[1] Van der Waals J D. The thermodynamic theory of capillarity under the hypothesisof a continuous variation of density[J]. Journal of Statistical Physics, 1979, 20(2):200–244.
[2] Landau L. The theory of phase transitions[J]. Nature, 1936, 138(3498): 840–841.
[3] Langer J. Models of pattern formation in first-order phase transitions[M].[S.l.]:World Scientific, 1986: 165–186.
[4] Anderson D M, McFadden G B, Wheeler A A. Diffuse-interface methods in fluidmechanics[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 139–165.
[5] Boettinger W J, Warren J A, Beckermann C, et al. Phase-field simulation of solidification[J]. Annual Review of Materials Research, 2002, 32(1): 163–194.
[6] Frieboes H B, Jin F, Chuang Y, et al. Three-dimensional multispecies nonlineartumor growth—II: tumor invasion and angiogenesis[J]. Journal of Theoretical Biology, 2010, 264(4): 1254–1278.
[7] Braun R, Murray B. Adaptive phase-field computations of dendritic crystalgrowth[J]. Journal of Crystal Growth, 1997, 174(1-4): 41–53.
[8] Villain J. Continuum models of crystal growth from atomic beams with and withoutdesorption[J]. Journal de Physique I, 1991, 1(1): 19–42.
[9] Wang Y, Jin Y, Khachaturyan A G. Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films[J]. Acta Materialia,2003, 51(14): 4209–4223.
[10] Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion andits application to antiphase domain coarsening[J]. Acta Metallurgica, 1979, 27(6):1085–1095.
[11] Dobrosotskaya J A, Bertozzi A L. A wavelet-Laplace variational technique forimage deconvolution and inpainting[J]. IEEE Transactions on Image Processing,2008, 17(5): 657–663.
[12] Ilmanen T. Convergence of the Allen-Cahn equation to Brakke’s motion by meancurvature[J]. Journal of Differential Geometry, 1993, 38(2): 417–461.
[13] Feng X, Prohl A. Numerical analysis of the Allen-Cahn equation and approximationfor mean curvature flows[J]. Numerische Mathematik, 2003, 94: 33–65.
[14] Feng X, Wu H. A posteriori error estimates and an adaptive finite element methodfor the Allen–Cahn equation and the mean curvature flow[J]. Journal of ScientificComputing, 2005, 24: 121–146.
[15] Elliott C M, Stinner B. Computation of two-phase biomembranes with phase dependentmaterial parameters using surface finite elements[J]. Communications inComputational Physics, 2013, 13(2): 325–360.
[16] Golubović L, Levandovsky A, Moldovan D. Interface dynamics and far-fromequilibrium phase transitions in multilayer epitaxial growth and erosion on crystalsurfaces: Continuum theory insights[J]. East Asian Journal on Applied Mathematics, 2011, 1(4): 297–371.
[17] Kim J. Phase-field models for multi-component fluid flows[J]. Communicationsin Computational Physics, 2012, 12(3): 613–661.
[18] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial freeenergy[J]. The Journal of Chemical Physics, 1958, 28(2): 258–267.
[19] Bertozzi A, Esedoglu S, Gillette A. Analysis of a two-scale Cahn–Hilliard modelfor binary image inpainting[J]. Multiscale Modeling and Simulation, 2007, 6(3):913–936.
[20] Bertozzi A, Esedoglu S, Gillette A. Inpainting of binary images using the Cahn–Hilliard equation[J]. IEEE Transactions on image processing, 2006, 16(1):285–291.
[21] Shen J, Yang X. Energy stable schemes for Cahn-Hilliard phase-field model of twophase incompressible flows[J]. Chinese Annals of Mathematics, Series B, 2010,31(5): 743–758.
[22] Shen J, Yang X. A phase-field model and its numerical approximation for two-phaseincompressible flows with different densities and viscosities[J]. SIAM Journal onScientific Computing, 2010, 32(3): 1159–1179.
[23] Adams E E, Gelhar L W. Field study of dispersion in a heterogeneous aquifer: 2.Spatial moments analysis[J]. Water Resources Research, 1992, 28(12): 3293–3307.
[24] Nigmatullin R. The realization of the generalized transfer equation in a mediumwith fractal geometry[J]. Physica Status Solidi (B), 1986, 133(1): 425–430.
[25] Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena[J]. Chaos, Solitons and Fractals, 1996, 7(9): 1461–1477.
[26] Mainardi F. Fractional calculus and waves in linear viscoelasticity: an introductionto mathematical models[M].[S.l.]: World Scientific, 2022.
[27] Hatano Y, Hatano N. Dispersive transport of ions in column experiments: Anexplanation of long-tailed profiles[J]. Water Resources Research, 1998, 34(5):1027–1033.
[28] Solomon T, Weeks E R, Swinney H L. Observation of anomalous diffusion andLevy flights in a two-dimensional rotating flow[J]. Physical Review Letters, 1993,71(24): 3975.
[29] Metzler R, Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics[J]. Journalof Physics A: Mathematical and General, 2004, 37(31): R161.
[30] Gorenflo R, Mainardi F, Moretti D, et al. Time fractional diffusion: a discreterandom walk approach[J]. Nonlinear Dynamics, 2002, 29(1): 129–143.
[31] Caputo M. Linear models of dissipation whose Q is almost frequency independent—II[J]. Geophysical Journal International, 1967, 13(5): 529–539.
[32] Liu H, Cheng A, Wang H, et al. Time-fractional Allen–Cahn and Cahn–Hilliardphase-field models and their numerical investigation[J]. Computers and Mathematics with Applications, 2018, 76(8): 1876–1892.
[33] Tang T, Yu H, Zhou T. On energy dissipation theory and numerical stability fortime-fractional phase-field equations[J]. SIAM Journal on Scientific Computing,2019, 41(6): A3757–A3778.
[34] Zhao J, Chen L, Wang H. On power law scaling dynamics for time-fractional phasefield models during coarsening[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 70: 257–270.
[35] Du Q, Yang J, Zhou Z. Time-fractional Allen–Cahn equations: analysis and numerical methods[J]. Journal of Scientific Computing, 2020, 85(2): 42.
[36] Li Z, Wang H, Yang D. A space–time fractional phase-field model with tunablesharpness and decay behavior and its efficient numerical simulation[J]. Journal ofComputational Physics, 2017, 347: 20–38.
[37] Quan C, Wang B. Energy stable L2 schemes for time-fractional phase-field equations[J]. Journal of Computational Physics, 2022, 458: 111085.
[38] Liao H, McLean W, Zhang J. A Second-Order Scheme with Nonuniform TimeSteps for a Linear Reaction-Subdiffusion Problem[J]. Communications in Computational Physics, 2021, 30(2): 567–601.
[39] Chen H, Stynes M. Error analysis of a second-order method on fitted meshes for atime-fractional diffusion problem[J]. Journal of Scientific Computing, 2019, 79(1):624–647.
[40] Eyre D J. Unconditionally gradient stable time marching the Cahn-Hilliard equation[J]. MRS Online Proceedings Library (OPL), 1998, 529: 39.
[41] Furihata D. A stable and conservative finite difference scheme for the Cahn-Hilliardequation[J]. Numerische Mathematik, 2001, 87(4): 675–699.
[42] Gomez H, Hughes T J. Provably unconditionally stable, second-order timeaccurate, mixed variational methods for phase-field models[J]. Journal of Computational Physics, 2011, 230(13): 5310–5327.
[43] Guillén-González F, Tierra G. On linear schemes for a Cahn–Hilliard diffuse interface model[J]. Journal of Computational Physics, 2013, 234: 140–171.
[44] Chen L, Shen J. Applications of semi-implicit Fourier-spectral method to phasefield equations[J]. Computer Physics Communications, 1998, 108(2): 147–158.
[45] Feng X, Tang T, Yang J. Stabilized Crank-Nicolson/Adams-Bashforth schemes forphase field models[J]. East Asian Journal on Applied Mathematics, 2013, 3(1):59–80.
[46] He Y, Liu Y, Tang T. On large time-stepping methods for the Cahn–Hilliard equation[J]. Applied Numerical Mathematics, 2007, 57(5-7): 616–628.
[47] Shen J, Yang X. Numerical approximations of Allen–Cahn and Cahn–Hilliard equations[J]. Discrete and Continuous Dynamical Systems, Series A, 2010, 28(4):1669.
[48] Xu C, Tang T. Stability analysis of large time-stepping methods for epitaxial growthmodels[J]. SIAM Journal on Numerical Analysis, 2006, 44(4): 1759–1779.
[49] Cox S M, Matthews P C. Exponential time differencing for stiff systems[J]. Journalof Computational Physics, 2002, 176(2): 430–455.
[50] Hochbruck M, Ostermann A. Explicit exponential Runge–Kutta methods for semilinear parabolic problems[J]. SIAM Journal on Numerical Analysis, 2005, 43(3):1069–1090.
[51] Zhu L, Ju L, Zhao W. Fast high-order compact exponential time differencingRunge–Kutta methods for second-order semilinear parabolic equations[J]. Journal of Scientific Computing, 2016, 67: 1043–1065.
[52] Fu Z, Yang J. Energy-decreasing exponential time differencing Runge–Kutta methods for phase-field models[J]. Journal of Computational Physics, 2022, 454:110943.
[53] Tang T, Yang J. Implicit-explicit scheme for the Allen–Cahn equation preservesthe maximum principle[J]. Journal of Computational Mathematics, 2016, 34(5):471–481.
[54] Shen J, Tang T, Yang J. On the maximum principle preserving schemes for thegeneralized Allen–Cahn equation[J]. Communications in Mathematical Sciences,2016, 14(6): 1517–1534.
[55] Hou T, Tang T, Yang J. Numerical analysis of fully discretized Crank–Nicolsonscheme for fractional-in-space Allen–Cahn equations[J]. Journal of Scientific Computing, 2017, 72: 1214–1231.
[56] Du Q, Ju L, Li X, et al. Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation[J]. SIAM Journal on numericalanalysis, 2019, 57(2): 875–898.
[57] Yang X. Linear, first and second-order, unconditionally energy stable numericalschemes for the phase field model of homopolymer blends[J]. Journal of Computational Physics, 2016, 327: 294–316.
[58] Yang X, Zhao J, Wang Q, et al. Numerical approximations for a three-componentCahn–Hilliard phase-field model based on the invariant energy quadratizationmethod[J]. Mathematical Models and Methods in Applied Sciences, 2017, 27(11):1993–2030.
[59] Cheng Q, Shen J. Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model[J]. SIAM Journal on ScientificComputing, 2018, 40(6): A3982–A4006.
[60] Shen J, Xu J, Yang J. The scalar auxiliary variable (SAV) approach for gradientflows[J]. Journal of Computational Physics, 2018, 353: 407–416.
[61] Shen J, Xu J, Yang J. A new class of efficient and robust energy stable schemes forgradient flows[J]. SIAM Review, 2019, 61(3): 474–506.
[62] Wang R, Ji Y, Shen J, et al. Application of scalar auxiliary variable scheme tophase-field equations[J]. Computational Materials Science, 2022, 212: 111556.
[63] Zhang Y, Shen J. A generalized SAV approach with relaxation for dissipative systems[J]. Journal of Computational Physics, 2022, 464: 111311.
[64] Huang F, Shen J, Wu K. Bound/positivity preserving and unconditionally stableschemes for a class of fourth order nonlinear equations[J]. Journal of ComputationalPhysics, 2022, 460: 111177.
[65] Wu K, Huang F, Shen J. A new class of higher-order decoupled schemes for theincompressible Navier-Stokes equations and applications to rotating dynamics[J].Journal of Computational Physics, 2022, 458: 111097.
[66] Cheng Q, Shen J. A new Lagrange multiplier approach for constructing structurepreserving schemes, I. Positivity preserving[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 391: 114585.
[67] Li X, Wang W, Shen J. Stability and error analysis of IMEX SAV schemes for themagneto-hydrodynamic equations[J]. SIAM Journal on Numerical Analysis, 2022,60(3): 1026–1054.
[68] Li X, Shen J, Liu Z. New SAV-pressure correction methods for the Navier-Stokesequations: stability and error analysis[J]. Mathematics of Computation, 2022,91(333): 141–167.
[69] Antoine X, Shen J, Tang Q. Scalar Auxiliary Variable/Lagrange multiplierbased pseudospectral schemes for the dynamics of nonlinear Schrödinger/GrossPitaevskii equations[J]. Journal of Computational Physics, 2021, 437: 110328.
[70] Huang F, Shen J. Bound/Positivity Preserving and Energy Stable Scalar auxiliaryVariable Schemes for Dissipative Systems: Applications to Keller–Segel and Poisson–Nernst–Planck Equations[J]. SIAM Journal on Scientific Computing, 2021,43(3): A1832–A1857.
[71] Huang F, Shen J. Stability and Error Analysis of a Class of High-Order IMEXSchemes for Navier–Stokes Equations with Periodic Boundary Conditions[J].SIAM Journal on Numerical Analysis, 2021, 59(6): 2926–2954.
[72] Li X, Shen J. On a SAV-MAC scheme for the Cahn–Hilliard–Navier–Stokes phasefield model and its error analysis for the corresponding Cahn–Hilliard–Stokescase[J]. Mathematical Models and Methods in Applied Sciences, 2020, 30(12):2263–2297.
[73] Liu Z, Li X. The exponential scalar auxiliary variable (E-SAV) approach for phasefield models and its explicit computing[J]. SIAM Journal on Scientific Computing,2020, 42(3): B630–B655.
[74] Liu Z, Li X. Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation[J]. Numerical Algorithms, 2020, 85(1):107–132.
[75] Feng X, Tang T, Yang J. Long Time Numerical Simulations for Phase-Field Problems Using p-Adaptive Spectral Deferred Correction Methods[J]. SIAM Journalon Scientific Computing, 2015, 37(1): A271–A294.
[76] Li D, Quan C, Xu J. Stability and convergence of Strang splitting. Part I: ScalarAllen-Cahn equation[J]. Journal of Computational Physics, 2022, 458(6): 111087.
[77] Cheng Y, Kurganov A, Qu Z, et al. Fast and stable explicit operator splitting methods for phase-field models[J]. Journal of Computational Physics, 2015, 303: 45–65.
[78] Akrivis G, Li B, Li D. Energy-Decaying Extrapolated RK–SAV Methods for theAllen–Cahn and Cahn–Hilliard Equations[J]. SIAM Journal on Scientific Computing, 2019, 41(6): A3703–A3727.
[79] Huang F, Shen J, Yang Z. A Highly Efficient and Accurate New Scalar AuxiliaryVariable Approach for Gradient Flows[J]. SIAM Journal on Scientific Computing,2020, 42(4): A2514–A2536.
[80] Yang J, Yuan Z, Zhou Z. Arbitrarily High-Order Maximum Bound PreservingSchemes with Cut-off Postprocessing for Allen–Cahn Equations[J]. Journal of Scientific Computing, 2022, 90(2): 1–36.
[81] Chen H, Mao J, Shen J. Optimal error estimates for the scalar auxiliary variable finite-element schemes for gradient flows[J]. Numerische Mathematik, 2020,145(1): 167–196.
[82] Li X, Shen J, Rui H. Energy stability and convergence of SAV block-centeredfinite difference method for gradient flows[J]. Mathematics of Computation, 2019,88(319): 2047–2068.
[83] Pan Q, Chen C, Rabczuk T, et al. The subdivision-based IGA-EIEQ numerical scheme for the binary surfactant Cahn–Hilliard phase-field model on complexcurved surfaces[J]. Computer Methods in Applied Mechanics and Engineering,2023, 406: 115905.
[84] Pan Q, Chen C, Zhang Y J, et al. A novel hybrid IGA-EIEQ numerical method forthe Allen–Cahn/Cahn–Hilliard equations on complex curved surfaces[J]. ComputerMethods in Applied Mechanics and Engineering, 2023, 404: 115767.
[85] Yang X, He X. Numerical approximations of flow coupled binary phase field crystalsystem: Fully discrete finite element scheme with second-order temporal accuracyand decoupling structure[J]. Journal of computational physics, 2022, 467: 111448.
[86] Liu P, Ouyang Z, Chen C, et al. A novel fully-decoupled, linear, and unconditionally energy-stable scheme of the conserved Allen–Cahn phase-field model of atwo-phase incompressible flow system with variable density and viscosity[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 107: 106120.
[87] Du Q, Feng X. The phase field method for geometric moving interfaces and theirnumerical approximations[M]. Vol. 21.[S.l.]: Elsevier, 2020: 425–508.
[88] Tang T, Qiao Z. Efficient numerical methods for phase-field equations (in Chinese)[J]. Science China Mathematics, 2020, 50: 775–794.
[89] Hu Z, Wise S M, Wang C, et al. Stable and efficient finite-difference nonlinearmultigrid schemes for the phase field crystal equation[J]. Journal of ComputationalPhysics, 228(15).
[90] Wang C, Wise S M. An energy stable and convergent finite-difference scheme forthe modified phase field crystal equation[J]. SIAM Journal on Numerical Analysis,2011, 49(3): 945–969.
[91] Wise S M, Wang C, Lowengrub J S. An energy-stable and convergent finitedifference scheme for the phase field crystal equation[J]. SIAM Journal on Numerical Analysis, 2009, 47(3): 2269–2288.
[92] Du Q, Ju L, Li X, et al. Stabilized linear semi-implicit schemes for the nonlocalCahn–Hilliard equation[J]. Journal of Computational Physics, 2018, 363: 39–54.
[93] Li D, Qiao Z, Tang T. Characterizing the stabilization size for semi-implicit Fourierspectral method to phase field equations[J]. SIAM Journal on Numerical Analysis,2016, 54(3): 1653–1681.
[94] Barrett J W, Nürnberg R, Styles V. Finite element approximation of a phase fieldmodel for void electromigration[J]. SIAM Journal on Numerical Analysis, 2004,42(2): 738–772.
[95] Elliott C M, Larsson S. Error estimates with smooth and nonsmooth data for a finiteelement method for the Cahn-Hilliard equation[J]. Mathematics of Computation,1992, 58(198): 603–630.
[96] Feng X, He Y, Liu C. Analysis of finite element approximations of a phasefield model for two-phase fluids[J]. Mathematics of Computation, 2007, 76(258):539–571.
[97] Guo R, Xu Y. Local discontinuous Galerkin method and high order semi-implicitscheme for the phase field crystal equation[J]. SIAM Journal on Scientific Computing, 2016, 38(1): A105–A127.
[98] Kay D, Styles V, Süli E. Discontinuous Galerkin finite element approximation of theCahn–Hilliard equation with convection[J]. SIAM Journal on Numerical Analysis,2009, 47(4): 2660–2685.
[99] Xia Y, Xu Y, Shu C. Local discontinuous Galerkin methods for the Cahn–Hilliardtype equations[J]. Journal of Computational Physics, 2007, 227(1): 472–491.
[100] Sun Z, Wu X. A fully discrete difference scheme for a diffusion-wave system[J].Applied Numerical Mathematics, 2006, 56(2): 193–209.
[101] Lin Y, Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation[J]. Journal of Computational Physics, 2007, 225(2): 1533–1552.
[102] Langlands T, Henry B I. The accuracy and stability of an implicit solution methodfor the fractional diffusion equation[J]. Journal of Computational Physics, 2005,205(2): 719–736.
[103] Gao G, Sun Z, Zhang H. A new fractional numerical differentiation formula toapproximate the Caputo fractional derivative and its applications[J]. Journal ofComputational Physics, 2014, 259: 33–50.
[104] Lv C, Xu C. Error analysis of a high order method for time-fractional diffusionequations[J]. SIAM Journal on Scientific Computing, 2016, 38(5): A2699–A2724.
[105] Alikhanov A A. A new difference scheme for the time fractional diffusion equation[J]. Journal of Computational Physics, 2015, 280: 424–438.
[106] Stynes M, O’Riordan E, Gracia J L. Error analysis of a finite difference methodon graded meshes for a time-fractional diffusion equation[J]. SIAM Journal onNumerical Analysis, 2017, 55(2): 1057–1079.
[107] Kopteva N. Error analysis of the L1 method on graded and uniform meshes fora fractional-derivative problem in two and three dimensions[J]. Mathematics ofComputation, 2019, 88(319): 2135–2155.
[108] Kopteva N, Meng X. Error analysis for a fractional-derivative parabolic problemon quasi-graded meshes using barrier functions[J]. SIAM Journal on NumericalAnalysis, 2020, 58(2): 1217–1238.
[109] Liao H, McLean W, Zhang J. A Discrete Grönwall Inequality with Applicationsto Numerical Schemes for Subdiffusion Problems[J]. SIAM Journal on NumericalAnalysis, 2019, 57(1): 218–237.
[110] Kopteva N. Error analysis of an L2-type method on graded meshes for a fractionalorder parabolic problem[J]. Mathematics of Computation, 2021, 90(327): 19–40.
[111] Lubich C. Discretized fractional calculus[J]. SIAM Journal on Mathematical Analysis, 1986, 17(3): 704–719.
[112] Lubich C. Convolution quadrature and discretized operational calculus. I[J]. Numerische Mathematik, 1988, 52(2): 129–145.
[113] Lubich C. Convolution quadrature revisited[J]. BIT Numerical Mathematics, 2004,44(3): 503–514.
[114] Lubich C, Sloan I, Thomée V. Nonsmooth data error estimates for approximationsof an evolution equation with a positive-type memory term[J]. Mathematics ofComputation, 1996, 65(213): 1–17.
[115] Jin B, Li B, Zhou Z. Subdiffusion with time-dependent coefficients: improved regularity and second-order time stepping[J]. Numerische Mathematik, 2020, 145(4):883–913.
[116] Jin B, Li B, Zhou Z. Correction of high-order BDF convolution quadrature forfractional evolution equations[J]. SIAM Journal on Scientific Computing, 2017,39(6): A3129–A3152.
[117] Jin B, Li B, Zhou Z. Numerical analysis of nonlinear subdiffusion equations[J].SIAM Journal on Numerical Analysis, 2018, 56(1): 1–23.
[118] Al-Maskari M, Karaa S. Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data[J]. SIAM Journal on Numerical Analysis, 2019,57(3): 1524–1544.
[119] Wang K, Zhou Z. High-order time stepping schemes for semilinear subdiffusionequations[J]. SIAM Journal on Numerical Analysis, 2020, 58(6): 3226–3250.
[120] Liao H, Tang T, Zhou T. A second-order and nonuniform time-stepping maximumprinciple preserving scheme for time-fractional Allen-Cahn equations[J]. Journalof Computational Physics, 2020, 414: 109473.
[121] Li B, Ma S. Exponential convolution quadrature for nonlinear subdiffusion equations with nonsmooth initial data[J]. SIAM Journal on Numerical Analysis, 2022,60(2): 503–528.
[122] Lubich C, Schädle A. Fast convolution for nonreflecting boundary conditions[J].SIAM Journal on Scientific Computing, 2002, 24(1): 161–182.
[123] Ke R, Ng M K, Sun H. A fast direct method for block triangular Toeplitz-likewith tri-diagonal block systems from time-fractional partial differential equations[J]. Journal of Computational Physics, 2015, 303: 203–211.
[124] Lu X, Pang H K, Sun H. Fast approximate inversion of a block triangular Toeplitzmatrix with applications to fractional sub-diffusion equations[J]. Numerical LinearAlgebra with Applications, 2015, 22(5): 866–882.
[125] Baffet D, Hesthaven J S. A kernel compression scheme for fractional differentialequations[J]. SIAM Journal on Numerical Analysis, 2017, 55(2): 496–520.
[126] Jiang S, Zhang J, Zhang Q, et al. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations[J]. Communications inComputational Physics, 2017, 21(3): 650–678.
[127] Yan Y, Sun Z, Zhang J. Fast evaluation of the Caputo fractional derivative and itsapplications to fractional diffusion equations: a second-order scheme[J]. Communications in Computational Physics, 2017, 22(4): 1028–1048.
[128] Li X, Liao H, Zhang L. A second-order fast compact scheme with unequal timesteps for subdiffusion problems[J]. Numerical Algorithms, 2021, 86: 1011–1039.
[129] Shen J, Sun Z, Du R. Fast finite difference schemes for time-fractional diffusionequations with a weak singularity at initial time[J]. East Asian Journal on AppliedMathematics, 2018, 8(4): 834–858.
[130] Liao H, Yan Y, Zhang J. Unconditional convergence of a fast two-level linearizedalgorithm for semilinear subdiffusion equations[J]. Journal of Scientific Computing, 2019, 80(1): 1–25.
[131] Song K, Lyu P. A high-order and fast scheme with variable time steps for thetime-fractional Black-Scholes equation[J]. Mathematical Methods in the AppliedSciences, 2023, 46(2): 1990–2011.
[132] Liu N, Chen Y, Zhang J, et al. Unconditionally optimal H1-error estimate of afast nonuniform L2-1σ scheme for nonlinear subdiffusion equations[J]. NumericalAlgorithms, 92: 1655–1677.
[133] Zhu H, Xu C. A fast high order method for the time-fractional diffusion equation[J].SIAM Journal on Numerical Analysis, 2019, 57(6): 2829–2849.
[134] Karaa S. Positivity of discrete time-fractional operators with applications to phasefield equations[J]. SIAM Journal on Numerical Analysis, 2021, 59(4): 2040–2053.
[135] Quan C, Tang T, Yang J. How to Define Dissipation-Preserving Energy for TimeFractional Phase-Field Equations[J]. CSIAM Transactions on Applied Mathematics, 2020, 1(3): 478–490.
[136] Quan C, Tang T, Yang J. Numerical Energy Dissipation for Time-Fractional PhaseField Equations[J]. arXiv preprint arXiv:2009.06178, 2020.
[137] Liao H, Tang T, Zhou T. An energy stable and maximum bound preserving schemewith variable time steps for time fractional Allen–Cahn equation[J]. SIAM Journalon Scientific Computing, 2021, 43(5): A3503–A3526.
[138] Yang Y, Wang J, Chen Y, et al. Compatible L2 norm convergence of variable-stepL1 scheme for the time-fractional MBE model with slope selection[J]. Journal ofComputational Physics, 2022, 467: 111467.
[139] Arnold D N, Brezzi F, Cockburn B, et al. Unified analysis of discontinuous Galerkinmethods for elliptic problems[J]. SIAM journal on numerical analysis, 2002, 39(5):1749–1779.
[140] Brezzi F, Manzini G, Marini D, et al. Discontinuous Galerkin approximations forelliptic problems[J]. Numerical Methods for Partial Differential Equations: AnInternational Journal, 2000, 16(4): 365–378.
[141] Cockburn B, Shu C. The local discontinuous Galerkin method for time-dependentconvection-diffusion systems[J]. SIAM Journal on Numerical Analysis, 1998,35(6): 2440–2463.
[142] Ji B, Liao H, Gong Y, et al. Adaptive linear second-order energy stable schemes fortime-fractional Allen–Cahn equation with volume constraint[J]. Communicationsin Nonlinear Science and Numerical Simulation, 2020, 90: 105366.
[143] Wanner G, Hairer E. Solving ordinary differential equations II[M]. Vol. 375.[S.l.]:Springer Berlin Heidelberg New York, 1996.
[144] Hesthaven J S, Warburton T. Nodal discontinuous Galerkin methods: algorithms,analysis, and applications[M].[S.l.]: Springer Science and Business Media, 2007.
[145] Rivière B. Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation[M].[S.l.]: SIAM, 2008.
[146] Thomée V. Galerkin finite element methods for parabolic problems[M]. Vol.1054.[S.l.]: Springer, 1984.
[147] Liu C, Frank F, Rivière B. Numerical error analysis for nonsymmetric interiorpenalty discontinuous Galerkin method of Cahn–Hilliard equation[J]. NumericalMethods for Partial Differential Equations, 2019, 35(4): 1509–1537.
[148] Ciarlet P G. The finite element method for elliptic problems[M].[S.l.]: SIAM,2002.
[149] Kassam A K, Trefethen L N. Fourth-order time-stepping for stiff PDEs[J]. SIAMJournal on Scientific Computing, 2005, 26(4): 1214–1233.
[150] Chen H, Stynes M. Blow-up of error estimates in time-fractional initial-boundaryvalue problems[J]. IMA Journal of Numerical Analysis, 2021, 41(2): 974–997.
[151] Trefethen L N. Spectral methods in MATLAB[M].[S.l.]: SIAM, 2000.
[152] Shen J, Tang T, Wang L. Spectral methods: algorithms, analysis and applications[M]. Vol. 41.[S.l.]: Springer Science and Business Media, 2011.
[153] Quan C, Wu X. Global-in-Time H1-Stability of L2-1σ Method on General Nonuniform Meshes for Subdiffusion Equation[J]. Journal of Scientific Computing, 2023,95(2): 59.
[154] Quan C, Wu X, Yang J. Long time H1-stability of fast L2-1σ method ongeneral nonuniform meshes for subdiffusion equations[J]. arXiv preprint arXiv:2212.00453, 2022.
修改评论