中文版 | English
题名

阴极等离子体辅助微细电解加工方法与机理研究

其他题名
RESEARCH ON THE METHOD AND MECHANISM OF CATHODIC PLASMA- ASSISTED ELECTROCHEMICAL MICROMACHINING
姓名
姓名拼音
ZHAN Shunda
学号
11949030
学位类型
博士
学位专业
085272 先进制造
学科门类/专业学位类别
0852 工程博士
导师
赵永华
导师单位
机械与能源工程系
论文答辩日期
2023-04-17
论文提交日期
2023-06-19
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

微细电解加工技术在难加工材料高品质表面微结构加工中具有重要应用,具有无接触、工具电极无损耗和无亚表面损伤等优点。但是,受限于流场、电场的不均匀性和工件材料的化学性质,微细电解加工存在侧向杂散腐蚀、材料去除率低、极间传质困难,以及化学惰性材料难加工等问题。

针对微细电解加工中存在的问题,本研究提出一种阴极等离子体辅助微细电解加工方法,该方法在常规微细电解加工中引入阴极等离子体,实现等离子体-电解能场耦合。以深入揭示阴极等离子体辅助微细电解加工技术原理及特性为目的,本文对阴极等离子体稳定产生机制、气泡-等离子体行为、放电等离子体理化特性及调控方法、阴极等离子体-电解能场耦合方法及加工特性等展开深入研究。

本研究使用高速摄影仪和红外摄像机对加工区域进行可视化观测,分析后得出工具电极之外分别是气膜、离散气泡和电解液。气膜在高电场强度下被击穿形成放电等离子体,放电发射光照射在工具电极周围的气泡上,形成等离子体照亮区域。放电等离子体区域及气膜厚度较薄约0.1 mm,但等离子体照亮区域可以达到1 mm以上。放电等离子体行为受电源脉冲信号调控,脉冲宽度< 3 μs时,等离子体无法被诱导。脉冲幅值影响放电等离子体能量,幅值越大放电能量越高,但是当电压幅值过大时加工机制会转变为火花放电,导致极间间隙被击穿。脉冲宽度影响等离子体能量和稳定性,随着脉冲宽度增大,等离子体强度及直径均增大。调节脉冲占空比可调控阴极放电的热累积和冷却效果,脉冲占空比越高等离子体电离越充分。提高脉冲频率能将放电过程离散化,得到安定、温和的等离子体,有利于提高加工精度和稳定性。

微细电解加工中工具电极表面诱导产生的气膜/等离子体膜具有侧壁绝缘效应,能保证在高加工电压下不会恶化电解加工精度。并且,诱导的气泡流冲刷及放电等离子体热膨胀能促进电解产物从加工间隙内排出,从而实现在无冲液条件下获到高加工表面质量。另一方面,放电等离子体产生的能量能提高电解液温度,从而提高电解液电导率并活化工件表面,实现原位热促进电解加工。

通过脉冲优化可控制阴极等离子体行为机制,更好的实现等离子体-电解的协同耦合。本文提出了双极性脉冲诱导阴极等离子体辅助电解加工技术,在负极性时诱导产生等离子体,进而促进正极性时的阳极溶解效率。基于此方法成功在5 s内将初始直径为200 μm的微棒加工至18 μm,加工效率达到36.4 μm/s,并且微棒长径比达到55:1。进一步地,提出了高低压复合脉冲波形诱导阴极等离子体辅助微细电解加工技术。高脉冲电压时诱导的等离子体和气泡能形成一种激发式流场环境,从而快速排出加工产物,保证已加工表面光滑。等离子体膜和气膜作为高阻态介质在工具电极表面形成侧壁绝缘,从而屏蔽杂散电场,最终实现了异形轴和工件表面微结构加工。

另一方面,针对半导体单晶碳化硅(SiC)材料绿色加工问题,验证了阴极等离子体-电解耦合可在碱性溶液下刻蚀SiC。等离子体具有强氧化性,包含大量自由基离子,同时结合等离子体热辐射,能对SiC表面进行快速氧化,而生成的氧化物在高温碱性溶液中能被快速刻蚀。基于该方法,实现了直径220 μm,深度350 μmSiC微通孔加工。并且,针对SiC表面纳米多孔结构刻蚀,提出并验证了阴极等离子体平扫刻蚀技术。通过调控等离子体作用到工件表面的强度以及电解液的循环速度,实现了纳米多孔孔径、密度可调加工。其中,在参数优化后,最大刻蚀速率和最大刻蚀深度分别达到540 nm/min10 μm

为解决阴极等离子体诱导过程中剧烈气体析出导致加工区缺液问题,本文提出基于管电极内冲液的阴极等离子体辅助微细电解加工技术,并对内冲液环境下的等离子体诱导原理、调控方法及其对微细电解加工过程的影响进行了研究。通过中空工具电极向加工区提供电解液,从而避免加工区缺液。并且,电极端面剧烈析出的气体能隔离其与电解液接触,从而在水下环境营造出气体-液体界面,使电流密度在射流内呈高斯分布,即在水下环境达到近似于空气中射流电解加工的效果。利用内冲液阴极等离子体辅助微细电解加工方法,实现了表面微结构的高品质加工。进一步地,在工具电极进给条件下,实现入口直径980 μm,出口直径750 μm,深径比5.1:1的深小孔加工,并且孔侧壁无重铸层。

其他摘要

Electrochemical micromachining (micro-ECM) has essential applications in fabricating high-surface quality microstructures in difficult-to-process materials. Its unique advantages include no tool wear, no surface damage, and no contact, etc. Meanwhile, further development of micro-ECM technology meets challenges in avoiding lateral stray corrosion, improving material removal rate, enhancing mass transfer in the small inter-electrode gap, and achieving processing of chemically inert materials.

To solve the problems presented in micro-ECM, a cathodic plasma-assisted micro-ECM method was proposed in this research, which introduced cathodic plasma into the conventional micro-ECM to realize the coupling of plasma and electrochemical reaction. Investigations were conducted on the plasma generation mechanism, bubble and plasma behavior, and the interaction between electrical parameters and plasma physicochemical properties. Further, the optimal coupling method and machining characteristics under the application of cathodic plasma are studied in-depth to reveal the principle and mechanisms of cathodic plasma-assisted micro-ECM.

Direct observation of the machining area by a high-speed camera and infrared camera shows that the gas film, discrete air bubbles, and electrolytes are arranged in sequence around the electrode. The gas film is broken down under high electric field strength, forming a discharge plasma. The light emitted by the discharge irradiates the bubbles around the tool electrode, creating a plasma-illuminated area. The thickness of the discharge plasma layer is about 0.1 mm, but the plasma-illuminated area reaches > 1 mm. The power pulse signal regulates the discharge plasma behavior, and the plasma cannot be ignited when the pulse width is < 3 μs. The pulse amplitude affects the discharge plasma energy. The larger the amplitude, the higher the discharge energy. However, when the applied voltage amplitude is too large, the discharge mechanism transforms into spark discharge by directly breaking the gap between electrodes. The pulse width affects the plasma energy and stability. As the pulse width increases, the plasma intensity and diameter increase. The cooling effect of cathodic discharge can be adjusted by pulse duty ratio, and a high pulse duty ratio leads to sufficient ionization. Meanwhile, increasing the pulse frequency can interrupt the discharge process and obtain a stable and mild discharge plasma, which improves the machining accuracy and stability.

The gas/plasma film induced on the tool electrode surface has the characteristics of a sidewall insulation effect, which can ensure the machining accuracy of micro-ECM at high machining voltages. Moreover, the induced dynamic bubble flow and plasma expansion can promote the removal of electrolytic products in the small machining gap, achieving high machined surface quality even without flushing. In addition, the energy generated by the discharge plasma can increase the electrolyte temperature, thus increasing the conductivity of the electrolyte and activating the workpiece surface to realize in-situ thermal promoted ECM.

The cathodic plasma can be controlled by applied pulse waveform to optimize the synergistic coupling effect of plasma-electrolysis. In this research, a bipolar pulse waveform is applied to cathodic plasma-assisted ECM, which generates plasma in negative pulse to promote the anodic dissolution in the subsequent positive pulse. Based on this method, a micro-rod with a diameter of 18 μm and an aspect ratio of 55:1 was successfully fabricated within 5 s from the initial diameter of 200 μm, achieving a maximum machining efficiency of 36.4 μm/s. Further, a high- and low-voltage hybrid waveform is designed to realize cathodic plasma-assisted micro-ECM. Plasma and bubbles induced by the high voltage pulse form a self-excited flow field, efficiently removing the electrolytic products and ensuring the smoothness of the machined surface. In addition, the gas/plasma film of high resistance forms a sidewall insulation effect on the tool electrode surface, shielding stray currents. Finally, the structured micro-rod and the microstructure can be fabricated.

On the other hand, it is verified that the cathodic electrolytic plasma can achieve the machining of SiC single crystal in an alkaline solution, implying the plasma's strong oxidation capacity due to its high temperature and many free radical ions. The generated oxides are etched in the high-temperature alkaline solution caused by plasma. A micro-hole with a diameter of 220 μm and depth of 350 μm is fabricated on the SiC surface. Further, the cathodic plasma assisted-etching method effectively fabricates nanoporous structured SiC by scanning the cathode tool. Adjustment of nanoporous structure is realized by controlling the plasma intensity and the tool scanning speed. The achievable maximum etching rate and etching depth are 540 nm/min and 10 μm, respectively.

The cathodic gas and plasma formation can occupy the entire machining gap, causing a severe lack of electrolytes for ECM. To solve this problem, a tube electrode enabling internal supplying, i.e., flushing, of electrolytes to the machining area is applied. The plasma ignition principle and control method under tube electrode conditions is analyzed. The violently generated plasma gas on the end surface of the electrode can isolate the electrode from contacting the electrolyte, confining the current distribution inside the electrolyte jet and realizing a process environment similar to electrochemical jet machining in air. Based on this method, microstructures with high surface quality can be fabricated. With tool electrode feeding, a deep micro-hole can be machined with an inlet diameter of 980 μm, outlet diameter of 750 μm, and a depth-to-diameter ratio of 5.1:1. Meanwhile, no recast layer presents on the hole sidewall.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] Zhang S, Zhou Y, Zhang H, et al. Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications[J]. International Journal of Machine Tools and Manufacture, 2019, 142: 16-41.
[2] Baisch A T, Ozcan O, Goldberg B, et al. High speed locomotion for a quadrupedal microrobot[J]. The International Journal of Robotics Research, 2014, 33(8): 1063-1082.
[3] Gupta R K, Kumar V A, Mathew C, et al. Strain hardening of titanium alloy Ti6Al4V sheets with prior heat treatment and cold working[J]. Materials Science and Engineering: A, 2016, 662: 537-550.
[4] 刘广鑫, 张定华, 姚倡锋. 钛合金切削表层微观组织研究进展[J]. 机械工程学报, 2021, 57(15): 231-245.
[5] Chen S T, Jiang Z H. A force controlled grinding-milling technique for quartz-glass micromachining[J]. Journal of Materials Processing Technology, 2015, 216: 206-215.
[6] Chai P, Li S, Li Y. Modeling and experiment of the critical depth of cut at the ductile–brittle transition for a 4H-SiC single crystal[J]. Micromachines, 2019, 10(6): 382.
[7] 白基成, 刘晋春, 郭永丰, 等. 特种加工[M]. 北京:机械工业出版社, 2014: 1-7.
[8] 曲宁松, 刘洋, 张峻中, 等. 电解铣削加工技术研究进展及展望[J]. 电加工与模具, 2021, 2: 1-14.
[9] Uhlmann E, Piltz S, Doll U. Machining of micro/miniature dies and moulds by electrical discharge machining—recent development[J]. Journal of Materials Processing Technology, 2005, 167(2-3): 488-493.
[10] Abdo B M A, Anwar S, El-Tamimi A. Machinability study of biolox forte ceramic by milling microchannels using rotary ultrasonic machining[J]. Journal of Manufacturing Processes, 2019, 43: 175-191.
[11] Zhang R, Huang C, Wang J, et al. Micromachining of 4H-SiC using femtosecond laser[J]. Ceramics International, 2018, 44(15): 17775-17783.
[12] 徐家文, 云乃彰, 王建业, 等. 电化学加工技术:原理·工艺及应用[M]. 北京:国防工业出版社, 2008: 6-33.
[13] 张朝阳. 纳秒脉冲电流微细电解加工技术研究[D]. 南京: 南京航空航天大学, 2006: 27-30.
[14] Schuster R, Kirchner V, Allongue P, et al. Electrochemical micromachining[J]. Science, 2000, 289(5476): 98-101.
[15] Kock M, Kirchner V, Schuster R. Electrochemical micromachining with ultrashort voltage pulses–a versatile method with lithographical precision[J]. Electrochimica acta, 2003, 48(20-22): 3213-3219.
[16] Kim B H, Na C W, Lee Y S, et al. Micro electrochemical machining of 3D micro structure using dilute sulfuric acid[J]. CIRP annals, 2005, 54(1): 191-194.
[17] Kunieda M, Hayasaka A, Yang X D, et al. Study on nano EDM using capacity coupled pulse generator[J]. CIRP annals, 2007, 56(1): 213-216.
[18] Han W, Kunieda M. Fabrication of micro-rods with electrostatic induction feeding ECM[J]. Journal of Materials Processing Technology, 2016, 235: 92-104.
[19] Han W, Kunieda M. Wire electrochemical grinding of tungsten micro-rods using neutral electrolyte[J]. Precision Engineering, 2018, 52: 458-468.
[20] Han W, Kunieda M. Wire electrochemical grinding of tungsten micro-rod with electrostatic induction feeding method[J]. Procedia CIRP, 2018, 68: 699-703.
[21] Kim B H, Ryu S H, Choi D K, et al. Micro electrochemical milling[J]. Journal of Micromechanics and Microengineering, 2004, 15(1): 124-129.
[22] Liu Y, Zhu D, Zeng Y, et al. Development of microelectrodes for electrochemical micromachining[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(1): 195-203.
[23] Liu Y, Zhu D, Zhu L. Micro electrochemical milling of complex structures by using in situ fabricated cylindrical electrode[J]. The International Journal of Advanced Manufacturing Technology, 2012, 60(9): 977-984.
[24] Zhu D, Xu H Y. Improvement of electrochemical machining accuracy by using dual pole tool[J]. Journal of materials processing technology, 2002, 129(1-3): 15-18.
[25] Fang X L, Zhang P F, Zeng Y B, et al. Enhancement of performance of wire electrochemical micromachining using a rotary helical electrode[J]. Journal of Materials Processing Technology, 2016, 227: 129-137.
[26] Tsui H P, Hung J C, Wu K L, et al. Fabrication of a microtool in electrophoretic deposition for electrochemical microdrilling and in situ micropolishing[J]. Materials and Manufacturing Processes, 2011, 26(5): 740-745.
[27] Hu M H, Li Y, Yue Z, et al. Experimental study of Micro electrochemical milling with side-insulated electrode[C]//Applied Mechanics and Materials, Trans Tech Publications Ltd, 2012, 159: 127-131.
[28] 马宁, 李朋峻, 陈阳, 等. 管电极电解加工小孔实验研究[J]. 电加工与模具, 2018(A01): 33-36.
[29] Wang J, Chen W, Gao F, et al. A new electrode sidewall insulation method in electrochemical drilling[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1): 21-32.
[30] Park B J, Kim B H, Chu C N. The effects of tool electrode size on characteristics of micro electrochemical machining[J]. CIRP annals, 2006, 55(1): 197-200.
[31] Liu W, Luo Z, Yuan T, et al. The multi-physics analysis for a novel tool structure to improve the accuracy in electrochemical micro-machining[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5): 1991-2001.
[32] Liu G, Tong H, Li Y, et al. Novel structure of a sidewall-insulated hollow electrode for micro electrochemical machining[J]. Precision Engineering, 2021, 72: 356-369.
[33] Liu G, Li Y, Tong H. Fabrication of silicon electrodes used for micro electrochemical machining[J]. Journal of Micromechanics and Microengineering, 2020, 30(6): 065005.
[34] Liu G, Tong H, Shi H, et al. Fabrication of a tool electrode with hydrophobic features and its stray-corrosion suppression performance for micro-electrochemical machining[J]. Langmuir, 2022, 38(8): 2711-2719.
[35] Mishra K, Dey D, Sarkar B R, et al. Experimental investigation into electrochemical milling of Ti6Al4V[J]. Journal of Manufacturing Processes, 2017, 29: 113-123.
[36] Hinduja S, Pattavanitch J. Experimental and numerical investigations in electro-chemical milling[J]. CIRP Journal of Manufacturing Science and Technology, 2016, 12: 79-89.
[37] Ippolito R, Tornincasa S, Capello G, et al. Electron-jet drilling—basic involved phenomena[J]. CIRP Annals, 1981, 30(1): 87-90.
[38] Kozak J, Rajurkar K P, Balkrishna R. Study of electrochemical jet machining process[J]. Journal of Manufacturing Science and Engineering, 1996, 118: 490-498.
[39] Ali S, Hinduja S, Atkinson J, et al. Shaped tube electrochemical drilling of good quality holes[J]. CIRP annals, 2009, 58(1): 185-188.
[40] Yoneda K, Kunieda M. Numerical analysis of cross sectional shape of micro-indents formed by the electrochemical jet machining (ECJM)[J]. Journal of The Japan Society of Electrical Machining Engineers, 1995, 29(62): 1-8.
[41] Natsu W, Ikeda T, Kunieda M. Generating complicated surface with electrolyte jet machining[J]. Precision Engineering, 2007, 31(1): 33-39.
[42] Endo K, Natsu W. Proposal and verification of electrolyte suction tool with function of gap-width detection[J]. International Journal of Electrical Machining, 2014, 19: 34-39.
[43] Liu G, Zhang Y, Natsu W. Influence of electrolyte flow mode on characteristics of electrochemical machining with electrolyte suction tool[J]. International Journal of Machine Tools and Manufacture, 2019, 142: 66-75.
[44] Guo C, Qian J, Reynaerts D. Electrochemical machining with scanning micro electrochemical flow cell (SMEFC)[J]. Journal of Materials Processing Technology, 2017, 247: 171-183.
[45] Guo C, Qian J, Reynaerts D. A three-dimensional FEM model of channel machining by scanning micro electrochemical flow cell and jet electrochemical machining[J]. Precision Engineering, 2018, 52: 507-519.
[46] Nguyen M D, Rahman M, San Wong Y. Simultaneous micro-EDM and micro-ECM in low-resistivity deionized water[J]. International Journal of Machine Tools and Manufacture, 2012, 54: 55-65.
[47] Nguyen M D, Rahman M, San Wong Y. Modeling of radial gap formed by material dissolution in simultaneous micro-EDM and micro-ECM drilling using deionized water[J]. International Journal of Machine Tools and Manufacture, 2013, 66: 95-101.
[48] Nguyen M D, Rahman M, San Wong Y. Transitions of micro-EDM/SEDCM/micro-ECM milling in low-resistivity deionized water[J]. International Journal of Machine Tools and Manufacture, 2013, 69: 48-56.
[49] Nguyen M D, Rahman M, San Wong Y. Enhanced surface integrity and dimensional accuracy by simultaneous micro-ED/EC milling[J]. CIRP annals, 2012, 61(1): 191-194.
[50] Nastasi R, Koshy P. Analysis and performance of slotted tools in electrical discharge drilling[J]. CIRP Annals, 2014, 63(1): 205-208.
[51] Kurita T, Hattori M. A study of EDM and ECM/ECM-lapping complex machining technology[J]. International Journal of Machine Tools and Manufacture, 2006, 46(14): 1804-1810.
[52] Zeng Z, Wang Y, Wang Z, et al. A study of micro-EDM and micro-ECM combined milling for 3D metallic micro-structures[J]. Precision Engineering, 2012, 36(3): 500-509.
[53] 张彦. 微小孔电火花-电解复合加工基础研究[D]. 南京: 南京航空航天大学, 2016: 18-19.
[54] Zhang Y, Xu Z, Zhu D, et al. Tube electrode high-speed electrochemical discharge drilling using low-conductivity salt solution[J]. International Journal of Machine Tools and Manufacture, 2015, 92: 10-18.
[55] Zhang Y, Xu Z, Zhu Y, et al. Effect of tube-electrode inner structure on machining performance in tube-electrode high-speed electrochemical discharge drilling[J]. Journal of Materials Processing Technology, 2016, 231: 38-49.
[56] Zhang Y, Zhengyang X U, Yu W, et al. Surface-improvement mechanism of hybrid electrochemical discharge process using variable-amplitude pulses[J]. Chinese Journal of Aeronautics, 2020, 33(10): 2782-2793.
[57] Han Z, Fang X, Miao G, et al. Controllable electrochemical discharge machining with energy–electricity regulation in glycol-based electrolytes[J]. International Journal of Mechanical Sciences, 2023: 108161.
[58] Li C, Zhang B, Li Y, et al. Self-adjusting EDM/ECM high speed drilling of film cooling holes[J]. Journal of Materials Processing Technology, 2018, 262: 95-103.
[59] Datta M, Romankiw L T, Vigliotti D R, et al. Jet and Laser-Jet Electrochemical Micromachining of Nickel and Steel[J]. Journal of the Electrochemical Society, 1989, 136(8): 2251-2256.
[60] DeSilva A K M, Pajak P T, Harrison D K, et al. Modelling and experimental investigation of laser assisted jet electrochemical machining[J]. CIRP Annals, 2004, 53(1): 179-182.
[61] Saxena K K, Qian J, Reynaerts D. A tool-based hybrid laser-electrochemical micromachining process: Experimental investigations and synergistic effects[J]. International Journal of Machine Tools and Manufacture, 2020, 155: 103569.
[62] Liu Y Z. Coaxial waterjet-assisted laser drilling of film cooling holes in turbine blades[J]. International Journal of Machine Tools and Manufacture, 2020, 150: 103510.
[63] Wang Y, Yang F, Zhang G, et al. Fabrication of deep and small holes by synchronized laser and shaped tube electrochemical machining (Laser-STEM) hybrid process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(5): 2721-2731.
[64] Yang Y, Wang Y, Gui Y, et al. Improving performance of laser and shaped tube electrochemical machining by using retracted hybrid tubular tool electrode[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(5): 1779-1791.
[65] Duan W, Mei X, Fan Z, et al. Electrochemical corrosion assisted laser drilling of micro-hole without recast layer[J]. Optik, 2020, 202: 163577.
[66] 王明环, 吕明, 何凯磊, 等. 超声辅助微细电解加工间隙空化微射流对材料蚀除影响的研究[J]. 兵工学报, 2022: 1-11.
[67] 李晶, 陈湾湾, 朱永伟. 超声振动辅助电解加工成形规律研究及试验[J]. 现代制造工程, 2020(8): 13-19.
[68] Natsu W, Nakayama H, Yu Z. Improvement of ECM characteristics by applying ultrasonic vibration[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13 (7): 1131-1136.
[69] Zhu X, Liu Y, Zhang J, et al. Ultrasonic-assisted electrochemical drill-grinding of small holes with high-quality[J]. Journal of advanced research, 2020, 23: 151-161.
[70] Kong H, Liu Y, Zhu X, et al. Study on ultrasonic assisted electrochemical drill-grinding of superalloy[J]. Chemosensors, 2020, 8(3): 62.
[71] Li M, Liu Y, Ling S, et al. Theoretical and experimental study on micro ultrasonic-assisted electrochemical drilling with high speed electrode[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1): 815-826.
[72] Yang I, Park M S, Chu C N. Micro ECM with ultrasonic vibrations using a semi-cylindrical tool[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(2): 5-10.
[73] 王栋栋. 纯铝微弧氧化膜生长机制及耐蚀性能研究[D]. 河北:燕山大学, 2021: 1-3.
[74] Clyne T W, Troughton S C. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals[J]. International materials reviews, 2019, 64(3): 127-162.
[75] Parfenov E V, Yerokhin A, Nevyantseva R R, et al. Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling[J]. Surface and Coatings Technology, 2015, 269: 2-22.
[76] Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering[J]. Surface and coatings technology, 1999, 122(2-3): 73-93.
[77] Güntherschulze A, Betz H. Neue Untersuchungen über die elektrolytische Ventilwirkung[J]. Zeitschrift für Physik, 1931, 68(3): 145-161.
[78] Wang D D, Liu X T, Su Y, et al. Influences of edge effect on microstructure and corrosion behaviour of PEO coating[J]. Surface Engineering, 2020, 36(2): 184-191.
[79] Wang X, Lu X, Ju P, et al. Thermal control property and corrosion resistance of PEO coatings on AZ91 Mg alloy[J]. Surface and Coatings Technology, 2020, 393: 125709.
[80] Venkateswarlu K, Rameshbabu N, Sreekanth D, et al. Role of electrolyte chemistry on electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti[J]. Electrochimica Acta, 2013, 105: 468-480.
[81] Stojadinović S, Tadić N, Vasilić R. Formation and characterization of ZnO films on zinc substrate by plasma electrolytic oxidation[J]. Surface and Coatings Technology, 2016, 307: 650-657.
[82] Stojadinović S, Jovović J, Petković M, et al. Spectroscopic and real-time imaging investigation of tantalum plasma electrolytic oxidation (PEO)[J]. Surface and Coatings Technology, 2011, 205(23-24): 5406-5413.
[83] Huang Y, Wang C, Ding F, et al. Principle, process, and application of metal plasma electrolytic polishing: a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(7): 1893-1912.
[84] Zhou C, Su H, Qian N, et al. Characteristics and function of vapour gaseous envelope fluctuation in plasma electrolytic polishing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(11): 7815-7825.
[85] Belkin P N, Kusmanov S A, Parfenov E V. Mechanism and technological opportunity of plasma electrolytic polishing of metals and alloys surfaces[J]. Applied Surface Science Advances, 2020, 1: 100016.
[86] Wang J, Suo L C, Guan L L, et al. Analytical study on mechanism of electrolysis and plasma polishing[C]//Advanced Materials Research, Trans Tech Publications Ltd, 2012, 472: 350-353.
[87] Vana D, Podhorsky S, Hurajt M, et al. Surface properties of the stainless steel X10 CrNi 18/10 after aplication of plasma polishing in electrolyte[J]. International Journal of Modern Engineering Research, 2013, 3: 788-792.
[88] Böttger-Hiller F, Nestler K, Zeidler H, et al. Plasma electrolytic polishing of metalized carbon fibers[J]. AIMS Materials Science, 2016, 3: 260-269.
[89] Duradji V N, Kaputkin D E, Duradji A Y. Aluminum Treatment in the Electrolytic Plasma During the Anodic Process[J]. Journal of Engineering Science & Technology Review, 2017, 10(3): 81-84.
[90] Smyslova M K, Tamindarov D R, Plotnikov N V, et al. Surface electrolytic-plasma polishing of Ti-6Al-4V alloy with ultrafine-grained structure produced by severe plastic deformation[C]//IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, 461(1): 012079.
[91] Zeidler H, Boettger-Hiller F, Edelmann J, et al. Surface finish machining of medical parts using plasma electrolytic polishing[J]. Procedia CIRP, 2016, 49: 83-87.
[92] Nestler K, Böttger-Hiller F, Adamitzki W, et al. Plasma electrolytic polishing–an overview of applied technologies and current challenges to extend the polishable material range[J]. Procedia Cirp, 2016, 42: 503-507.
[93] Cornelsen M, Deutsch C, Seitz H. Electrolytic plasma polishing of pipe inner surfaces[J]. Metals, 2017, 8(1): 12.
[94] Radkevich M M, Kuzmichev I S. Technological principles of internal surfaces finishing by forced electrolytic-plasma polishing[C]//Key Engineering Materials: volume 822. Trans Tech Publ, 2019: 634-639.
[95] Löber L, Flache C, Petters R, et al. Comparison of different post processing technologies for SLM generated 316l steel parts[J]. Rapid Prototyping Journal, 2013, 19(3): 173-179.
[96] Yang L, Laugel N, Housden J, et al. Plasma additive layer manufacture smoothing (PALMS) technology–An industrial prototype machine development and a comparative study on both additive manufactured and conventional machined AISI 316 stainless steel[J]. Additive Manufacturing, 2020, 34: 101204.
[97] Seo B, Park H K, Kim H G, et al. Corrosion behavior of additive manufactured CoCr parts polished with plasma electrolytic polishing[J]. Surface and Coatings Technology, 2021, 406: 126640.
[98] 邓舜杰, 蒋驰, 刘天伟,等. 阴极等离子体电沉积陶瓷涂层的研究现状[J]. 电镀与涂饰, 2018, 37(3): 147-154.
[99] Rakhadilov B K, Buranich V V, Satbayeva Z A, et al. The cathodic electrolytic plasma hardening of the 20Cr2Ni4A chromium-nickel steel[J]. Journal of Materials Research and Technology, 2020, 9(4): 6969-6976.
[100] Béjar M A, Henríquez R. Surface hardening of steel by plasma-electrolysis boronizing[J]. Materials & design, 2009, 30(5): 1726-1728.
[101] Huang J, Zhu J, Fan X, et al. Preparation of MoS2-Ti (C, N)-TiO2 coating by cathodic plasma electrolytic deposition and its tribological properties[J]. Surface and Coatings Technology, 2018, 347: 76-83.
[102] 吕宪义, 金曾孙, 吴汉华, 等. 阴/阳极电流密度对铝合金微弧氧化陶瓷膜特性的影响[J]. 吉林大学学报:理学版, 2005, 43(1): 64-67.
[103] 刘元刚, 张巍, 李久青,等. AZ91D铸造镁合金交流脉冲双极微弧电沉积陶瓷膜[J]. 北京科技大学学报, 2004, 26(1): 73-77.
[104] Aronsson B O, Lausmaa J, Kasemo B. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials[J]. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 1997, 35(1): 49-73.
[105] Yerokhin A, Pilkington A, Matthews A. Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel[J]. Journal of Materials Processing Technology, 2010, 210(1): 54-63.
[106] Sarrafi R, Kovacevic R. Cathodic cleaning of oxides from aluminum surface by variable-polarity arc[J]. Welding journal, 2010, 89(1): 1-10.
[107] Lin A D, Kung C L, Hsieh W C, et al. Study on cleaning the surface of stainless steel 316 using plasma electrolysis technology[J]. Applied Sciences, 2018, 8(7): 1060.
[108] Kurafuji H. Electrical discharge drilling of glass[J]. Annals of the CIRP, 1968, 16: 415-419.
[109] Ph R, Masuzawa T. Micro electrochemical discharge machining of glass[J]. International journal of electrical machining, 1998, 3: 65-69.
[110] Crichton I M, McGeough J A. Studies of the discharge mechanisms in electrochemical arc machining[J]. Journal of applied electrochemistry, 1985, 15(1): 113-119.
[111] Tandon S, Jain V K, Kumar P, et al. Investigations into machining of composites[J]. Precision engineering, 1990, 12(4): 227-238.
[112] Abou Ziki J D, Hof L A, Wüthrich R. The machining temperature during spark assisted chemical engraving of glass[J]. Manufacturing Letters, 2015, 3: 9-13.
[113] Wüthrich R, Fascio V. Machining of non-conducting materials using electrochemical discharge phenomenon—an overview[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9): 1095-1108.
[114] Abou Ziki J D, Wüthrich R. Tool wear and tool thermal expansion during micro-machining by spark assisted chemical engraving[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61(5): 481-486.
[115] Fascio V, Wüthrich R, Bleuler H. Spark assisted chemical engraving in the light of electrochemistry[J]. Electrochimica Acta, 2004, 49(22-23): 3997-4003.
[116] Hof L A, Wüthrich R. Industry 4.0–Towards fabrication of mass-personalized parts on glass by Spark Assisted Chemical Engraving (SACE)[J]. Manufacturing Letters, 2018, 15: 76-80.
[117] Jiang B, Lan S, Wilt K, et al. Modeling and experimental investigation of gas film in micro-electrochemical discharge machining process[J]. International Journal of Machine Tools and Manufacture, 2015, 90: 8-15.
[118] Zou Z, Guo Z, Zhang K, et al. Electrochemical discharge machining of microchannels in glass using a non-Newtonian fluid electrolyte[J]. Journal of Materials Processing Technology, 2022, 305: 117594.
[119] Laio Y S, Wu L C, Peng W Y. A study to improve drilling quality of electrochemical discharge machining (ECDM) process[J]. Procedia CIRP, 2013, 6: 609-614.
[120] Wüthrich R, Hof L A. The gas film in spark assisted chemical engraving (SACE)—a key element for micro-machining applications[J]. International Journal of Machine Tools and Manufacture, 2006, 46(7-8): 828-835.
[121] Cheng C P, Wu K L, Mai C C, et al. Study of gas film quality in electrochemical discharge machining[J]. International Journal of Machine Tools and Manufacture, 2010, 50(8): 689-697.
[122] Kolhekar K R, Sundaram M. Study of gas film characterization and its effect in electrochemical discharge machining[J]. Precision Engineering, 2018, 53: 203-211.
[123] Razfar M R, Behroozfar A, Ni J. Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass[J]. Precision Engineering, 2014, 38(4): 885-892.
[124] Xu Y, Chen J, Jiang B, et al. Experimental investigation of magnetohydrodynamic effect in electrochemical discharge machining[J]. International Journal of Mechanical Sciences, 2018, 142: 86-96.
[125] Cheng C P, Wu K L, Mai C C, et al. Magnetic field-assisted electrochemical discharge machining[J]. Journal of Micromechanics and Microengineering, 2010, 20(7): 075019.
[126] He S, Tong H, Liu G. Spark assisted chemical engraving (SACE) mechanism on ZrO2 ceramics by analyzing processed products[J]. Ceramics International, 2018, 44(7): 7967-7971.
[127] Ji B, Tong H, Li J, et al. Scanning process of spark assisted chemical engraving (SACE) on ZrO2 ceramics by constraining discharges to tool electrode end[J]. Ceramics International, 2020, 46(2): 1433-1441.
[128] Tang W, Kang X, Zhao W, et al. Discharge characteristics in electrochemical discharge machining of ceramic-coated Ni-superalloy[J]. Procedia CIRP, 2020, 95: 737-742.
[129] Cao X D, Kim B H, Chu C N. Micro-structuring of glass with features less than 100 μm by electrochemical discharge machining[J]. Precision Engineering, 2009, 33(4): 459-465.
[130] Mehrabi F, Farahnakian M, Elhami S, et al. Application of electrolyte injection to the electro-chemical discharge machining (ECDM) on the optical glass[J]. Journal of Materials Processing Technology, 2018, 255: 665-672.
[131] Arya R K, Dvivedi A. Investigations on quantification and replenishment of vaporized electrolyte during deep micro-holes drilling using pressurized flow-ECDM process[J]. Journal of Materials Processing Technology, 2019, 266: 217-229.
[132] Kuo K Y, Wu K L, Yang C K, et al. Wire electrochemical discharge machining (WECDM) of quartz glass with titrated electrolyte flow[J]. International Journal of Machine Tools and Manufacture, 2013, 72: 50-57.
[133] Liu Y, Wei Z, Wang M, et al. Experimental investigation of micro wire electrochemical discharge machining by using a rotating helical tool[J]. Journal of Manufacturing processes, 2017, 29: 265-271.
[134] Wang J, Jia Z, Guo Y B. Shape-cutting of quartz glass by spark discharge-assisted diamond wire sawing[J]. Journal of Manufacturing Processes, 2018, 34: 131-139.
[135] Oza A D, Kumar A, Badheka V. Improving quartz micro-machining performance by magnetohydrodynamic and zinc-coated assisted traveling wire-electrochemical discharge machining process[J]. Materials today: proceedings, 2020, 28: 970-976.
[136] 菅井秀郎, 张海波, 张丹. 等离子体电子工程学[M]. 北京:科学出版社, 2002: 68-72.
[137] National Institute of Standards and Technology. Gaithersburg, MD. DOI:https://doi.org/10.18434/T4W30F.
[138] Yin X, Li S, Ma G, et al. Investigation of oxidation mechanism of SiC single crystal for plasma electrochemical oxidation[J]. RSC advances, 2021, 11(44): 27338-27345.
[139] Zhou Y, Pan G, Shi X, et al. XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP)[J]. Applied surface science, 2014, 316: 643-648.
[140] Sugita T, Hiramatsu K, Ikeda S, et al. Fabrication of pores in a silicon carbide wafer by electrochemical etching with a glassy-carbon needle electrode[J]. ACS Applied Materials & Interfaces, 2013, 5(7): 2580-2584.
[141] Katsuno M, Ohtani N, Takahashi J, et al. Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation[J]. Japanese journal of applied physics, 1999, 38(8): 4661-4665.
[142] Abou Ziki J D, Didar T F, Wüthrich R. Micro-texturing channel surfaces on glass with spark assisted chemical engraving[J]. International Journal of Machine Tools and Manufacture, 2012, 57: 66-72.
[143] Kumagawa M, Kuwabara H, Yamada S. Hydrogen etching of silicon carbide[J]. Japanese journal of applied physics, 1969, 8(4): 421-428.
[144] Ramachandran V, Brady M F, Smith A R, et al. Preparation of atomically flat surfaces on silicon carbide using hydrogen etching[J]. Journal of Electronic Materials, 1998, 27(4): 308-312.
[145] Zhang Y, Li Z, Kim P, et al. Anisotropic hydrogen etching of chemical vapor deposited graphene[J]. ACS nano, 2012, 6(1): 126-132.
[146] Jalali M, Maillard P, Wüthrich R. Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges[J]. Journal of Micromechanics and Microengineering, 2009, 19(4): 045001.
[147] Rosenbloom A J, Sipe D M, Shishkin Y, et al. Nanoporous SiC: A candidate semi-permeable material for biomedical applications[J]. Biomedical microdevices, 2004, 6(4): 261-267.
[148] Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. science, 2001, 293(5533): 1289-1292.
[149] Jian J X, Jokubavicius V, Syväjärvi M, et al. Nanoporous cubic silicon carbide photoanodes for enhanced solar water splitting[J]. ACS nano, 2021, 15(3): 5502-5512.
[150] Jeon H J, Kim K H, Baek Y K, et al. New top-down approach for fabricating high-aspect-ratio complex nanostructures with 10 nm scale features[J]. Nano letters, 2010, 10(9): 3604-3610.
[151] Nojiri K. Dry etching technology for semiconductors[M]. Cham: Springer International Publishing, 2015: 6-9.
[152] Xiao J, Zhao J, Liu G, et al. Stable field emission from vertically oriented SiC nanoarrays[J]. Nanomaterials, 2021, 11(11): 3025.
[153] Kumaravelu G, Alkaisi M M, Bittar A, et al. Damage studies in dry etched textured silicon surfaces[J]. Current Applied Physics, 2004, 4(2-4): 108-110.
[154] Zhuang D, Edgar J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.
[155] Lee J M, Lee K S, Park S J. Removal of dry etch damage in p-type GaN by wet etching of sacrificial oxide layer[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(2): 479-482.
[156] Michaels J A, Janavicius L, Wu X, et al. Producing silicon carbide micro and nanostructures by plasma-free metal-assisted chemical etching[J]. Advanced Functional Materials, 2021, 31(32): 2103298.
[157] Chen Y, Zhang C, Li L, et al. Hybrid anodic and metal-assisted chemical etching method enabling fabrication of silicon carbide nanowires[J]. Small, 2019, 15(7): 1803898.
[158] Gautier G, Biscarrat J, Valente D, et al. Systematic study of anodic etching of highly doped N-type 4H-SiC in various HF based electrolytes[J]. Journal of The Electrochemical Society, 2013, 160(9): 372-379.
[159] Van Dorp D H, Sattler J, Den Otter J H, et al. Electrochemistry of anodic etching of 4H and 6H–SiC in fluoride solution of pH 3[J]. Electrochimica acta, 2009, 54(26): 6269-6275.
[160] Shishkin Y, Choyke W J, Devaty R P. Photoelectrochemical etching of n-type 4H silicon carbide[J]. Journal of applied physics, 2004, 96(4): 2311-2322.
[161] Kuo Y H, Lee Y K, Ge Y, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon[J]. Nature, 2005, 437(7063): 1334-1336.
[162] Konstantinov A O, Harris C I, Janzen E. Electrical properties and formation mechanism of porous silicon carbide[J]. Applied physics letters, 1994, 65(21): 2699-2701.
[163] Fan Z W, Hourng L W, Wang C Y. Fabrication of tungsten microelectrodes using pulsed electrochemical machining[J]. Precision Engineering, 2010, 34(3): 489-496.
[164] Ghoshal B, Bhattacharyya B. Influence of vibration on micro-tool fabrication by electrochemical machining[J]. International Journal of Machine Tools and Manufacture, 2013, 64(1): 49-59.
[165] Fan Z W, Hourng L W. The analysis and investigation on the microelectrode fabrication by electrochemical machining[J]. International Journal of Machine Tools & Manufacture, 2009, 49(7-8): 659-666.
[166] Wang Y, Zeng Y, Qu N, et al. Fabrication of sub-micro spherical probes by liquid membrane pulsed electrochemical etching[J]. Journal of Materials Processing Tech, 2016, 231: 171-178.
[167] Ge Y, Zhang W, Chen Y L, et al. A reproducible electropolishing technique to customize tungsten SPM probe: From mathematical modeling to realization[J]. Journal of Materials Processing Tech, 2013, 213(1): 11-19.
[168] Song F, Ma L, Fan J, et al. Electro-wetting of a nanoscale water droplet on a polar solid surface in electric fields[J]. Physical Chemistry Chemical Physics, 2018, 20(17): 11987-11993.
[169] Pajak P, Desilva A K, Harrison D K, et al. Precision and efficiency of laser assisted jet electrochemical machining[J]. Precision Engineering, 2006, 30(3): 288-298.
[170] Gupta P, Tenhundfeld G, Daigle E, et al. Electrolytic plasma technology: Science and engineering—An overview[J]. Surface and Coatings Technology, 2007, 201(21): 8746-8760.
[171] Xu Z, Chen X, Zhou Z, et al. Electrochemical machining of high-temperature titanium alloy Ti60[J]. Procedia CIRP, 2016, 42: 125-130.
[172] Chen X, Ye Z, Li G, et al. Electrochemical milling of deep-narrow slots with a pulsating electrolyte flow field[J]. CIRP Journal of Manufacturing Science and Technology, 2022, 39: 244-260.
[173] Wang X, Qu N, Fang X, et al. Electrochemical drilling with constant electrolyte flow[J]. Journal of Materials Processing Technology, 2016, 238: 1-7.

所在学位评定分委会
机械
国内图书分类号
TG662
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543821
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
詹顺达. 阴极等离子体辅助微细电解加工方法与机理研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11949030-詹顺达-机械与能源工程(16895KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[詹顺达]的文章
百度学术
百度学术中相似的文章
[詹顺达]的文章
必应学术
必应学术中相似的文章
[詹顺达]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。