[1] Stegmann P, Daioglou V, Londo M, et al. Plastic futures and their CO2 emissions [J]. Nature, 2022, 612(7939): 272-276.
[2] Finch C A. Polymers - the origins and growth of a science. By Herbert Morawetz [J]. British Polymer Journal, 1986, 18(3): 209-210.
[3] Wen Z, Xie Y, Chen M, et al. China’s plastic import ban increases prospects of environmental impact mitigation of plastic waste trade flow worldwide [J]. Nature Communications, 2021, 12(1): 425.
[4] Bellou N, Gambardella C, Karantzalos K, et al. Global assessment of innovative solutions to tackle marine litter [J]. Nature Sustainability, 2021, 4(6): 516-524.
[5] Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean [J]. Science, 2015, 347(6223): 768-771.
[6] Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): 1700782.
[7] Azoulay D. Plasitc & Health: the hidden costs of a plastic planet [R]: Center for international environmental law, 2019 :1-10.
[8] 周宏春, 霍黎明, 管永林, 等. 碳循环经济:内涵、实践及其对碳中和的深远影响 [J]. 生态经济, 2021, 37: 13-26.
[9] Cartier L, Okihara T, Ikada Y, et al. Epitaxial crystallization and crystalline polymorphism of polylactides [J]. Polymer, 2000, 41(25): 8909-8919.
[10] Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters [J]. Progress in Polymer Science, 2009, 34(7): 605-640.
[11] Tri P N, Domenek S, Guinault A, et al. Crystallization behavior of poly(lactide)/poly(beta-hydroxybutyrate)/talc composites [J]. Journal of Applied Polymer Science, 2013, 129(6): 3355-3365.
[12] Wu J H, Kuo M C, Chen C W, et al. Crystallization behavior of cellulose short fiber reinforced poly(lactic acid) composites [J]. Journal of Applied Polymer Science, 2013, 129(5): 3007-3018.
[13] Marubayashi H, Akaishi S, Akasaka S, et al. Crystalline structure and morphology of poly(l-lactide) formed under high-Pressure CO2 [J]. Macromolecules, 2008, 41: 9192-9203.
[14] Abe H, Kikkawa Y, Inoue Y, et al. Morphological and kinetic analyses of regime transition for poly[(S)-lactide] crystal growth [J]. Biomacromolecules, 2001, 2(3): 1007-1014.
[15] Cicero J A, Dorgan J R, Garrett J, et al. Effects of molecular architecture on two-step, melt-spun poly(lactic acid) fibers [J]. Journal of Applied Polymer Science, 2002, 86(11): 2839-2846.
[16] Yang J H, Lee J Y, Chin I J. Reinforcing effects of poly(D-Lactide)-g-multiwall carbon nanotubes on polylactide nanocomposites [J]. Journal of Nanoscience and Nanotechnology, 2015, 15(10): 8086-8092.
[17] Davachi S M, Kaffashi B. Polylactic acid in medicine [J]. Polymer-Plastics Technology and Engineering, 2015, 54(9): 944-967.
[18] Huang T, Yamaguchi M. Effect of cooling conditions on the mechanical properties of crystalline poly(lactic acid) [J]. Journal of Applied Polymer Science, 2017, 134(24): 10.
[19] Chen L, Qiu X Y, Deng M X, et al. The starch grafted poly(L-lactide) and the physical properties of its blending composites [J]. Polymer, 2005, 46(15): 5723-5729.
[20] Hong Z K, Qiu X Y, Sun J R, et al. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals [J]. Polymer, 2004, 45(19): 6699-6706.
[21] Slivniak R, Langer R, Domb A J. Lactic and ricinoleic acid based copolyesters stereocomplexation [J]. Macromolecules, 2005, 38(13): 5634-5639.
[22] Han L J, Han C Y, Dong L S. Morphology and properties of the biosourced poly(lactic acid)/poly(ethylene oxide-b-amide-12) blends [J]. Polymer Composites, 2013, 34(1): 122-130.
[23] Huneault M A, Li H B. Morphology and properties of compatibilized polylactide/thermoplastic starch blends [J]. Polymer, 2007, 48(1): 270-280.
[24] 王达, 任永琳, 刘合, 等. 聚乳酸物理化学改性研究最新进展 [J]. 现代化工, 2022, 43(1):1-6.
[25] Youning C, Guodong F A N, Xiaoling Y. Synthesis of polylactic acid-polyethylene glycol via melt copolymerization [J]. Science & Technology Review, 2009, 27(13): 50-53.
[26] Liang H Y, Hao Y P, Liu S R, et al. Thermal, rheological, and mechanical properties of polylactide/poly(diethylene glycol adipate) [J]. Polymer Bulletin, 2013, 70(12): 3487-3500.
[27] Luo S H, Xiao Y, Lin J Y, et al. Preparation, characterization and application of maleic anhydride-modified polylactic acid macromonomer based on direct melt polymerization [J]. Materials Today Chemistry, 2022, 25: 5-10.
[28] Lopez-Rodriguez N, Lopez-Arraiza A, Meaurio E, et al. Crystallization, morphology, and mechanical behavior of polylactide/poly(epsilon-caprolactone) blends [J]. Polymer Engineering and Science, 2006, 46(9): 1299-1308.
[29] Broz M E, VanderHart D L, Washburn N R. Structure and mechanical properties of poly(D,L-lactic acid)/poly(epsilon-caprolactone) blends [J]. Biomaterials, 2003, 24(23): 4181-4190.
[30] 潘刚伟, 杨静, 孙其松, 等. 3D打印用聚乳酸的改性及其应用研究进展 [J]. 塑料, 2019, 48: 31-35.
[31] Ljungberg N, Andersson T, Wesslen B. Film extrusion and film weldability of poly(lactic acid) plasticized with triacetine and tributyl citrate [J]. Journal of Applied Polymer Science, 2003, 88(14): 3239-3247.
[32] 笪伟, 李凤红, 李鹏珍, 等. 聚乳酸复合材料增塑及增韧改性研究进展 [J]. 工程塑料应用, 2022, 50: 155-159.
[33] YousefniaPasha H, Mohtasebi S S, Tabatabaeekoloor R, et al. Preparation and characterization of the plasticized polylactic acid films produced by the solvent-casting method for food packaging applications [J]. Journal of Food Processing and Preservation, 2021, 45(12): 1-8.
[34] Gou X, Peng L, Zhu J, et al. Synthesis and characterization of PLA-based antibacterial material [J]. New Chemical Materials, 2021, 49(5): 217-221.
[35] Chanklom P, Kreetachat T, Chotigawin R, et al. Photocatalytic oxidation of PLA/TiO2-composite films for indoor air purification [J]. ACS Omega, 2021, 6(16): 10629-10636.
[36] Zhang H H, Jiang H W, Huang Z X, et al. Toward high dielectric constant and low dielectric loss nanocomposite via kinetical migration [J]. Composites Science and Technology, 2022, 221: 109310.
[37] Na H N, Huang J C, Xu H G, et al. Effect of high content filling jute fiber with large aspect ratio on structure and properties of PLA composite [J]. Polymer Composites, 2022, 43(3): 1429-1437.
[38] Janorkar A V, Metters A T, Hirt D E. Modification of poly(lactic acid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process [J]. Macromolecules, 2004, 37(24): 9151-9159.
[39] Iniguez-Franco F, Auras R, Rubino M, et al. Effect of nanoparticles on the hydrolytic degradation of PLA-nanocomposites by water-ethanol solutions [J]. Polymer Degradation and Stability, 2017, 146: 287-297.
[40] Luo Y B, Wang X L, Wang Y Z. Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA [J]. Polymer Degradation and Stability, 2012, 97(5): 721-728.
[41] Limsukon W, Auras R, Selke S. Hydrolytic degradation and lifetime prediction of poly(lactic acid) modified with a multifunctional epoxy-based chain extender [J]. Polymer Testing, 2019, 80.
[42] Kervran M, Vagner C, Cochez M, et al. Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: A systematic review [J]. Polymer Degradation and Stability, 2022, 201: 109995.
[43] Zou H T, Yi C H, Wang L X, et al. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy [J]. Journal of Thermal Analysis and Calorimetry, 2009, 97(3): 929-935.
[44] Niaounakis M. Biopolymers: Applications and Trends [M]. Oxford: William Andrew Publishing, 2015: 91-138.
[45] Tu-morn M, Pairoh N, Sutapun W, et al. Effects of titanium dioxide nanoparticle on enhancing degradation of polylactic acid/low density polyethylene blend films [J]. Materials Today: Proceedings, 2019, 17: 2048-2061.
[46] Han W, Luo C X, Yang Y F, et al. Free-standing polylactic acid/chitosan/molybdenum disulfide films with controllable visible-light photodegradation [J]. Colloids and Surfaces A, 2018, 558: 488-494.
[47] 张小青, 郑素枚, 张腾. 聚乳酸基复合材料的降解性研究 [J]. 塑料科技, 2022, 50: 113-117.
[48] Williams D F. Enzymic Hydrolysis of Polylactic Acid [J]. Engineering in Medicine, 1981, 10(1): 5-7.
[49] Hanphakphoom S, Maneewong N, Sukkhum S, et al. Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria [J]. The Journal of General and Applied Microbiology, 2014, 60(1): 13-22.
[50] Kawai F, Nakadai K, Nishioka E, et al. Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(l-lactic acid) and poly(d-lactic acid) [J]. Polymer Degradation and Stability, 2011, 96(7): 1342-1348.
[51] 冯娟, 李冠锋, 蒋全吉, 等. 聚乳酸蛋白酶促降解及微生物降解综述 [J]. 科技世界, 2021(8): 116-118.
[52] Lin J, Zhou J, Kang Z, et al. Isolation, identification of poly lactic acid degrading microorganisms and optimization of the degradation process [J]. Microbiology China, 2013, 40(9): 1560-1569.
[53] Jarerat A, Tokiwa Y, Tanaka H. Poly(L-lactide) degradation by Kibdelosporangium aridum [J]. Biotechnology Letters, 2003, 25(23): 2035-2038.
[54] Jarerat A, Tokiwa Y. Degradation of poly(L-lactide) by a fungus [J]. Macromolecular Bioscience, 2001, 1(4): 136-140.
[55] Pan G W, Xu H L, Mu B B, et al. Complete stereo-complexation of enantiomeric polylactides for scalable continuous production [J]. Chemical Engineer Journal, 2017, 328: 759-767.
[56] Fan G, Zhang C. Medical Applications of polylactic acid: recent advances in research [J]. Science & Technology Review, 2010, 28(19): 103-107.
[57] Yu H Y, Wang C, Abdalkarim S Y H. Cellulose nanocrystals/polyethylene glycol as bifunctional reinforcing/compatibilizing agents in poly(lactic acid) nanofibers for controlling long-term in vitro drug release [J]. Cellulose, 2017, 24(10): 4461-4477.
[58] 郝艳平. 聚乳酸增塑与聚对苯二甲酸丁二醇酯增韧改性研究 [D]; 吉林大学, 2016.
[59] Li T, Sun H, Han H, et al. Ultrafast bulk degradation of polylactic acid by artificially cultured diatom frustules [J]. Composites Science and Technology, 2022: 109410.
[60] Bedoshvili Y D, Likhoshway Y V. Cellular mechanisms of diatom valve morphogenesis [M]. Wiley, 2019.
[61] Zhu J, Wang P, Lei M, et al. Physicochemical properties, modification and research progress of diatomite [J]. Journal of Central South University of Forestry & Technology, 2012, 32(12): 61-66.
[62] Kociolek J P, You Q M, Liu Q, et al. Continental diatom biodiversity discovery and description in China: 1848 through 2019 [J]. Phytokeys, 2020, (160): 45-97.
[63] Bedoshvili Y D, Likhoshway Y V. Cellular mechanisms of diatom valve morphogenesis [M]. Irkutsk: Scrivener, 2019: 99-114.
[64] Anderson M W, Holmes S M, Hanif N, et al. Hierarchical pore structures through diatom zeolitization [J]. Angewandte Chemie-International Edition, 2000, 39(15): 2707-2710.
[65] B-Béres V, Stenger-Kovács C, Buczkó K, et al. Ecosystem services provided by freshwater and marine diatoms [J]. Hydrobiologia, 2022: 1-27.
[66] Toyoda K, Williams D M, Tanaka J, et al. Morphological investigations of the frustule, perizonium and initial valves of the freshwater diatom achnanthes crenulata grunow (Bacillariophyceae) [J]. Phycological Research, 2006, 54(3): 173-182.
[67] Toster J, Iyer K S, Xiang W C, et al. Diatom frustules as light traps enhance DSSC efficiency [J]. Nanoscale, 2013, 5(3): 873-876.
[68] Aw M S, Simovic S, Yu Y, et al. Porous silica microshells from diatoms as biocarrier for drug delivery applications [J]. Powder Technology, 2012, 223: 52-58.
[69] Rea I, Terracciano M, Chandrasekaran S, et al. Bioengineered silicon diatoms: adding photonic features to a nanostructured demiconductive material for biomolecular sensing [J]. Nanoscale Research Letters, 2016, 11: 2-7.
[70] Sinha Ray S, Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world [J]. Progress in Materials Science, 2005, 50(8): 962-1079.
[71] Zhang J, Tashiro K, Tsuji H, et al. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC [J]. Macromolecules, 2008, 41(4): 1352-1357.
[72] Thellen C, Orroth C, Froio D, et al. Influence of montmorillonite layered silicate on plasticized poly(L-lactide) blown films [J]. Polymer, 2005, 46(25): 11716-11727.
[73] Desa M, Hassan A, Arsad A, et al. Influence of rubber content on mechanical, thermal, and morphological behavior of natural rubber toughened poly(lactic acid)-multiwalled carbon nanotube nanocomposites [J]. Journal of Applied Polymer Science, 2016, 133(48): 13.
[74] De Bortoli L S, de Farias R, Mezalira D Z, et al. Functionalized carbon nanotubes for 3D-printed PLA-nanocomposites: Effects on thermal and mechanical properties [J]. Materials Today Communications, 2022, 31: 1-8.
[75] Lu F X, Yang B, Xia R, et al. Enhanced crystallization kinetics of poly(lactic acid) with carbon nanotube (CNT) as the nucleating agent: an evaluation using in-situ measurement; proceedings of the international conference on materials science and energy engineering (CMSEE), [C], 2015: 120-127.
[76] Jeong E J, Park C K, Kim S H. Fabrication of microcellular polylactide/modified silica nanocomposite foams [J]. Journal of Applied Polymer Science, 2020, 137(17): 1-9.
[77] Mahovic Poljacek S, Priselac D, Tomasegovic T, et al. Effect of the addition of nano-Silica and poly(epsilon-caprolactone) on the mechanical and thermal properties of poly(lactic acid) blends and possible application in embossing process [J]. Polymers, 2022, 14(22): 11.
[78] Seng C T, Noum S, Sivanesan S, et al. Reduction of hygroscopicity of PLA filament for 3D printing by introducing nano silica as filler; proceedings of the 13th International Engineering Research Conference (EURECA), [C], 2020.
[79] Wang H L, Zhang Y, Tian M, et al. Preparation and degradability of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid)/SiO2 hybrid material [J]. Journal of Applied Polymer Science, 2008, 110(6): 3985-3989.
[80] Wu C S, Liao H T. Modification of biodegradable polylactide by silica and wood flour through a sol-gel process [J]. Journal of Applied Polymer Science, 2008, 109(4): 2128-2138.
[81] Yan S, Yin J, Yang Y, et al. Surface-grafted silica linked with l-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradable poly(l-lactide) [J]. Polymer, 2007, 48(6): 1688-1694.
[82] Zhu Z, Ye C, Fu W, et al. Improvement in mechanical and thermal properties of polylactic acid biocomposites due to the addition of hybrid sisal fibers and diatomite particles [J]. International Journal of Polymer Analysis and Characterization, 2016, 21(5): 365-377.
[83] Ding Y, Zhang C, Luo C C, et al. Effect of talc and diatomite on compatible, morphological, and mechanical behavior of PLA/PBAT blends [J]. E-Polymers, 2021, 21(1): 234-243.
[84] Macha I J, Cazalbou S, Ben-Nissan B, et al. Marine structure derived calcium phosphate-polymer biocomposites for local antibiotic delivery [J]. Marine Drugs, 2015, 13(1): 666-680.
[85] 李耀明, 姜宏, 石永芳. 壳聚糖/聚乳酸/羟基磷灰石/聚乙烯醇复合材料骨支架的制备及表征 [J]. 中国组织工程研究, 2022, 26: 2888-2893.
[86] Lu J, Sun C, Yang K, et al. Properties of polylactic acid reinforced by hydroxyapatite modified nanocellulose [J]. Polymers, 2019, 11(6): 5.
[87] Si J, Lin J, Su C, et al. Ultrasonication-induced modification of hydroxyapatite nanoparticles onto a 3D porous poly(lactic acid) scaffold with improved mechanical properties and biocompatibility [J]. Macromolecular Materials and Engineering, 2019, 304(7): 1900081.
[88] Kim H-S, Park B H, Choi J H, et al. Mechanical properties and thermal stability of poly(L-lactide)/calcium carbonate composites [J]. Journal of Applied Polymer Science, 2008, 109(5): 3087-3092.
[89] Liao C, Chen K, Li P, et al. Nano-TiO2 modified wheat straw/polylactic acid composites based on synergistic effect between interfacial bridging and heterogeneous nucleation [J]. Journal of Polymers and the Environment, 2022, 30(7): 3021-3030.
[90] Noda I, Dowrey A E, Marcott C, et al. Generalized two-dimensional correlation spectroscopy [J]. Applied Spectroscopy, 2000, 54(7): 236A-248A.
[91] Noda I. Generalized two-dimensional correlation method applicable to infrared, raman, and other types of spectroscopy [J]. Applied Spectroscopy, 1993, 47(9): 1329-1336.
[92] Pyda M, Bopp R C, Wunderlich B. Heat capacity of poly(lactic acid) [J]. The Journal of Chemical Thermodynamics, 2004, 36(9): 731-742.
[93] Li T, Sun H, Wu B, et al. High-performance polylactic acid composites reinforced by artificially cultured diatom frustules [J]. Materials & Design, 2020, 195: 109003.
[94] Aranberri I, Montes S, Azcune I, et al. Fully biodegradable biocomposites with high chicken feather content [J]. Polymers, 2017, 9(11): 15.
[95] Sabu Thomas K J, S. K. Malhotra, Koichi Goda and M. S. Sreekala. Fully biodegradable ‘‘Green’’ composites [J]. Polymer Composites, 2014, 3: 431-434.
[96] Quiles-Carrillo L, Duart S, Montanes N, et al. Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil [J]. Materials & Design, 2018, 140: 54-63.
[97] Zhou L, Zhai Y M, Yang M B, et al. Flexible and tough cellulose nanocrystal/polycaprolactone hybrid aerogel based on the strategy of macromolecule cross-linking via click chemistry [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15617-15627.
[98] Kakroodi A R, Kazemi Y, Rodrigue D, et al. Facile production of biodegradable PCL/PLA in situ nanofibrillar composites with unprecedented compatibility between the blend components [J]. Chemical Engineering Journal, 2018, 351: 976-984.
[99] Lavrador P, Gaspar V M, Mano J F. Bioinstructive naringin-loaded micelles for guiding stem cell osteodifferentiation [J]. Advanded Healthcare Materials, 2018, 7(19).
[100] Chen C, Sun X D, Pan W, et al. Graphene oxide-templated synthesis of hydroxyapatite nanowhiskers to improve the mechanical and osteoblastic performance of poly(lactic acid) for bone tissue regeneration [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3862-3869.
[101] Scaffaro R, Maio A, Lopresti F. Effect of graphene and fabrication technique on the release kinetics of carvacrol from polylactic acid [J]. Composites Science and Technology, 2019, 169: 60-69.
[102] Zhang K, Yu H O, Yu K X, et al. A facile approach to constructing efficiently segregated conductive networks in poly(lactic acid)/silver nanocomposites via silver plating on microfibers for electromagnetic interference shielding [J]. Composites Science and Technology, 2018, 156: 136-143.
[103] Pan P, Zhu B, Kai W, et al. Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(L-lactide) [J]. Journal of Applied Polymer Science, 2008, 107(1): 54-62.
[104] Lu X, Huang J T, Kang B H, et al. Bio-based poly(lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications [J]. Solar Energy Materials and Solar Cells, 2019, 192: 170-178.
[105] Kakroodi A R, Kazemi Y, Nofar M, et al. Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films [J]. Chemical Engineering Journal, 2017, 308: 772-782.
[106] He L, Song F, Li D F, et al. Strong and tough polylactic acid based composites enabled by simultaneous reinforcement and interfacial compatibilization of microfibrillated cellulose [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1573-1582.
[107] Li D-F, Zhao X, Jia Y-W, et al. Tough and flame-retardant poly(lactic acid) composites prepared via reactive blending with biobased ammonium phytate and in situ formed crosslinked polyurethane [J]. Composites Communications, 2018, 8: 52-57.
[108] Nofar M, Sacligil D, Carreau P J, et al. Poly (lactic acid) blends: processing, properties and applications [J]. International Journal of Biological Macromolecules, 2019, 125: 307-360.
[109] Jacobsen S, Fritz H G. Plasticizing polylactide - The effect of different plasticizers on the mechanical properties [J]. Polymer Engineering and Science, 1999, 39(7): 1303-1310.
[110] Suryanegara L, Nakagaito A N, Yano H. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites [J]. Composites Science and Technology, 2009, 69(7-8): 1187-1192.
[111] Bai T T, Zhu B, Liu H, et al. Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids [J]. International Journal of Biological Macromolecules, 2020, 151: 628-634.
[112] Zhang K C, Li J, Wang Y N, et al. Hydroxybutyl chitosan/diatom-biosilica composite sponge for hemorrhage control [J]. Carbohydrate Polymers, 2020, 236: 9.
[113] Feng C, Li J, Wu G S, et al. Chitosan-coated diatom silica as hemostatic agent for hemorrhage control [J]. ACS Applied Materials & Interfaces, 2016, 8(50): 34234-34243.
[114] Wang J K, Seibert M. Prospects for commercial production of diatoms [J]. Biotechnology for Biofuels, 2017, 10: 13.
[115] Qingmin Y, Kociolek P, Yu P, et al. A new species of Simonsenia from a karst landform, Maolan Nature Reserve, Guizhou Province, China [J]. Diatom Research, 2016, 31: 1-7.
[116] Andrzej W, Gomes A, Mann D, et al. Simonsenia aveniformis sp. nov. (Bacillariophyceae), molecular phylogeny and systematics of the genus, and a new type of canal raphe system [J]. Scientific Reports, 2015, 5: 15.
[117] Pan L, Liu Z H, Kiziltas O, et al. Carbon fiber/poly ether ether ketone composites modified with graphene for electro-thermal deicing applications [J]. Composites Science and Technology, 2020, 192: 10.
[118] Kong H J, Chai J, Ding H Q, et al. Surface modification of aramid pulp via coating zinc oxide to improve its dispersion in epoxy assisted by supercritical carbon dioxide [J]. Composites Communications, 2020, 18: 1-4.
[119] Nayak S, Mohanty J. Erosion wear behavior of benzoyl chloride modified areca sheath fiber reinforced polymer composites [J]. Composites Communications, 2020, 18: 19-25.
[120] Guo Y Q, Ruan K P, Shi X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review [J]. Composites Science and Technology, 2020, 193: 25.
[121] Zhang J M, Duan Y X, Sato H, et al. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy [J]. Macromolecules, 2005, 38(19): 8012-8021.
[122] Liang T X, Qi L, Ma Z L, et al. Experimental study on thermal expansion coefficient of composite multi-layered flaky gun propellants [J]. Composites Part B-Engineering, 2019, 166: 428-435.
[123] Ma L C, Zhu Y Y, Feng P F, et al. Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent [J]. Composites Part B-Engineering, 2019, 176: 10.
[124] Liu J W, Chen C, Feng Y Z, et al. Ultralow-carbon nanotube-toughened epoxy: the critical role of a double-layer interface [J]. ACS Applied Materials & Interfaces, 2018, 10(1): 1204-1216.
[125] Jia S K, Yu D M, Wang Z, et al. Morphologies, crystallization, and mechanical properties of PLA-based nanocomposites: synergistic effects of PEG/HNTs [J]. Journal of Applied Polymer Science, 2019, 136(18): 11.
[126] Touchaleaume F, Martin-Closas L, Angellier-Coussy H, et al. Performance and environmental impact of biodegradable polymers as agricultural mulching films [J]. Chemosphere, 2016, 144: 433-439.
[127] Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications [J]. Macromolecular Rapid Communications, 2000, 21(3): 117-132.
[128] Karamanlioglu M, Robson G D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil [J]. Polymer Degradation and Stability, 2013, 98(10): 2063-2071.
[129] Carbery M, O'Connor W, Palanisami T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health [J]. Environment International, 2018, 115: 400-409.
[130] Peng G Y, Bellerby R, Zhang F, et al. The ocean's ultimate trashcan: hadal trenches as major depositories for plastic pollution [J]. Water Research, 2020, 168: 8.
[131] Zaaba N F, Jaafar M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation [J]. Polymer Engineering & Science, 2020, 60(9): 2061-2075.
[132] DelRe C, Jiang Y, Kang P, et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes [J]. Nature, 2021, 592(7855): 558-563.
[133] Bher A, Unalan I U, Auras R, et al. Graphene modifies the biodegradation of poly(lactic acid)-thermoplastic cassava starch reactive blend films [J]. Polymer Degradation and Stability, 2019, 164: 187-197.
[134] Pinto A M, Goncalves C, Goncalves I C, et al. Effect of biodegradation on thermo-mechanical properties and biocompatibility of poly(lactic acid)/graphene nanoplatelets composites [J]. European Polymer Journal, 2016, 85: 431-444.
[135] Wan L, Li C X, Sun C, et al. Conceiving a feasible degradation model of polylactic acid-based composites through hydrolysis study to polylactic acid/wood flour/polymethyl methacrylate [J]. Composites Science and Technology, 2019, 181: 11.
[136] Bubpachat T, Sombatsompop N, Prapagdee B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions [J]. Polymer Degradation and Stability, 2018, 152: 75-85.
[137] Muroi F, Tachibana Y, Soulenthone P, et al. Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus [J]. Polymer Degradation and Stability, 2017, 137: 11-22.
[138] Zhang M, Jia H, Weng Y X, et al. Biodegradable PLA/PBAT mulch on microbial community structure in different soils [J]. International Biodeterioration & Biodegradation, 2019, 145: 7.
[139] Lu Y, Zhang Z, Wang H, et al. Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2 [J]. Applied Catalysis B-Environmental, 2021, 292: 1-38.
[140] Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering [J]. Chemical Reviews, 2006, 106(9): 4044-4098.
[141] Cuadri A A, Martin-Alfonso J E. Thermal, thermo-oxidative and thermomechanical degradation of PLA: a comparative study based on rheological, chemical and thermal properties [J]. Polymer Degradation and Stability, 2018, 150: 37-45.
[142] Laycock B, Nikolić M, Colwell J M, et al. Lifetime prediction of biodegradable polymers [J]. Progress in Polymer Science, 2017, 71: 144-189.
[143] Scaffaro R, Maio A, Sutera F, et al. Degradation and recycling of films based on biodegradable polymers: A short review [J]. Polymers, 2019, 11(4): 651.
[144] Sieradzki K, Newman R C. Brittle behavior of ductile metals during stress-corrosion cracking [J]. Philosophical Magazine, 1985, 51(1): 95-132.
[145] Speidel M O. Stress corrosion cracking of aluminum alloys [J]. Metallurgical Transactions A, 1975, 6(4): 631.
[146] Braden M, Gent A N. The attack of ozone on stretched rubber vulcanizates. I. The rate of cut growth [J]. Journal of Applied Polymer Science, 1960, 3(7): 90-99.
[147] Shi M, Steck J, Yang X, et al. Cracks outrun erosion in degradable polymers [J]. Extreme Mechanics Letters, 2020, 40: 1-7.
[148] Yarema S Y. On the contribution of G. R. Irwin to fracture mechanics [J]. Materials Science, 1995, 31(5): 617-623.
[149] Kies J A, Sullivan A M, Irwin G R. Interpretation of fracture markings [J]. Journal of Applied Physics, 1950, 21(7): 716-720.
[150] Ren S C, Liu J T, Gu S T, et al. An XFEM-based numerical procedure for the analysis of poroelastic composites with coherent imperfect interface [J]. Computational Materials Science, 2014, 94: 173-181.
[151] Fang G W, Sun J, Gao X G, et al. Micromechanical finite element analysis of effect of multilayer interphase on crack propagation in SiC/SiC composites [J]. Modelling and Simulation in Materials Science and Engineering, 2021, 29(5): 1-22.
[152] Dogu B, Kaynak C. Behavior of polylactide/microcrystalline cellulose biocomposites: effects of filler content and interfacial compatibilization [J]. Cellulose, 2016, 23(1): 611-622.
[153] Elias L, Fenouillot F, Majeste J C, et al. Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension [J]. Polymer, 2008, 49(20): 4378-4385.
[154] Kim S H, Ahn S H, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate) [J]. Polymer, 2003, 44(19): 5625-5634.
[155] Wan L, Zhou S, Zhang Y H. Parallel advances in improving mechanical properties and accelerating degradation to polylactic acid [J]. International Journal of Biological Macromolecules, 2019, 125: 1093-1102.
[156] Qi X, Ren Y W, Wang X Z. New advances in the biodegradation of poly(lactic) acid [J]. International Biodeterioration & Biodegradation, 2017, 117: 215-223.
[157] Woodard L N, Grunlan M A. Hydrolytic degradation and erosion of polyester biomaterials [J]. ACS Macro Letters, 2018, 7(8): 976-982.
[158] Ramirez Herrera C A, Flores Vela A I, Torres Huerta A M, et al. PLA degradation pathway obtained from direct polycondensation of 2-hydroxypropanoic acid using different chain extenders [J]. Journal of Materials Chemistry, 2018, 53(15): 10846-10871.
[159] Yan C H, Wu J, Zhang J M, et al. Hydrolytic degradation of cellulose-graft-poly(L-lactide) copolymers [J]. Polymer Degradation and Stability, 2015, 118: 130-136.
[160] Hoglund A, Hakkarainen M, Edlund U, et al. Surface modification changes the degradation process and degradation product pattern of polylactide [J]. Langmuir, 2010, 26(1): 378-383.
[161] Zhang Z, Cui H F. Biodegradability and biocompatibility study of poly(chitosan-g-lactic acid) scaffolds [J]. Molecules, 2012, 17(3): 3243-3258.
[162] Chen H M, Wang Y P, Chen J, et al. Hydrolytic degradation behavior of poly(L-lactide)/SiO2 composites [J]. Polymer Degradation and Stability, 2013, 98(12): 2672-2679.
[163] Ding L, Davidchack R L, Pan J. A molecular dynamics study of Young’s modulus change of semi-crystalline polymers during degradation by chain scissions [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 5(1): 224-230.
[164] Tsuji H, Ikada Y. Properties and morphology of poly(l-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly(l-lactide) in phosphate-buffered solution [J]. Polymer Degradation and Stability, 2000, 67(1): 179-189.
[165] Gleadall A. 9-Mechanical properties of biodegradable polymers for medical applications [M]. Woodhead Publishing, 2015: 163-199.
[166] Vert M, Li S, Garreau H, et al. Complexity of the hydrolytic degradation of aliphatic polyesters [J]. Angewandte Makromolekulare Chemie, 1997, 247(1): 239-253.
[167] Tsuji H, Saeki T, Tsukegi T, et al. Comparative study on hydrolytic degradation and monomer recovery of poly(l-lactic acid) in the solid and in the melt [J]. Polymer Degradation and Stability, 2008, 93(10): 1956-1963.
[168] Burkersroda F v, Schedl L, Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion [J]. Biomaterials, 2002, 23(21): 4221-4231.
[169] Ward I M. Mechanical properties of solid polymers [M]. Chichester: Wiley, 2012: 261-284.
修改评论