuits[J]. Communications Physics, 2018, 1(1): 1-9.
[103] Zhao E. Topological Circuits of Inductors and Capacitors[J]. Annals of Physics, 2018, 399: 289-313.
[104] Chen Y, Yin Y, Lin Z K, et al. Observation of Topological P-Orbital Disclination States in Non-Euclidean Acoustic Metamaterials[J]. Physical Review Letters, 2022, 129(15): 154301.
[105] Xue H, Yang Y, Zhang B. Topological Acoustics[J]. Nature Reviews Materials, 2022, 7(12): 974-990.
[106] Haldane F D M, Raghu S. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry[J]. Physical Review Letters, 2008, 100(1): 013904.
[107] Ozawa T, Price H M. Topological Quantum Matter in Synthetic Dimensions[J]. Nature Reviews Physics, 2019, 1(5): 349-357.
[108] Devescovi C, García-Díez M, Robredo I, et al. Cubic 3D Chern Photonic Insulators with Orientable Large Chern Vectors[J]. Nature Communications, 2021, 12(1): 7330.
[109] Devescovi C, García-Díez M, Bradlyn B, et al. Vectorial Bulk-Boundary Correspondence for 3D Photonic Chern Insulators[J]. Advanced Optical Materials, 2022, 10(20): 2200475.
[110] Liu G G, Gao Z, Wang Q, et al. Topological Chern Vectors in Three-Dimensional Photonic Crystals[J]. Nature, 2022, 609(7929): 925-930.
[111] Ovchinnikov D, Huang X, Lin Z, et al. Intertwined Topological and Magnetic Orders in Atomically Thin Chern Insulator MnBi2Te4[J]. Nano Letters, 2021, 21(6): 2544-2550.
[112] Mahan G D. Many-Particle Physics[M]. 3rd ed. New York: Kluwer Academic/Plenum Publishers, 2000.
[113] Datta S. Electronic Transport in Mesoscopic Systems[M]. 1. paperback ed. (with corr.), 8. print. Cambridge: Cambridge Univ. Press, 2009.
[114] Groth C W, Wimmer M, Akhmerov A R, et al. Kwant: A Software Package for Quantum Transport[J]. New Journal of Physics, 2014, 16(6): 063065.
[115] Kumar C, Birkbeck J, Sulpizio J A, et al. Imaging Hydrodynamic Electrons Flowing without Landauer–Sharvin Resistance[J]. Nature, 2022, 609(7926): 276-281.
[116] Kane C L. Quantized Nonlinear Conductance in Ballistic Metals[J]. Physical Review Letters, 2022, 128(7): 076801.
[117] van Wees B J, van Houten H, Beenakker C W J, et al. Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas[J]. Physical Review Letters, 1988, 60(9): 848-850.
[118] Yu R, Zhang W, Zhang H J, et al. Quantized Anomalous Hall Effect in Magnetic Topological Insulators[J]. Science, 2010, 329(5987): 61-64.
[119] Kou X, Guo S T, Fan Y, et al. Scale-Invariant Quantum Anomalous Hall Effect in Magnetic Topological Insulators beyond the Two-Dimensional Limit[J]. Physical Review Letters, 2014, 113(13): 137201.
[120] Bestwick A J, Fox E J, Kou X, et al. Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field[J]. Physical Review Letters, 2015, 114(18): 187201.
[121] Deng Y, Yu Y, Shi M Z, et al. Quantum Anomalous Hall Effect in Intrinsic Magnetic Topological Insulator MnBi2Te4[J]. Science, 2020, 367(6480): 895-900.
[122] Serlin M, Tschirhart C L, Polshyn H, et al. Intrinsic Quantized Anomalous Hall Effect in a Moiré Heterostructure[J]. Science, 2020, 367(6480): 900-903.
[123] Li T, Jiang S, Shen B, et al. Quantum Anomalous Hall Effect from Intertwined Moiré Bands[J]. Nature, 2021, 600(7890): 641-646.
[124] Mogi M, Yoshimi R, Tsukazaki A, et al. Magnetic Modulation Doping in Topological Insulators toward Higher-Temperature Quantum Anomalous Hall Effect[J]. Applied Physics Letters, 2015, 107(18): 182401.
[125] Xiao D, Chang M C, Niu Q. Berry Phase Effects on Electronic Properties[J]. Reviews of Modern Physics, 2010, 82(3): 1959-2007.
[126] Hu J, Xu S Y, Ni N, et al. Transport of Topological Semimetals[J]. Annual Review of Materials Research, 2019, 49(1): 207-252.
[127] Burkov A A. Anomalous Hall Effect in Weyl Metals[J]. Physical Review Letters, 2014, 113(18): 187202.
[128] Nielsen H B, Ninomiya M. The Adler-Bell-Jackiw Anomaly and Weyl Fermions in a Crystal[J]. Physics Letters B, 1983, 130(6): 389-396.
[129] Son D T, Spivak B Z. Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals[J]. Physical Review B, 2013, 88(10): 104412.
[130] Burkov A A. Chiral Anomaly and Transport in Weyl Metals[J]. Journal of Physics: Condensed Matter, 2015, 27(11): 113201.
[131] Ong N P, Liang S. Experimental Signatures of the Chiral Anomaly in Dirac–Weyl Semimetals[J]. Nature Reviews Physics, 2021, 3(6): 394-404.
[132] Deng M X, Qi G Y, Ma R, et al. Quantum Oscillations of the Positive Longitudinal Magnetoconductivity: A Fingerprint for Identifying Weyl Semimetals[J]. Physical Review Letters, 2019, 122(3): 036601.
[133] Zhang C L, Xu S Y, Belopolski I, et al. Signatures of the Adler–Bell–Jackiw Chiral Anomaly in a Weyl Fermion Semimetal[J]. Nature Communications, 2016, 7(1): 10735.
[134] Li Q, Kharzeev D E, Zhang C, et al. Chiral Magnetic Effect in ZrTe5[J]. Nature Physics, 2016, 12(6): 550-554.
[135] Wang Y, Liu E, Liu H, et al. Gate-Tunable Negative Longitudinal Magnetoresistance in the Predicted Type-II Weyl Semimetal WTe2[J]. Nature Communications, 2016, 7(1): 13142.
[136] Wang H, Wang J. Electron Transport in Dirac and Weyl Semimetals[J]. Chinese Physics B, 2018, 27(10): 107402.
[137] Abrikosov A A. Quantum Magnetoresistance[J]. Physical Review B, 1998, 58(5): 2788-2794.
[138] Zhao Y, Liu H, Zhang C, et al. Anisotropic Fermi Surface and Quantum Limit Transport in High Mobility Three-Dimensional Dirac Semimetal Cd3As2[J]. Physical Review X, 2015, 5(3): 031037.
[139] Du Z Z, Lu H Z, Xie X C. Nonlinear Hall Effects[J]. Nature Reviews Physics, 2021, 3(11): 744-752.
[140] Li S, Wang C M, Du Z Z, et al. 3D Quantum Hall Effects and Nonlinear Hall Effect[J]. npj Quantum Materials, 2021, 6(1): 1-5.
[141] Ma Q, Xu S Y, Shen H, et al. Observation of the Nonlinear Hall Effect under Time-Reversal-Symmetric Conditions[J]. Nature, 2019, 565(7739): 337-342.
[142] Sodemann I, Fu L. Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials[J]. Physical Review Letters, 2015, 115(21): 216806.
[143] Du Z Z, Wang C M, Lu H Z, et al. Band Signatures for Strong Nonlinear Hall Effect in Bilayer WTe2[J]. Physical Review Letters, 2018, 121(26): 266601.
[144] Wang C M, Lu H Z, Shen S Q. Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals[J]. Physical Review Letters, 2016, 117(7): 077201.
[145] Li C, Wang C M, Wan B, et al. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals[J]. Physical Review Letters, 2018, 120(14): 146602.
[146] Zhao Y F, Zhang R, Mei R, et al. Tuning the Chern Number in Quantum Anomalous Hall Insulators[J]. Nature, 2020, 588(7838): 419-423.
[147] Zhao Y F, Zhang R, Zhou L J, et al. Zero Magnetic Field Plateau Phase Transition in Higher Chern Number Quantum Anomalous Hall Insulators[J]. Physical Review Letters, 2022, 128(21): 216801.
[148] Tang F, Ren Y, Wang P, et al. Three-Dimensional Quantum Hall Effect and Metal–Insulator Transition in ZrTe5[J]. Nature, 2019, 569(7757): 537-541.
[149] Chu R L, Shi J, Shen S Q. Surface Edge State and Half-Quantized Hall Conductance in Topological Insulators[J]. Physical Review B, 2011, 84(8): 085312.
[150] Nenno D M, Garcia C A C, Gooth J, et al. Axion Physics in Condensed-Matter Systems[J]. Nature Reviews Physics, 2020, 2(12): 682-696.
[151] Mogi M, Okamura Y, Kawamura M, et al. Experimental Signature of the Parity Anomaly in a Semi-Magnetic Topological Insulator[J]. Nature Physics, 2022, 18(4): 390-394.
[152] Xu R, Husmann A, Rosenbaum T F, et al. Large Magnetoresistance in Non-Magnetic Silver Chalcogenides[J]. Nature, 1997, 390(6655): 57-60.
[153] Chen R Y, Chen Z G, Song X Y, et al. Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe5[J]. Physical Review Letters, 2015, 115(17): 176404.
[154] Manzoni G, Gragnaniello L, Autès G, et al. Evidence for a Strong Topological Insulator Phase in ZrTe5[J]. Physical Review Letters, 2016, 117(23): 237601.
[155] Alekseev P S, Dmitriev A P, Gornyi I V, et al. Magnetoresistance in Two-Component Systems[J]. Physical Review Letters, 2015, 114(15): 156601.
[156] Alekseev P S, Dmitriev A P, Gornyi I V, et al. Magnetoresistance of Compensated Semimetals in Confined Geometries[J]. Physical Review B, 2017, 95(16): 165410.
[157] Song J C W, Refael G, Lee P A. Linear Magnetoresistance in Metals: Guiding Center Diffusion in a Smooth Random Potential[J]. Physical Review B, 2015, 92(18): 180204.
[158] Xiao C, Chen H, Gao Y, et al. Linear Magnetoresistance Induced by Intra-Scattering Semiclassics of Bloch Electrons[J]. Physical Review B, 2020, 101(20): 201410.
[159] Bruus H, Flensberg K. Many-Body Quantum Theory in Condensed Matter Physics: An Introduction[M]. Oxford ; New York: Oxford University Press, 2004.
[160] Sakurai J J, Napolitano J. Modern Quantum Mechanics[M]. 2nd ed. Boston: Addison-Wesley, 2011.
[161] Shoenberg D. Magnetic Oscillations in Metals[M]. Cambridge [Cambridgeshire] ; New York: Cambridge University Press, 1984.
[162] Parish M M, Littlewood P B. Non-Saturating Magnetoresistance in Heavily Disordered Semiconductors[J]. Nature, 2003, 426(6963): 162-165.
[163] He L P, Hong X C, Dong J K, et al. Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd3As2[J]. Physical Review Letters, 2014, 113(24): 246402.
[164] Narayanan A, Watson M D, Blake S F, et al. Linear Magnetoresistance Caused by Mobility Fluctuations in N-Doped Cd3As2[J]. Physical Review Letters, 2015, 114(11): 117201.
[165] Xiang Z J, Zhao D, Jin Z, et al. Angular-Dependent Phase Factor of Shubnikov--de Haas Oscillations in the Dirac Semimetal Cd3As2[J]. Physical Review Letters, 2015, 115(22): 226401.
[166] Takiguchi K, Wakabayashi Y K, Irie H, et al. Quantum Transport Evidence of Weyl Fermions in an Epitaxial Ferromagnetic Oxide[J]. Nature Communications, 2020, 11(1): 4969.
[167] Laha A, Mardanya S, Singh B, et al. Magnetotransport Properties of the Topological Nodal-Line Semimetal CaCdSn[J]. Physical Review B, 2020, 102(3): 035164.
[168] Yang J, Song Z Y, Guo L, et al. Nontrivial Giant Linear Magnetoresistance in Nodal-Line Semimetal ZrGeSe 2D Layers[J]. Nano Letters, 2021, 21(23): 10139-10145.
[169] Wu J, Li Y, Pan D, et al. Effect of Grain Boundaries on Charge Transport in CVD-Grown Bilayer Graphene[J]. Carbon, 2019, 147: 434-440.
[170] Niu Q, Yu W C, Yip K Y, et al. Quasilinear Quantum Magnetoresistance in Pressure-Induced Nonsymmorphic Superconductor Chromium Arsenide[J]. Nature Communications, 2017, 8(1): 15358.
[171] Giraldo-Gallo P, Galvis J A, Stegen Z, et al. Scale-Invariant Magnetoresistance in a Cuprate Superconductor[J]. Science, 2018, 361(6401): 479-481.
[172] Sarkar T, Mandal P R, Poniatowski N R, et al. Correlation between Scale-Invariant Normal-State Resistivity and Superconductivity in an Electron-Doped Cuprate[J]. Science Advances, 2019, 5(5): eaav6753.
[173] Maksimovic N, Hayes I M, Nagarajan V, et al. Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe2(As1-xPx)2[J]. Physical Review X, 2020, 10(4): 041062.
[174] Lei X, Zhou L, Hao Z Y, et al. Surface-Induced Linear Magnetoresistance in the Antiferromagnetic Topological Insulator MnBi2Te4[J]. Physical Review B, 2020, 102(23): 235431.
[175] Campbell D J, Collini J, Sławińska J, et al. Topologically Driven Linear Magnetoresistance in Helimagnetic FeP[J]. npj Quantum Materials, 2021, 6(1): 1-7.
[176] Klier J, Gornyi I V, Mirlin A D. Transversal Magnetoresistance in Weyl Semimetals[J]. Physical Review B, 2015, 92(20): 205113.
[177] Xiao X, Law K T, Lee P A. Magnetoconductivity in Weyl Semimetals: Effect of Chemical Potential and Temperature[J]. Physical Review B, 2017, 96(16): 165101.
[178] Könye V, Ogata M. Magnetoresistance of a Three-Dimensional Dirac Gas[J]. Physical Review B, 2018, 98(19): 195420.
[179] Rodionov Ya I, Kugel K I, Aronzon B A, et al. Effect of Disorder on the Transverse Magnetoresistance of Weyl Semimetals[J]. Physical Review B, 2020, 102(20): 205105.
[180] Parish M M, Littlewood P B. Classical Magnetotransport of Inhomogeneous Conductors[J]. Physical Review B, 2005, 72(9): 094417.
[181] Hu J, Parish M M, Rosenbaum T F. Nonsaturating Magnetoresistance of Inhomogeneous Conductors: Comparison of Experiment and Simulation[J]. Physical Review B, 2007, 75(21): 214203.
[182] Xu J, Zhang D, Yang F, et al. A Three-Dimensional Resistor Network Model for the Linear Magnetoresistance of Ag2+δSe and Ag2+δTe Bulks[J]. Journal of Applied Physics, 2008, 104(11): 113922.
[183] Ramakrishnan N, Lai Y T, Lara S, et al. Equivalence of Effective Medium and Random Resistor Network Models for Disorder-Induced Unsaturating Linear Magnetoresistance[J]. Physical Review B, 2017, 96(22): 224203.
[184] Chen S S, Yang Y, Yang F. Analytical Formula Describing the Non-Saturating Linear Magnetoresistance in Inhomogeneous Conductors[J]. Chinese Physics B, 2022, 31(8): 087303.
[185] Kisslinger F, Ott C, Weber H B. Origin of Nonsaturating Linear Magnetoresistivity[J]. Physical Review B, 2017, 95(2): 024204.
[186] Chandan, Islam S, Venkataraman V, et al. Observation of Linear Magneto-Resistance with Small Cross-over Field at Room Temperature in Bismuth[J]. Journal of Physics D: Applied Physics, 2020, 53(42): 425102.
[187] Zhu W L, Cao Y, Guo P J, et al. Linear Magnetoresistance Induced by Mobility Fluctuations in Iodine-Intercalated Tungsten Ditelluride[J]. Physical Review B, 2022, 105(12): 125116.
[188] Murzin S S. Electron Transport in the Extreme Quantum Limit in Applied Magnetic Field[J]. Physics-Uspekhi, 2000, 43(4): 349.
[189] Black-Schaffer A M, Balatsky A V, Fransson J. Filling of Magnetic-Impurity-Induced Gap in Topological Insulators by Potential Scattering[J]. Physical Review B, 2015, 91(20): 201411.
[190] Xu Y, Chiu J, Miao L, et al. Disorder Enabled Band Structure Engineering of a Topological Insulator Surface[J]. Nature Communications, 2017, 8(1): 14081.
[191] Li S, Wang C, Zheng S H, et al. Dynamic Conductivity Modified by Impurity Resonant States in Doping Three-Dimensional Dirac Semimetals[J]. Frontiers of Physics, 2017, 13(2): 137303.
[192] Santos Pires J P, João S M, Ferreira A, et al. Anomalous Transport Signatures in Weyl Semimetals with Point Defects[J]. Physical Review Letters, 2022, 129(19): 196601.
[193] Störmer H L, Eisenstein J P, Gossard A C, et al. Quantization of the Hall Effect in an Anisotropic Three-Dimensional Electronic System[J]. Physical Review Letters, 1986, 56(1): 85-88.
[194] Halperin B I. Possible States for a Three-Dimensional Electron Gas in a Strong Magnetic Field[J]. Japanese Journal of Applied Physics, 1987, 26(S3-3): 1913.
[195] Kohmoto M, Halperin B I, Wu Y S. Quantized Hall Effect in 3D Periodic Systems[J]. Physica B: Condensed Matter, 1993, 184(1): 30-33.
[196] Bernevig B A, Hughes T L, Raghu S, et al. Theory of the Three-Dimensional Quantum Hall Effect in Graphite[J]. Physical Review Letters, 2007, 99(14): 146804.
[197] Wang C M, Sun H P, Lu H Z, et al. 3D Quantum Hall Effect of Fermi Arcs in Topological Semimetals[J]. Physical Review Letters, 2017, 119(13): 136806.
[198] Zhang C, Zhang Y, Yuan X, et al. Quantum Hall Effect Based on Weyl Orbits in Cd3As2[J]. Nature, 2019, 565(7739): 331-336.
[199] Jiang Y, Dun Z L, Zhou H D, et al. Landau-Level Spectroscopy of Massive Dirac Fermions in Single-Crystalline ZrTe5 Thin Flakes[J]. Physical Review B, 2017, 96(4): 041101.
[200] Zhang J L, Wang C M, Guo C Y, et al. Anomalous Thermoelectric Effects of ZrTe5 in and beyond the Quantum Limit[J]. Physical Review Letters, 2019, 123(19): 196602.
[201] Grüner G. Density Waves in Solids[M]. First issued in hardback. London: CRC Press, 2019.
[202] Geng H, Qi G Y, Sheng L, et al. Theoretical Study of the Three-Dimensional Quantum Hall Effect in a Periodic Electron System[J]. Physical Review B, 2021, 104(20): 205305.
[203] Peccei R D, Quinn H R. CP Conservation in the Presence of Pseudoparticles[J]. Physical Review Letters, 1977, 38(25): 1440-1443.
[204] Zhao Y, Liu Q. Routes to Realize the Axion-Insulator Phase in MnBi2Te4(Bi2Te3)n Family[J]. Applied Physics Letters, 2021, 119(6): 060502.
[205] Sekine A, Nomura K. Axion Electrodynamics in Topological Materials[J]. Journal of Applied Physics, 2021, 129(14): 141101.
[206] Yan J Q, Zhang Q, Heitmann T, et al. Crystal Growth and Magnetic Structure of MnBi2Te4[J]. Physical Review Materials, 2019, 3(6): 064202.
[207] Zhang R X, Wu F, Das Sarma S. Möbius Insulator and Higher-Order Topology in MnBi2nTe3n+1[J]. Physical Review Letters, 2020, 124(13): 136407.
[208] Griffiths D J. Introduction to Quantum Mechanics[M]. 2. ed., new internat. ed. Harlow: Pearson Education, 2014.
[209] Chen R, Li S, Sun H P, et al. Using Nonlocal Surface Transport to Identify the Axion Insulator[J]. Physical Review B, 2021, 103(24): L241409.
[210] Zhou H, Li H, Xu D H, et al. Transport Theory of Half-Quantized Hall Conductance in a Semimagnetic Topological Insulator[J]. Physical Review Letters, 2022, 129(9): 096601.
修改评论