[1] Zhang S, Zhou Y, Zhang H, et al. Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications[J]. International Journal of Machine Tools and Manufacture, 2019, 142: 16-41.
[2] Baisch A T, Ozcan O, Goldberg B, et al. High speed locomotion for a quadrupedal microrobot[J]. The International Journal of Robotics Research, 2014, 33(8): 1063-1082.
[3] Gupta R K, Kumar V A, Mathew C, et al. Strain hardening of titanium alloy Ti6Al4V sheets with prior heat treatment and cold working[J]. Materials Science and Engineering: A, 2016, 662: 537-550.
[4] 刘广鑫, 张定华, 姚倡锋. 钛合金切削表层微观组织研究进展[J]. 机械工程学报, 2021, 57(15): 231-245.
[5] Chen S T, Jiang Z H. A force controlled grinding-milling technique for quartz-glass micromachining[J]. Journal of Materials Processing Technology, 2015, 216: 206-215.
[6] Chai P, Li S, Li Y. Modeling and experiment of the critical depth of cut at the ductile–brittle transition for a 4H-SiC single crystal[J]. Micromachines, 2019, 10(6): 382.
[7] 白基成, 刘晋春, 郭永丰, 等. 特种加工[M]. 北京:机械工业出版社, 2014: 1-7.
[8] 曲宁松, 刘洋, 张峻中, 等. 电解铣削加工技术研究进展及展望[J]. 电加工与模具, 2021, 2: 1-14.
[9] Uhlmann E, Piltz S, Doll U. Machining of micro/miniature dies and moulds by electrical discharge machining—recent development[J]. Journal of Materials Processing Technology, 2005, 167(2-3): 488-493.
[10] Abdo B M A, Anwar S, El-Tamimi A. Machinability study of biolox forte ceramic by milling microchannels using rotary ultrasonic machining[J]. Journal of Manufacturing Processes, 2019, 43: 175-191.
[11] Zhang R, Huang C, Wang J, et al. Micromachining of 4H-SiC using femtosecond laser[J]. Ceramics International, 2018, 44(15): 17775-17783.
[12] 徐家文, 云乃彰, 王建业, 等. 电化学加工技术:原理·工艺及应用[M]. 北京:国防工业出版社, 2008: 6-33.
[13] 张朝阳. 纳秒脉冲电流微细电解加工技术研究[D]. 南京: 南京航空航天大学, 2006: 27-30.
[14] Schuster R, Kirchner V, Allongue P, et al. Electrochemical micromachining[J]. Science, 2000, 289(5476): 98-101.
[15] Kock M, Kirchner V, Schuster R. Electrochemical micromachining with ultrashort voltage pulses–a versatile method with lithographical precision[J]. Electrochimica acta, 2003, 48(20-22): 3213-3219.
[16] Kim B H, Na C W, Lee Y S, et al. Micro electrochemical machining of 3D micro structure using dilute sulfuric acid[J]. CIRP annals, 2005, 54(1): 191-194.
[17] Kunieda M, Hayasaka A, Yang X D, et al. Study on nano EDM using capacity coupled pulse generator[J]. CIRP annals, 2007, 56(1): 213-216.
[18] Han W, Kunieda M. Fabrication of micro-rods with electrostatic induction feeding ECM[J]. Journal of Materials Processing Technology, 2016, 235: 92-104.
[19] Han W, Kunieda M. Wire electrochemical grinding of tungsten micro-rods using neutral electrolyte[J]. Precision Engineering, 2018, 52: 458-468.
[20] Han W, Kunieda M. Wire electrochemical grinding of tungsten micro-rod with electrostatic induction feeding method[J]. Procedia CIRP, 2018, 68: 699-703.
[21] Kim B H, Ryu S H, Choi D K, et al. Micro electrochemical milling[J]. Journal of Micromechanics and Microengineering, 2004, 15(1): 124-129.
[22] Liu Y, Zhu D, Zeng Y, et al. Development of microelectrodes for electrochemical micromachining[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(1): 195-203.
[23] Liu Y, Zhu D, Zhu L. Micro electrochemical milling of complex structures by using in situ fabricated cylindrical electrode[J]. The International Journal of Advanced Manufacturing Technology, 2012, 60(9): 977-984.
[24] Zhu D, Xu H Y. Improvement of electrochemical machining accuracy by using dual pole tool[J]. Journal of materials processing technology, 2002, 129(1-3): 15-18.
[25] Fang X L, Zhang P F, Zeng Y B, et al. Enhancement of performance of wire electrochemical micromachining using a rotary helical electrode[J]. Journal of Materials Processing Technology, 2016, 227: 129-137.
[26] Tsui H P, Hung J C, Wu K L, et al. Fabrication of a microtool in electrophoretic deposition for electrochemical microdrilling and in situ micropolishing[J]. Materials and Manufacturing Processes, 2011, 26(5): 740-745.
[27] Hu M H, Li Y, Yue Z, et al. Experimental study of Micro electrochemical milling with side-insulated electrode[C]//Applied Mechanics and Materials, Trans Tech Publications Ltd, 2012, 159: 127-131.
[28] 马宁, 李朋峻, 陈阳, 等. 管电极电解加工小孔实验研究[J]. 电加工与模具, 2018(A01): 33-36.
[29] Wang J, Chen W, Gao F, et al. A new electrode sidewall insulation method in electrochemical drilling[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1): 21-32.
[30] Park B J, Kim B H, Chu C N. The effects of tool electrode size on characteristics of micro electrochemical machining[J]. CIRP annals, 2006, 55(1): 197-200.
[31] Liu W, Luo Z, Yuan T, et al. The multi-physics analysis for a novel tool structure to improve the accuracy in electrochemical micro-machining[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5): 1991-2001.
[32] Liu G, Tong H, Li Y, et al. Novel structure of a sidewall-insulated hollow electrode for micro electrochemical machining[J]. Precision Engineering, 2021, 72: 356-369.
[33] Liu G, Li Y, Tong H. Fabrication of silicon electrodes used for micro electrochemical machining[J]. Journal of Micromechanics and Microengineering, 2020, 30(6): 065005.
[34] Liu G, Tong H, Shi H, et al. Fabrication of a tool electrode with hydrophobic features and its stray-corrosion suppression performance for micro-electrochemical machining[J]. Langmuir, 2022, 38(8): 2711-2719.
[35] Mishra K, Dey D, Sarkar B R, et al. Experimental investigation into electrochemical milling of Ti6Al4V[J]. Journal of Manufacturing Processes, 2017, 29: 113-123.
[36] Hinduja S, Pattavanitch J. Experimental and numerical investigations in electro-chemical milling[J]. CIRP Journal of Manufacturing Science and Technology, 2016, 12: 79-89.
[37] Ippolito R, Tornincasa S, Capello G, et al. Electron-jet drilling—basic involved phenomena[J]. CIRP Annals, 1981, 30(1): 87-90.
[38] Kozak J, Rajurkar K P, Balkrishna R. Study of electrochemical jet machining process[J]. Journal of Manufacturing Science and Engineering, 1996, 118: 490-498.
[39] Ali S, Hinduja S, Atkinson J, et al. Shaped tube electrochemical drilling of good quality holes[J]. CIRP annals, 2009, 58(1): 185-188.
[40] Yoneda K, Kunieda M. Numerical analysis of cross sectional shape of micro-indents formed by the electrochemical jet machining (ECJM)[J]. Journal of The Japan Society of Electrical Machining Engineers, 1995, 29(62): 1-8.
[41] Natsu W, Ikeda T, Kunieda M. Generating complicated surface with electrolyte jet machining[J]. Precision Engineering, 2007, 31(1): 33-39.
[42] Endo K, Natsu W. Proposal and verification of electrolyte suction tool with function of gap-width detection[J]. International Journal of Electrical Machining, 2014, 19: 34-39.
[43] Liu G, Zhang Y, Natsu W. Influence of electrolyte flow mode on characteristics of electrochemical machining with electrolyte suction tool[J]. International Journal of Machine Tools and Manufacture, 2019, 142: 66-75.
[44] Guo C, Qian J, Reynaerts D. Electrochemical machining with scanning micro electrochemical flow cell (SMEFC)[J]. Journal of Materials Processing Technology, 2017, 247: 171-183.
[45] Guo C, Qian J, Reynaerts D. A three-dimensional FEM model of channel machining by scanning micro electrochemical flow cell and jet electrochemical machining[J]. Precision Engineering, 2018, 52: 507-519.
[46] Nguyen M D, Rahman M, San Wong Y. Simultaneous micro-EDM and micro-ECM in low-resistivity deionized water[J]. International Journal of Machine Tools and Manufacture, 2012, 54: 55-65.
[47] Nguyen M D, Rahman M, San Wong Y. Modeling of radial gap formed by material dissolution in simultaneous micro-EDM and micro-ECM drilling using deionized water[J]. International Journal of Machine Tools and Manufacture, 2013, 66: 95-101.
[48] Nguyen M D, Rahman M, San Wong Y. Transitions of micro-EDM/SEDCM/micro-ECM milling in low-resistivity deionized water[J]. International Journal of Machine Tools and Manufacture, 2013, 69: 48-56.
[49] Nguyen M D, Rahman M, San Wong Y. Enhanced surface integrity and dimensional accuracy by simultaneous micro-ED/EC milling[J]. CIRP annals, 2012, 61(1): 191-194.
[50] Nastasi R, Koshy P. Analysis and performance of slotted tools in electrical discharge drilling[J]. CIRP Annals, 2014, 63(1): 205-208.
[51] Kurita T, Hattori M. A study of EDM and ECM/ECM-lapping complex machining technology[J]. International Journal of Machine Tools and Manufacture, 2006, 46(14): 1804-1810.
[52] Zeng Z, Wang Y, Wang Z, et al. A study of micro-EDM and micro-ECM combined milling for 3D metallic micro-structures[J]. Precision Engineering, 2012, 36(3): 500-509.
[53] 张彦. 微小孔电火花-电解复合加工基础研究[D]. 南京: 南京航空航天大学, 2016: 18-19.
[54] Zhang Y, Xu Z, Zhu D, et al. Tube electrode high-speed electrochemical discharge drilling using low-conductivity salt solution[J]. International Journal of Machine Tools and Manufacture, 2015, 92: 10-18.
[55] Zhang Y, Xu Z, Zhu Y, et al. Effect of tube-electrode inner structure on machining performance in tube-electrode high-speed electrochemical discharge drilling[J]. Journal of Materials Processing Technology, 2016, 231: 38-49.
[56] Zhang Y, Zhengyang X U, Yu W, et al. Surface-improvement mechanism of hybrid electrochemical discharge process using variable-amplitude pulses[J]. Chinese Journal of Aeronautics, 2020, 33(10): 2782-2793.
[57] Han Z, Fang X, Miao G, et al. Controllable electrochemical discharge machining with energy–electricity regulation in glycol-based electrolytes[J]. International Journal of Mechanical Sciences, 2023: 108161.
[58] Li C, Zhang B, Li Y, et al. Self-adjusting EDM/ECM high speed drilling of film cooling holes[J]. Journal of Materials Processing Technology, 2018, 262: 95-103.
[59] Datta M, Romankiw L T, Vigliotti D R, et al. Jet and Laser-Jet Electrochemical Micromachining of Nickel and Steel[J]. Journal of the Electrochemical Society, 1989, 136(8): 2251-2256.
[60] DeSilva A K M, Pajak P T, Harrison D K, et al. Modelling and experimental investigation of laser assisted jet electrochemical machining[J]. CIRP Annals, 2004, 53(1): 179-182.
[61] Saxena K K, Qian J, Reynaerts D. A tool-based hybrid laser-electrochemical micromachining process: Experimental investigations and synergistic effects[J]. International Journal of Machine Tools and Manufacture, 2020, 155: 103569.
[62] Liu Y Z. Coaxial waterjet-assisted laser drilling of film cooling holes in turbine blades[J]. International Journal of Machine Tools and Manufacture, 2020, 150: 103510.
[63] Wang Y, Yang F, Zhang G, et al. Fabrication of deep and small holes by synchronized laser and shaped tube electrochemical machining (Laser-STEM) hybrid process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(5): 2721-2731.
[64] Yang Y, Wang Y, Gui Y, et al. Improving performance of laser and shaped tube electrochemical machining by using retracted hybrid tubular tool electrode[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(5): 1779-1791.
[65] Duan W, Mei X, Fan Z, et al. Electrochemical corrosion assisted laser drilling of micro-hole without recast layer[J]. Optik, 2020, 202: 163577.
[66] 王明环, 吕明, 何凯磊, 等. 超声辅助微细电解加工间隙空化微射流对材料蚀除影响的研究[J]. 兵工学报, 2022: 1-11.
[67] 李晶, 陈湾湾, 朱永伟. 超声振动辅助电解加工成形规律研究及试验[J]. 现代制造工程, 2020(8): 13-19.
[68] Natsu W, Nakayama H, Yu Z. Improvement of ECM characteristics by applying ultrasonic vibration[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13 (7): 1131-1136.
[69] Zhu X, Liu Y, Zhang J, et al. Ultrasonic-assisted electrochemical drill-grinding of small holes with high-quality[J]. Journal of advanced research, 2020, 23: 151-161.
[70] Kong H, Liu Y, Zhu X, et al. Study on ultrasonic assisted electrochemical drill-grinding of superalloy[J]. Chemosensors, 2020, 8(3): 62.
[71] Li M, Liu Y, Ling S, et al. Theoretical and experimental study on micro ultrasonic-assisted electrochemical drilling with high speed electrode[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1): 815-826.
[72] Yang I, Park M S, Chu C N. Micro ECM with ultrasonic vibrations using a semi-cylindrical tool[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(2): 5-10.
[73] 王栋栋. 纯铝微弧氧化膜生长机制及耐蚀性能研究[D]. 河北:燕山大学, 2021: 1-3.
[74] Clyne T W, Troughton S C. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals[J]. International materials reviews, 2019, 64(3): 127-162.
[75] Parfenov E V, Yerokhin A, Nevyantseva R R, et al. Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling[J]. Surface and Coatings Technology, 2015, 269: 2-22.
[76] Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering[J]. Surface and coatings technology, 1999, 122(2-3): 73-93.
[77] Güntherschulze A, Betz H. Neue Untersuchungen über die elektrolytische Ventilwirkung[J]. Zeitschrift für Physik, 1931, 68(3): 145-161.
[78] Wang D D, Liu X T, Su Y, et al. Influences of edge effect on microstructure and corrosion behaviour of PEO coating[J]. Surface Engineering, 2020, 36(2): 184-191.
[79] Wang X, Lu X, Ju P, et al. Thermal control property and corrosion resistance of PEO coatings on AZ91 Mg alloy[J]. Surface and Coatings Technology, 2020, 393: 125709.
[80] Venkateswarlu K, Rameshbabu N, Sreekanth D, et al. Role of electrolyte chemistry on electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti[J]. Electrochimica Acta, 2013, 105: 468-480.
[81] Stojadinović S, Tadić N, Vasilić R. Formation and characterization of ZnO films on zinc substrate by plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2016, 307: 650-657.
[82] Stojadinović S, Jovović J, Petković M, et al. Spectroscopic and real-time imaging investigation of tantalum plasma electrolytic oxidation (PEO)[J]. Surface and Coatings Technology, 2011, 205(23-24): 5406-5413.
[83] Huang Y, Wang C, Ding F, et al. Principle, process, and application of metal plasma electrolytic polishing: a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(7): 1893-1912.
[84] Zhou C, Su H, Qian N, et al. Characteristics and function of vapour gaseous envelope fluctuation in plasma electrolytic polishing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(11): 7815-7825.
[85] Belkin P N, Kusmanov S A, Parfenov E V. Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces[J]. Applied Surface Science Advances, 2020, 1: 100016.
[86] Wang J, Suo L C, Guan L L, et al. Analytical study on mechanism of electrolysis and plasma polishing[C]//Advanced Materials Research, Trans Tech Publications Ltd, 2012, 472: 350-353.
[87] Vana D, Podhorsky S, Hurajt M, et al. Surface properties of the stainless steel X10 CrNi 18/10 after aplication of plasma polishing in electrolyte[J]. International Journal of Modern Engineering Research, 2013, 3: 788-792.
[88] Böttger-Hiller F, Nestler K, Zeidler H, et al. Plasma electrolytic polishing of metalized carbon fibers[J]. AIMS Materials Science, 2016, 3: 260-269.
[89] Duradji V N, Kaputkin D E, Duradji A Y. Aluminum Treatment in the Electrolytic Plasma During the Anodic Process[J]. Journal of Engineering Science & Technology Review, 2017, 10(3): 81-84.
[90] Smyslova M K, Tamindarov D R, Plotnikov N V, et al. Surface electrolytic-plasma polishing of Ti-6Al-4V alloy with ultrafine-grained structure produced by severe plastic deformation[C]//IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, 461(1): 012079.
[91] Zeidler H, Boettger-Hiller F, Edelmann J, et al. Surface finish machining of medical parts using plasma electrolytic polishing[J]. Procedia CIRP, 2016, 49: 83-87.
[92] Nestler K, Böttger-Hiller F, Adamitzki W, et al. Plasma electrolytic polishing–an overview of applied technologies and current challenges to extend the polishable material range[J]. Procedia Cirp, 2016, 42: 503-507.
[93] Cornelsen M, Deutsch C, Seitz H. Electrolytic plasma polishing of pipe inner surfaces[J]. Metals, 2017, 8(1): 12.
[94] Radkevich M M, Kuzmichev I S. Technological principles of internal surfaces finishing by forced electrolytic-plasma polishing[C]//Key Engineering Materials: volume 822. Trans Tech Publ, 2019: 634-639.
[95] Löber L, Flache C, Petters R, et al. Comparison of different post processing technologies for SLM generated 316l steel parts[J]. Rapid Prototyping Journal, 2013, 19(3): 173-179.
[96] Yang L, Laugel N, Housden J, et al. Plasma additive layer manufacture smoothing (PALMS) technology–An industrial prototype machine development and a comparative study on both additive manufactured and conventional machined AISI 316 stainless steel[J]. Additive Manufacturing, 2020, 34: 101204.
[97] Seo B, Park H K, Kim H G, et al. Corrosion behavior of additive manufactured CoCr parts polished with plasma electrolytic polishing[J]. Surface and Coatings Technology, 2021, 406: 126640.
[98] 邓舜杰, 蒋驰, 刘天伟,等. 阴极等离子体电沉积陶瓷涂层的研究现状[J]. 电镀与涂饰, 2018, 37(3): 147-154.
[99] Rakhadilov B K, Buranich V V, Satbayeva Z A, et al. The cathodic electrolytic plasma hardening of the 20Cr2Ni4A chromium-nickel steel[J]. Journal of Materials Research and Technology, 2020, 9(4): 6969-6976.
[100] Béjar M A, Henríquez R. Surface hardening of steel by plasma-electrolysis boronizing[J]. Materials & design, 2009, 30(5): 1726-1728.
[101] Huang J, Zhu J, Fan X, et al. Preparation of MoS2-Ti (C, N)-TiO2 coating by cathodic plasma electrolytic deposition and its tribological properties[J]. Surface and Coatings Technology, 2018, 347: 76-83.
[102] 吕宪义, 金曾孙, 吴汉华, 等. 阴/阳极电流密度对铝合金微弧氧化陶瓷膜特性的影响[J]. 吉林大学学报:理学版, 2005, 43(1): 64-67.
[103] 刘元刚, 张巍, 李久青,等. AZ91D铸造镁合金交流脉冲双极微弧电沉积陶瓷膜[J]. 北京科技大学学报, 2004, 26(1): 73-77.
[104] Aronsson B O, Lausmaa J, Kasemo B. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials[J]. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 1997, 35(1): 49-73.
[105] Yerokhin A, Pilkington A, Matthews A. Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel[J]. Journal of Materials Processing Technology, 2010, 210(1): 54-63.
[106] Sarrafi R, Kovacevic R. Cathodic cleaning of oxides from aluminum surface by variable-polarity arc[J]. Welding journal, 2010, 89(1): 1-10.
[107] Lin A D, Kung C L, Hsieh W C, et al. Study on cleaning the surface of stainless steel 316 using plasma electrolysis technology[J]. Applied Sciences, 2018, 8(7): 1060.
[108] Kurafuji H. Electrical discharge drilling of glass[J]. Annals of the CIRP, 1968, 16: 415-419.
[109] Ph R, Masuzawa T. Micro electrochemical discharge machining of glass[J]. International journal of electrical machining, 1998, 3: 65-69.
[110] Crichton I M, McGeough J A. Studies of the discharge mechanisms in electrochemical arc machining[J]. Journal of applied electrochemistry, 1985, 15(1): 113-119.
[111] Tandon S, Jain V K, Kumar P, et al. Investigations into machining of composites[J]. Precision engineering, 1990, 12(4): 227-238.
[112] Abou Ziki J D, Hof L A, Wüthrich R. The machining temperature during spark assisted chemical engraving of glass[J]. Manufacturing Letters, 2015, 3: 9-13.
[113] Wüthrich R, Fascio V. Machining of non-conducting materials using electrochemical discharge phenomenon—an overview[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9): 1095-1108.
[114] Abou Ziki J D, Wüthrich R. Tool wear and tool thermal expansion during micro-machining by spark assisted chemical engraving[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61(5): 481-486.
[115] Fascio V, Wüthrich R, Bleuler H. Spark assisted chemical engraving in the light of electrochemistry[J]. Electrochimica Acta, 2004, 49(22-23): 3997-4003.
[116] Hof L A, Wüthrich R. Industry 4.0–Towards fabrication of mass-personalized parts on glass by Spark Assisted Chemical Engraving (SACE)[J]. Manufacturing Letters, 2018, 15: 76-80.
[117] Jiang B, Lan S, Wilt K, et al. Modeling and experimental investigation of gas film in micro-electrochemical discharge machining process[J]. International Journal of Machine Tools and Manufacture, 2015, 90: 8-15.
[118] Zou Z, Guo Z, Zhang K, et al. Electrochemical discharge machining of microchannels in glass using a non-Newtonian fluid electrolyte[J]. Journal of Materials Processing Technology, 2022, 305: 117594.
[119] Laio Y S, Wu L C, Peng W Y. A study to improve drilling quality of electrochemical discharge machining (ECDM) process[J]. Procedia CIRP, 2013, 6: 609-614.
[120] Wüthrich R, Hof L A. The gas film in spark assisted chemical engraving (SACE)—a key element for micro-machining applications[J]. International Journal of Machine Tools and Manufacture, 2006, 46(7-8): 828-835.
[121] Cheng C P, Wu K L, Mai C C, et al. Study of gas film quality in electrochemical discharge machining[J]. International Journal of Machine Tools and Manufacture, 2010, 50(8): 689-697.
[122] Kolhekar K R, Sundaram M. Study of gas film characterization and its effect in electrochemical discharge machining[J]. Precision Engineering, 2018, 53: 203-211.
[123] Razfar M R, Behroozfar A, Ni J. Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass[J]. Precision Engineering, 2014, 38(4): 885-892.
[124] Xu Y, Chen J, Jiang B, et al. Experimental investigation of magnetohydrodynamic effect in electrochemical discharge machining[J]. International Journal of Mechanical Sciences, 2018, 142: 86-96.
[125] Cheng C P, Wu K L, Mai C C, et al. Magnetic field-assisted electrochemical discharge machining[J]. Journal of Micromechanics and Microengineering, 2010, 20(7): 075019.
[126] He S, Tong H, Liu G. Spark assisted chemical engraving (SACE) mechanism on ZrO2 ceramics by analyzing processed products[J]. Ceramics International, 2018, 44(7): 7967-7971.
[127] Ji B, Tong H, Li J, et al. Scanning process of spark assisted chemical engraving (SACE) on ZrO2 ceramics by constraining discharges to tool electrode end[J]. Ceramics International, 2020, 46(2): 1433-1441.
[128] Tang W, Kang X, Zhao W, et al. Discharge characteristics in electrochemical discharge machining of ceramic-coated Ni-superalloy[J]. Procedia CIRP, 2020, 95: 737-742.
[129] Cao X D, Kim B H, Chu C N. Micro-structuring of glass with features less than 100 μm by electrochemical discharge machining[J]. Precision Engineering, 2009, 33(4): 459-465.
[130] Mehrabi F, Farahnakian M, Elhami S, et al. Application of electrolyte injection to the electro-chemical discharge machining (ECDM) on the optical glass[J]. Journal of Materials Processing Technology, 2018, 255: 665-672.
[131] Arya R K, Dvivedi A. Investigations on quantification and replenishment of vaporized electrolyte during deep micro-holes drilling using pressurized flow-ECDM process[J]. Journal of Materials Processing Technology, 2019, 266: 217-229.
[132] Kuo K Y, Wu K L, Yang C K, et al. Wire electrochemical discharge machining (WECDM) of quartz glass with titrated electrolyte flow[J]. International Journal of Machine Tools and Manufacture, 2013, 72: 50-57.
[133] Liu Y, Wei Z, Wang M, et al. Experimental investigation of micro wire electrochemical discharge machining by using a rotating helical tool[J]. Journal of Manufacturing processes, 2017, 29: 265-271.
[134] Wang J, Jia Z, Guo Y B. Shape-cutting of quartz glass by spark discharge-assisted diamond wire sawing[J]. Journal of Manufacturing Processes, 2018, 34: 131-139.
[135] Oza A D, Kumar A, Badheka V. Improving quartz micro-machining performance by magnetohydrodynamic and zinc-coated assisted traveling wire-electrochemical discharge machining process[J]. Materials today: proceedings, 2020, 28: 970-976.
[136] 菅井秀郎, 张海波, 张丹. 等离子体电子工程学[M]. 北京:科学出版社, 2002: 68-72.
[137] National Institute of Standards and Technology. Gaithersburg, MD. DOI:https://doi.org/10.18434/T4W30F.
[138] Yin X, Li S, Ma G, et al. Investigation of oxidation mechanism of SiC single crystal for plasma electrochemical oxidation[J]. RSC advances, 2021, 11(44): 27338-27345.
[139] Zhou Y, Pan G, Shi X, et al. XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP)[J]. Applied surface science, 2014, 316: 643-648.
[140] Sugita T, Hiramatsu K, Ikeda S, et al. Fabrication of pores in a silicon carbide wafer by electrochemical etching with a glassy-carbon needle electrode[J]. ACS Applied Materials & Interfaces, 2013, 5(7): 2580-2584.
[141] Katsuno M, Ohtani N, Takahashi J, et al. Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation[J]. Japanese journal of applied physics, 1999, 38(8): 4661-4665.
[142] Abou Ziki J D, Didar T F, Wüthrich R. Micro-texturing channel surfaces on glass with spark assisted chemical engraving[J]. International Journal of Machine Tools and Manufacture, 2012, 57: 66-72.
[143] Kumagawa M, Kuwabara H, Yamada S. Hydrogen etching of silicon carbide[J]. Japanese journal of applied physics, 1969, 8(4): 421-428.
[144] Ramachandran V, Brady M F, Smith A R, et al. Preparation of atomically flat surfaces on silicon carbide using hydrogen etching[J]. Journal of Electronic Materials, 1998, 27(4): 308-312.
[145] Zhang Y, Li Z, Kim P, et al. Anisotropic hydrogen etching of chemical vapor deposited graphene[J]. ACS nano, 2012, 6(1): 126-132.
[146] Jalali M, Maillard P, Wüthrich R. Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges[J]. Journal of Micromechanics and Microengineering, 2009, 19(4): 045001.
[147] Rosenbloom A J, Sipe D M, Shishkin Y, et al. Nanoporous SiC: A candidate semi-permeable material for biomedical applications[J]. Biomedical microdevices, 2004, 6(4): 261-267.
[148] Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. science, 2001, 293(5533): 1289-1292.
[149] Jian J X, Jokubavicius V, Syväjärvi M, et al. Nanoporous cubic silicon carbide photoanodes for enhanced solar water splitting[J]. ACS nano, 2021, 15(3): 5502-5512.
[150] Jeon H J, Kim K H, Baek Y K, et al. New top-down approach for fabricating high-aspect-ratio complex nanostructures with 10 nm scale features[J]. Nano letters, 2010, 10(9): 3604-3610.
[151] Nojiri K. Dry etching technology for semiconductors[M]. Cham: Springer International Publishing, 2015: 6-9.
[152] Xiao J, Zhao J, Liu G, et al. Stable field emission from vertically oriented SiC nanoarrays[J]. Nanomaterials, 2021, 11(11): 3025.
[153] Kumaravelu G, Alkaisi M M, Bittar A, et al. Damage studies in dry etched textured silicon surfaces[J]. Current Applied Physics, 2004, 4(2-4): 108-110.
[154] Zhuang D, Edgar J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.
[155] Lee J M, Lee K S, Park S J. Removal of dry etch damage in p-type GaN by wet etching of sacrificial oxide layer[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(2): 479-482.
[156] Michaels J A, Janavicius L, Wu X, et al. Producing silicon carbide micro and nanostructures by plasma-free metal-assisted chemical etching[J]. Advanced Functional Materials, 2021, 31(32): 2103298.
[157] Chen Y, Zhang C, Li L, et al. Hybrid anodic and metal-assisted chemical etching method enabling fabrication of silicon carbide nanowires[J]. Small, 2019, 15(7): 1803898.
[158] Gautier G, Biscarrat J, Valente D, et al. Systematic study of anodic etching of highly doped N-type 4H-SiC in various HF based electrolytes[J]. Journal of The Electrochemical Society, 2013, 160(9): 372-379.
[159] Van Dorp D H, Sattler J, Den Otter J H, et al. Electrochemistry of anodic etching of 4H and 6H–SiC in fluoride solution of pH 3[J]. Electrochimica acta, 2009, 54(26): 6269-6275.
[160] Shishkin Y, Choyke W J, Devaty R P. Photoelectrochemical etching of n-type 4H silicon carbide[J]. Journal of applied physics, 2004, 96(4): 2311-2322.
[161] Kuo Y H, Lee Y K, Ge Y, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon[J]. Nature, 2005, 437(7063): 1334-1336.
[162] Konstantinov A O, Harris C I, Janzen E. Electrical properties and formation mechanism of porous silicon carbide[J]. Applied physics letters, 1994, 65(21): 2699-2701.
[163] Fan Z W, Hourng L W, Wang C Y. Fabrication of tungsten microelectrodes using pulsed electrochemical machining[J]. Precision Engineering, 2010, 34(3): 489-496.
[164] Ghoshal B, Bhattacharyya B. Influence of vibration on micro-tool fabrication by electrochemical machining[J]. International Journal of Machine Tools and Manufacture, 2013, 64(1): 49-59.
[165] Fan Z W, Hourng L W. The analysis and investigation on the microelectrode fabrication by electrochemical machining[J]. International Journal of Machine Tools & Manufacture, 2009, 49(7-8): 659-666.
[166] Wang Y, Zeng Y, Qu N, et al. Fabrication of sub-micro spherical probes by liquid membrane pulsed electrochemical etching[J]. Journal of Materials Processing Tech, 2016, 231: 171-178.
[167] Ge Y, Zhang W, Chen Y L, et al. A reproducible electropolishing technique to customize tungsten SPM probe: From mathematical modeling to realization[J]. Journal of Materials Processing Tech, 2013, 213(1): 11-19.
[168] Song F, Ma L, Fan J, et al. Electro-wetting of a nanoscale water droplet on a polar solid surface in electric fields[J]. Physical Chemistry Chemical Physics, 2018, 20(17): 11987-11993.
[169] Pajak P, Desilva A K, Harrison D K, et al. Precision and efficiency of laser assisted jet electrochemical machining[J]. Precision Engineering, 2006, 30(3): 288-298.
[170] Gupta P, Tenhundfeld G, Daigle E, et al. Electrolytic plasma technology: Science and engineering—An overview[J]. Surface and Coatings Technology, 2007, 201(21): 8746-8760.
[171] Xu Z, Chen X, Zhou Z, et al. Electrochemical machining of high-temperature titanium alloy Ti60[J]. Procedia CIRP, 2016, 42: 125-130.
[172] Chen X, Ye Z, Li G, et al. Electrochemical milling of deep-narrow slots with a pulsating electrolyte flow field[J]. CIRP Journal of Manufacturing Science and Technology, 2022, 39: 244-260.
[173] Wang X, Qu N, Fang X, et al. Electrochemical drilling with constant electrolyte flow[J]. Journal of Materials Processing Technology, 2016, 238: 1-7.
修改评论