[1] 李筱荣, 杨千惠. 美国眼科学会《糖尿病视网膜病变临床指南》解读[J]. 中华实验眼科杂志, 2020, 38(9): 795-798.
[2] CHO N H, SHAW J, KARURANGA S, et al. Idf diabetes atlas: Global estimatesof diabetes prevalence for 2017 and projections for 2045[J]. Diabetes research and clinical practice, 2018, 138: 271-281.
[3] SOLOMON S D, GOLDBERG M F. Etdrs grading of diabetic retinopathy: stillthe gold standard?[J]. Ophthalmic research, 2019, 62(4): 190- 195.
[4] YANASE J, TRIANTAPHYLLOU E. A systematic survey of computer-aided di-agnosis in medicine: Past and present developments[J]. Expert Systems with Ap-plications, 2019, 138: 112821.
[5] 郑光远, 刘峡壁, 韩光辉. 医学影像计算机辅助检测与诊断系统综述[J]. 软件学报, 2018, 29(5): 1471- 1514.
[6] AKRAM M U, KHALID S, TARIQ A, et al. Detection and classification of retinallesions for grading of diabetic retinopathy[J]. Computers in biology and medicine,2014, 45: 161- 171.
[7] ZHAO Z, ZHANG K, HAO X, et al. Bira-net: Bilinear attention net for diabeticretinopathy grading[C]//2019 IEEE International Conference on Image Processing(ICIP). IEEE, 2019: 1385- 1389.
[8] ARAÚJO T, ARESTA G, MENDONÇA L, et al. Dr| graduate: Uncertainty-awaredeep learning-based diabetic retinopathy grading in eye fundus images[J]. Medical Image Analysis, 2020, 63: 101715.
[9] AHSAN M A, QAYYUM A, RAZI A, et al. An active learning method for diabeticretinopathy classification with uncertainty quantification[J]. Medical & Biological Engineering & Computing, 2022, 60(10): 2797-2811.
[10] ABDELMAKSOUD E, BARAKAT S, ELMOGY M. Diabetic retinopathy gradingsystem based on transfer learning[J]. International Journal of Advanced ComputerResearch, 2021, 11: 52.
[11] GULSHAN V, RAJAN R P, WIDNER K, et al. Performance of a deep-learningalgorithm vs manual grading for detecting diabetic retinopathy in india[J]. JAMA ophthalmology, 2019, 137(9): 987-993.
[12] MÜLLER H, UNAY D. Retrieval from and understanding of large-scale multi-modal medical datasets: a review[J]. IEEE transactions on multimedia, 2017, 19 (9): 2093-2104.
[13] KUMAR A, KIM J, CAI W, et al. Content-based medical image retrieval: a surveyof applications to multidimensional and multimodality data[J]. Journal of digital imaging, 2013, 26(6): 1025- 1039.
[14] HAMEED I M, ABDULHUSSAIN S H, MAHMMOD B M. Content-based imageretrieval: A review of recent trends[J]. Cogent Engineering, 2021, 8(1): 1927469.
[15] 胡志军, 徐勇. 基于内容的视频检索综述[J]. 计算机科学, 2020, 47(1): 117-123.
[16] YE M, SHEN J, LIN G, et al. Deep learning for person re-identification: A surveyand outlook[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 44(6): 2872-2893.
[17] ZHANG Y, PAN P, ZHENG Y, et al. Visual search at alibaba[C]//Proceedings ofthe 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 993- 1001.
[18] JING Y, LIU D, KISLYUK D, et al. Visual search at pinterest[C]//Proceedings ofthe 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015: 1889- 1898.
[19] KIESEBERG P, WEIPPL E, HOLZINGER A. Trust for the doctor-in-the-loop[J].ERCIM news, 2016, 104(1): 32-33.
[20] KIESEBERG P, SCHANTL J, FRÜHWIRT P, et al. Witnesses for the doctor inthe loop[C]//International Conference on Brain Informatics and Health. Springer, 2015: 369-378.
[21] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medicalimage analysis[J]. Medical image analysis, 2017, 42: 60-88.
[22] ABDULSAHIB A A, MAHMOUD M A, MOHAMMED M A, et al. Compre-hensive review of retinal blood vessel segmentation and classification techniques: intelligent solutions for green computing in medical images, current challenges,open issues, and knowledge gaps in fundus medical images[J]. Network Modeling Analysis in Health Informatics and Bioinformatics, 2021, 10(1): 1-32.
[23] ZHENG L, YANG Y, TIAN Q. Sift meets cnn: A decade survey of instance re-trieval[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(5): 1224- 1244.
[24] 蒋鹏飞, 李翔, 彭清华, 等. 眼底血管病理学改变特征研究[J]. 国际眼科杂志, 2019, 19(3): 393-397.
[25] 中华医学会糖尿病学分会. 中国 2 型糖尿病防治指南 (2010 年版)[J]. 中国医学前沿杂志, 2011, 3(6): 54- 109.
[26] CHEW E Y, DAVIS M D, DANIS R P, et al. The effects of medical management onthe progression of diabetic retinopathy in persons with type 2 diabetes: the action to control cardiovascular risk in diabetes (accord) eye study[J]. Ophthalmology, 2014, 121(12): 2443-2451.
[27] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. Inter-national journal of computer vision, 2004, 60(2): 91- 110.
[28] SIVIC J, ZISSERMAN A. Video google: A text retrieval approach to object match-ing in videos[C]//Computer Vision, IEEE International Conference on: volume 3.IEEE Computer Society, 2003: 1470- 1470.
[29] BABENKO A, SLESAREV A, CHIGORIN A, et al. Neural codes for image re-trieval[C]//European conference on computer vision. Springer, 2014: 584-599.
[30] LI W J, WANG S, KANG W C. Feature learning based deep supervised hashingwith pairwise labels[C]//Proceedings of the Twenty-Fifth International Joint Con- ference on Artificial Intelligence. 2016: 1711- 1717.
[31] BABENKO A, LEMPITSKY V. Aggregating local deep features for image re-trieval[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1269- 1277.
[32] RAZAVIAN A S, SULLIVAN J, CARLSSON S, et al. Visual instance retrievalwith deep convolutional networks[J]. ITE Transactions on Media Technology andApplications, 2016, 4(3): 251-258.
[33] WANG J, ZHANG T, SEBE N, et al. A survey on learning to hash[J]. IEEE trans-actions on pattern analysis and machine intelligence, 2017, 40(4): 769-790.
[34] SPYROMITROS-XIOUFIS E, PAPADOPOULOS S, KOMPATSIARIS I Y, et al.A comprehensive study over vlad and product quantization in large-scale image retrieval[J]. IEEE Transactions on Multimedia, 2014, 16(6): 1713- 1728.
[35] JIN S, YAO H, SUN X, et al. Deep saliency hashing for fine-grained retrieval[J].IEEE Transactions on Image Processing, 2020, 29: 5336-5351.
[36] DO T T, HOANG T, LE TAN D K, et al. Compact hash code learning with binarydeep neural network[J]. IEEE Transactions on Multimedia, 2019, 22(4): 992- 1004.
[37] WU D, DAI Q, LIU J, et al. Deep incremental hashing network for efficient im-age retrieval[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 9069-9077.
[38] KLEIN B, WOLF L. End-to-end supervised product quantization for image searchand retrieval[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 5041-5050.
[39] YU T, YUAN J, FANG C, et al. Product quantization network for fast image re-trieval[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018: 186-201.
[40] XIAO H C, ZHAO W L, LIN J, et al. Deeply activated salient region for instancesearch[J]. ACM Transactions on Multimedia Computing, Communications andApplications, 2022, 18(3s): 1- 19.
[41] NG T, BALNTAS V, TIAN Y, et al. Solar: second-order loss and attention for imageretrieval[C]//European conference on computer vision. Springer, 2020: 253-270.
[42] REVAUD J, ALMAZÁN J, REZENDE R S, et al. Learning with average precision:Training image retrieval with a listwise loss[C]//Proceedings of the IEEE/CVF In- ternational Conference on Computer Vision. 2019: 5107-5116.
[43] HUANG L K, CHEN J, PAN S J. Accelerate learning of deep hashing with gradientattention[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 5271-5280.
[44] TOLIAS G, SICRE R, JÉGOU H. Particular object retrieval with integral max-pooling of cnn activations[C]//ICLR 2016-International Conference on LearningRepresentations. 2016: 1- 12.
[45] KALANTIDIS Y, MELLINA C, OSINDERO S. Cross-dimensional weighting foraggregated deep convolutional features[C]//European conference on computer vi- sion. Springer, 2016: 685-701.
[46] GORDO A, ALMAZAN J, REVAUD J, et al. End-to-end learning of deep visualrepresentations for image retrieval[J]. International Journal of Computer Vision,2017, 124(2): 237-254.
[47] RADENOVIĆ F, TOLIAS G, CHUM O. Fine-tuning cnn image retrieval with nohuman annotation[J]. IEEE transactions on pattern analysis and machine intelli-gence, 2018, 41(7): 1655- 1668.
[48] CONJETI S, PASCHALI M, KATOUZIAN A, et al. Deep multiple instance hash-ing for scalable medical image retrieval[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2017: 550-558.
[49] CONJETI S, ROY A G, KATOUZIAN A, et al. Hashing with residual networksfor image retrieval[C]//International Conference on Medical Image Computing andComputer-Assisted Intervention. Springer, 2017: 541-549.
[50] CHEN Z, CAI R, LU J, et al. Order-sensitive deep hashing for multimorbiditymedical image retrieval[C]//International Conference on Medical Image Comput- ing and Computer-Assisted Intervention. Springer, 2018: 620-628.
[51] YANG E, YAO D, CAO B, et al. Deep disentangled hashing with momentumtriplets for neuroimage search[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2020: 191-201.
[52] ACTON S T, SOLIZ P, RUSSELL S, et al. Content based image retrieval:The foundation for future case-based and evidence-based ophthalmology[C]//2008 IEEE International Conference on Multimedia and Expo. IEEE, 2008: 541-544.
[53] CHAUM E, KARNOWSKI T P, GOVINDASAMY V P, et al. Automated diagnosisof retinopathy by content-based image retrieval[J]. Retina, 2008, 28(10): 1463-1477.
[54] DEEPAK K S, JOSHI G D, SIVASWAMY J. Content-based retrieval of retinalimages for maculopathy[C]//Proceedings of the 1st ACM International Health In- formatics Symposium. 2010: 135- 143.
[55] 杨锋, 魏国辉, 曹慧, 等. 基于内容的医学图像检索研究进展[J]. 激光与光电子学进展, 2020, 57(6): 060003.
[56] 刘桂慧. 基于深度学习的医学图像特征提取方法研究[J]. 信息通信, 2020(7): 3.
[57] 梁洪. 基于内容的医学图像检索及语义建模关键技术研究[D]. 哈尔滨工程大学, 2010.
[58] 张宁. 基于 Hausdorff 距离的医学影像检索方法研究[D]. 哈尔滨理工大学,2019.
[59] 崔少国, 熊舒羽, 刘畅, 等. 基于深度哈希卷积神经网络的医学图像检索[J].重庆理工大学学报: 自然科学, 2020, 34(8): 134- 142.
[60] 李启. 基于深度学习的肺结节图像检索研究与实现[D]. 中北大学, 2019.
[61] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. nature, 2015, 521(7553):436-444.
[62] ABRÀMOFF M D, LOU Y, ERGINAY A, et al. Improved automated detectionof diabetic retinopathy on a publicly available dataset through integration of deeplearning[J]. Investigative ophthalmology & visual science, 2016, 57(13): 5200-5206.
[63] GULSHAN V, PENG L, CORAM M, et al. Development and validation of adeep learning algorithm for detection of diabetic retinopathy in retinal fundus pho- tographs[J]. Jama, 2016, 316(22): 2402-2410.
[64] GARGEYA R, LENG T. Automated identification of diabetic retinopathy usingdeep learning[J]. Ophthalmology, 2017, 124(7): 962-969.
[65] TING D S W, CHEUNG C Y L, LIM G, et al. Development and validation of adeep learning system for diabetic retinopathy and related eye diseases using retinalimages from multiethnic populations with diabetes[J]. Jama, 2017, 318(22): 2211-2223.
[66] NIRTHIKA R, MANIVANNAN S, RAMANAN A. Siamese network based finegrained classification for diabetic retinopathy grading[J]. Biomedical Signal Pro-cessing and Control, 2022, 78: 103874.
[67] EYEPACS. Diabetic retinopathy detection | kaggle[EB/OL]. 2016. https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data.
[68] LI X, JIANG Y, ZHANG J, et al. Lesion-attention pyramid network for diabeticretinopathy grading[J]. Artificial Intelligence in Medicine, 2022, 126: 102259.
[69] DECENCIERE E, CAZUGUEL G, ZHANG X, et al. Teleophta: Machine learningand image processing methods for teleophthalmology[J]. Irbm, 2013, 34(2): 196-203.
[70] LIU Q, LIU H, ZHAO Y, et al. Dual-branch network with dual-sampling modulateddice loss for hard exudate segmentation in color fundus images[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(3): 1091- 1102.
[71] LI T, GAO Y, WANG K, et al. Diagnostic assessment of deep learning algorithmsfor diabetic retinopathy screening[J]. Information Sciences, 2019, 501: 511-522.
[72] PORWAL P, PACHADE S, KOKARE M, et al. Idrid: Diabetic retinopathy–segmentation and grading challenge[J]. Medical image analysis, 2020, 59: 101561.
[73] LIU Q, LIU H, KE W, et al. Automated lesion segmentation in fundus images withmany-to-many reassembly of features[J]. Pattern Recognition, 2023, 136: 109191.
[74] WANG Z, YIN Y, SHI J, et al. Zoom-in-net: Deep mining lesions for diabeticretinopathy detection[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2017: 267-275.
[75] GUO C, SZEMENYEI M, HU Y, et al. Channel attention residual u-net for reti-nal vessel segmentation[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 1185- 1189.
[76] LI L, XU M, WANG X, et al. Attention based glaucoma detection: a large-scaledatabase and cnn model[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 10571- 10580.
[77] HE A, LI T, LI N, et al. Cabnet: category attention block for imbalanced diabeticretinopathy grading[J]. IEEE Transactions on Medical Imaging, 2020, 40(1): 143- 153.
[78] LI X, HU X, YU L, et al. Canet: cross-disease attention network for joint diabeticretinopathy and diabetic macular edema grading[J]. IEEE transactions on medical imaging, 2019, 39(5): 1483- 1493.
[79] WANG Y L, YANG J Y, YANG J Y, et al. Progress of artificial intelligence in dia-betic retinopathy screening[J]. Diabetes/Metabolism Research and Reviews, 2021,37(5): e3414.
[80] ZHOU K, GU Z, LIU W, et al. Multi-cell multi-task convolutional neural networksfor diabetic retinopathy grading[C]//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018: 2724-2727.
[81] LIU S, GONG L, MA K, et al. Green: a graph residual re-ranking network forgrading diabetic retinopathy[C]//International Conference on Medical Image Com- puting and Computer-Assisted Intervention. Springer, 2020: 585-594.
[82] WILKINSON C P, FERRIS III F L, KLEIN R E, et al. Proposed internationalclinical diabetic retinopathy and diabetic macular edema disease severity scales[J].Ophthalmology, 2003, 110(9): 1677- 1682.
[83] SRIVASTAVA R. Integrative computational genomics based approaches to un-cover the tissue-specific regulatory networks in development and disease[M]. In- diana University-Purdue University Indianapolis, 2020.
[84] 邵毅, 周琼. 糖尿病视网膜病变诊治规范——2018 年美国眼科学会临床指南解读[J]. 眼科新进展, 2019, 39(6).
[85] 胡延秋, 杨雪蓝, 葛畅. 糖尿病视网膜病变患者血糖管理的最佳证据总结[J]. 护理学杂志, 2019, 2.
[86] APTOS. Aptos 2019 blindness detection | kaggle[EB/OL]. 2019. https://www.kaggle.com/c/aptos2019-blindness-detection.
[87] QOMARIAH D, NOPEMBER I, TJANDRASA H, et al. Segmentation of microa-neurysms for early detection of diabetic retinopathy using mresunet[J]. Interna- tional Journal of Intelligent Engineering and Systems, 2021, 14(3): 359-373.
[88] ZHAO G, FU D, YANG T. A deep learning method for microaneurysms seg-mentation in fundus images[C]//Proceedings of 2021 Chinese Intelligent Systems Conference. Springer, 2022: 772-780.
[89] TAN J H, FUJITA H, SIVAPRASAD S, et al. Automated segmentation of exu-dates, haemorrhages, microaneurysms using single convolutional neural network[J]. Information sciences, 2017, 420: 66-76.
[90] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutionalnetworks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.
[91] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks forbiomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, 2015: 234-241.
[92] YOON S, KANG W Y, JEON S, et al. Image-to-image retrieval by learning simi-larity between scene graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 35. 2021: 10718- 10726.
[93] ZAEEMZADEH A, GHADAR S, FAIETA B, et al. Face image retrieval with at-tribute manipulation[C]//Proceedings of the IEEE/CVF International Conferenceon Computer Vision. 2021: 12116- 12125.
[94] ZHUANG B, LIN G, SHEN C, et al. Fast training of triplet-based deep binaryembedding networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 5955-5964.
[95] GONG Y, LAZEBNIK S, GORDO A, et al. Iterative quantization: A procrusteanapproach to learning binary codes for large-scale image retrieval[J]. IEEE transac- tions on pattern analysis and machine intelligence, 2012, 35(12): 2916-2929.
[96] LAI H, PAN Y, LIU Y, et al. Simultaneous feature learning and hash coding withdeep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3270-3278.
[97] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3- 19.
[98] CHEN L, ZHANG H, XIAO J, et al. Sca-cnn: Spatial and channel-wise attentionin convolutional networks for image captioning[C]//Proceedings of the IEEE con- ference on computer vision and pattern recognition. 2017: 5659-5667.
[99] SLANEY M, CASEY M. Locality-sensitive hashing for finding nearest neighbors[lecture notes][J]. IEEE Signal processing magazine, 2008, 25(2): 128- 131.
[100] TANG Y K, MAO X L, HAO Y J, et al. Locality-sensitive hashing for findingnearest neighbors in probability distributions[C]//Chinese National Conference on Social Media Processing. Springer, 2017: 3- 15.
[101] LI J, CHENG J, YANG F, et al. Losha: A general framework for scalable localitysensitive hashing[C]//Proceedings of the 40th International ACM SIGIR Confer- ence on Research and Development in Information Retrieval. 2017: 635-644.
[102] CONJETI S, KATOUZIAN A, KAZI A, et al. Metric hashing forests[J]. Medicalimage analysis, 2016, 34: 13-29.
[103] ZHU H, LONG M, WANG J, et al. Deep hashing network for efficient similarityretrieval[C]//Proceedings of the AAAI conference on Artificial Intelligence: vol- ume 30. 2016.
[104] LIU H, WANG R, SHAN S, et al. Deep supervised hashing for fast image retrieval[C]//Proceedings of the IEEE conference on computer vision and pattern recogni- tion. 2016: 2064-2072.
[105] NIE D, GAO Y, WANG L, et al. Asdnet: Attention based semi-supervised deepnetworks for medical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2018: 370-378.
[106] ABRAHAM N, KHAN N M. A novel focal tversky loss function with improved at- tention u-net for lesion segmentation[C]//2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019). IEEE, 2019: 683-687.
[107] SCHLEMPER J, OKTAY O, SCHAAP M, et al. Attention gated networks: Learn-ing to leverage salient regions in medical images[J]. Medical image analysis, 2019,53: 197-207.
[108] LI G, YU Y. Visual saliency based on multiscale deep features[C]//Proceedings ofthe IEEE conference on computer vision and pattern recognition. 2015: 5455-5463.
[109] ZHAO R, OUYANG W, LI H, et al. Saliency detection by multi-context deeplearning[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1265- 1274.
[110] LIU N, HAN J. Dhsnet: Deep hierarchical saliency network for salient object de-tection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 678-686.
[111] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discrimina-tively, with application to face verification[C]//2005 IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition (CVPR’05): volume 1. IEEE, 2005: 539-546.
[112] WEI X, WANG H, SCOTNEY B, et al. Minimum margin loss for deep face recog-nition[J]. Pattern Recognition, 2020, 97: 107012.
[113] GENTILE C, WARMUTH M K. Linear hinge loss and average margin[J]. Ad-vances in neural information processing systems, 1998, 11.
[114] SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet: A unified embeddingfor face recognition and clustering[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 815-823.
[115] WANG X, SHI Y, KITANI K M. Deep supervised hashing with triplet labels[C]//Asian conference on computer vision. Springer, 2016: 70-84.
[116] SUN Y, CHENG C, ZHANG Y, et al. Circle loss: A unified perspective of pair sim-ilarity optimization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 6398-6407.
[117] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[118] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network train-ing by reducing internal covariate shift[C]//International conference on machine learning. PMLR, 2015: 448-456.
[119] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann ma-chines[C]//Proceedings of the 27th international conference on machine learning(ICML- 10). 2010: 807-814.
[120] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discrimi-native localization[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2921-2929.
[121] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification withdeep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097- 1105.
[122] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision. 2017:2980-2988.
[123] JOHNSON J, DOUZE M, JÉGOU H. Billion-scale similarity search with gpus[J].IEEE Transactions on Big Data, 2019, 7(3): 535-547.
[124] SCHMIDT-ERFURTH U, SADEGHIPOUR A, GERENDAS B S, et al. Artificialintelligence in retina[J]. Progress in retinal and eye research, 2018, 67: 1-29.
[125] LI T, BO W, HU C, et al. Applications of deep learning in fundus images: A review[J]. Medical Image Analysis, 2021, 69: 101971.
[126] SILVA W, POELLINGER A, CARDOSO J S, et al. Interpretability-guided content-based medical image retrieval[C]//International Conference on MedicalImage Computing and Computer-Assisted Intervention. Springer, 2020: 305-314.
[127] NOH H, ARAUJO A, SIM J, et al. Large-scale image retrieval with attentive deeplocal features[C]//Proceedings of the IEEE international conference on computer vision. 2017: 3456-3465.
[128] KOCH G, ZEMEL R, SALAKHUTDINOV R, et al. Siamese neural networks forone-shot image recognition[C]//ICML deep learning workshop: volume 2. Lille,2015: 0.
[129] HOFFER E, AILON N. Deep metric learning using triplet network[C]// International workshop on similarity-based pattern recognition. Springer, 2015:84-92.
[130] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of theIEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
[131] QILONG W, BANGGU W, PENGFEI Z, et al. Eca-net: Efficient channel atten- tion for deep convolutional neural networks.[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.
[132] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7794-7803.
[133] LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//Proceedings ofthe IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 11976- 11986.
[134] BELLO I, ZOPH B, VASWANI A, et al. Attention augmented convolutional net-works[C]//Proceedings of the IEEE/CVF international conference on computer vi- sion. 2019: 3286-3295.
[135] CHEN J, HE T, ZHUO W, et al. Tvconv: Efficient translation variant convolution for layout-aware visual processing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 12548- 12558.
[136] PHAISANGITTISAGUL E. An analysis of the regularization between l2 anddropout in single hidden layer neural network[C]//2016 7th International Confer- ence on Intelligent Systems, Modelling and Simulation (ISMS). IEEE, 2016: 174- 179.
[137] ZHANG C, BENGIO S, HARDT M, et al. Understanding deep learning (still)requires rethinking generalization[J]. Communications of the ACM, 2021, 64(3): 107- 115.
[138] ZHAO X, QI H, LUO R, et al. A weakly supervised adaptive triplet loss fordeep metric learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. 2019: 0-0.
[139] KRIZHEVSKY A, HINTON G, et al. Learning multiple layers of features fromtiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4).
[140] DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical imagedatabase[C]//2009 IEEE conference on computer vision and pattern recognition.Ieee, 2009: 248-255.
[141] KORNBLITH S, SHLENS J, LE Q V. Do better imagenet models transfer bet-ter?[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 2661-2671.
[142] HUANG J, RATHOD V, SUN C, et al. Speed/accuracy trade-offs for modern con-volutional object detectors[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7310-7311.
[143] CHEN L C, COLLINS M, ZHU Y, et al. Searching for efficient multi-scale archi-tectures for dense image prediction[J]. Advances in neural information processing systems, 2018, 31.
[144] CHENG G, LAI P, GAO D, et al. Class attention network for image recognition [J/OL]. SCIENCE CHINA Information Sciences, 2022: 1. DOI: https://doi.org/ 10.1007/s11432-021-3493-7.
[145] LI Z, SUN Y, ZHANG L, et al. Ctnet: Context-based tandem network for semanticsegmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2021, 44(12): 9904-9917.
[146] CHEN C F R, FAN Q, PANDA R. Crossvit: Cross-attention multi-scale visiontransformer for image classification[C]//Proceedings of the IEEE/CVF Interna- tional Conference on Computer Vision. 2021: 357-366.
[147] GUO J, HAN K, WU H, et al. Cmt: Convolutional neural networks meet visiontransformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 12175- 12185.
[148] BABILONI F, MARRAS I, SLABAUGH G, et al. Tesa: Tensor element self-attention via matricization[C]//Proceedings of the IEEE/CVF Conference on Com- puter Vision and Pattern Recognition. 2020: 13945- 13954.
[149] WANG H, WANG Y, ZHOU Z, et al. Cosface: Large margin cosine loss for deepface recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 5265-5274.
[150] WANG J, ZHOU F, WEN S, et al. Deep metric learning with angular loss[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2593-2601.
[151] QIAN Q, SHANG L, SUN B, et al. Softtriple loss: Deep metric learning with-out triplet sampling[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 6450-6458.
[152] GE W. Deep metric learning with hierarchical triplet loss[C]//Proceedings of theEuropean Conference on Computer Vision (ECCV). 2018: 269-285.
[153] EBRAHIMPOUR M K, QIAN G, BEACH A. Multi-head deep metric learningusing global and local representations[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022: 3031-3040.
[154] KIM S, KIM D, CHO M, et al. Proxy anchor loss for deep metric learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog- nition. 2020: 3238-3247.
[155] WU C Y, MANMATHA R, SMOLA A J, et al. Sampling matters in deep embed-ding learning[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2840-2848.
[156] OH SONG H, XIANG Y, JEGELKA S, et al. Deep metric learning via lifted struc-tured feature embedding[C]//Proceedings of the IEEE conference on computer vi- sion and pattern recognition. 2016: 4004-4012.
[157] SOHN K. Improved deep metric learning with multi-class n-pair loss objective[J].Advances in neural information processing systems, 2016, 29.
[158] DO T T, TRAN T, REID I, et al. A theoretically sound upper bound on the tripletloss for improving the efficiency of deep distance metric learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 10404- 10413.
[159] LI T, WU B, YANG Y, et al. Compressing convolutional neural networks viafactorized convolutional filters[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 3977-3986.
[160] SWAMINATHAN S, GARG D, KANNAN R, et al. Sparse low rank factorizationfor deep neural network compression[J]. Neurocomputing, 2020, 398: 185- 196.
[161] WANG M, LIU B, FOROOSH H. Factorized convolutional neural networks[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops.2017: 545-553.
[162] KHODAK M, TENENHOLTZ N, MACKEY L, et al. Initialization and regular-ization of factorized neural layers[C]//9th International Conference on Learning Representations, ICLR. 2021.
[163] GRAY G, CROWLEY E J, STORKEY A. Separable layers enable structured effi-cient linear substitutions[J]. arXiv preprint arXiv:1906.00859, 2019.
[164] KOSSAIFI J, LIPTON Z C, KOLBEINSSON A, et al. Tensor regression networks[J]. Journal of Machine Learning Research, 2020, 21: 1-21.
[165] KESKAR N S, NOCEDAL J, TANG P T P, et al. On large-batch training for deeplearning: Generalization gap and sharp minima[C]//5th International Conference on Learning Representations, ICLR. 2017.
[166] YOSHIDA Y, MIYATO T. Spectral norm regularization for improving the gener-alizability of deep learning[J]. stat, 2017, 1050: 31.
[167] MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for gen-erative adversarial networks[C]//6th International Conference on Learning Repre- sentations, ICLR. 2018.
[168] MOHRI M, ROSTAMIZADEH A, TALWALKAR A. Foundations of machinelearning[M]. MIT press, 2018.
[169] SHAMIR O. Fast stochastic algorithms for svd and pca: Convergence propertiesand convexity[C]//International Conference on Machine Learning. PMLR, 2016:248-256.
[170] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: Inverted residuals andlinear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.
[171] FOWLKES E B, MALLOWS C L. A method for comparing two hierarchical clus-terings[J]. Journal of the American statistical association, 1983, 78(383): 553-569.
[172] NGUYEN H Q, LAM K, LE L T, et al. Vindr-cxr: An open dataset of chest x-rays with radiologist ’s annotations[J]. Scientific Data, 2022, 9(1).
[173] LOYMAN M, GREENSPAN H. Lung nodule retrieval using semantic similarityestimates[C]//Medical Imaging 2019: Computer-Aided Diagnosis: volume 10950. International Society for Optics and Photonics, 2019: 109503P.
[174] SU Z, LIU W, YU Z, et al. Pixel difference networks for efficient edge detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021: 5117-5127.
[175] ÖZTÜRK Ş . Stacked auto-encoder based tagging with deep features for content-based medical image retrieval[J]. Expert Systems with Applications, 2020, 161:113693.
[176] ÖZTÜRK Ş . Two-stage sequential losses based automatic hash code generationusing siamese network[J]. Avrupa Bilim ve Teknoloji Dergisi, 2020: 39-46.
[177] JIMENEZ A, ALVAREZ J M, GIRO-I NIETO X. Class-weighted convolutionalfeatures for visual instance search[C]//Proceedings of the 28th British Machine Vi- sion Conference 2017. 2017: 1- 12.
[178] MOHEDANO E, MCGUINNESS K, O’CONNOR N E, et al. Bags of local con-volutional features for scalable instance search[C]//Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval. 2016: 327-331.
[179] MOHEDANO E, MCGUINNESS K, GIRÓ-I NIETO X, et al. Saliency weightedconvolutional features for instance search[C]//2018 international conference oncontent-based multimedia indexing (CBMI). IEEE, 2018: 1-6.
[180] LASKAR Z, KANNALA J. Context aware query image representation for partic-ular object retrieval[C]//Scandinavian Conference on Image Analysis. Springer, 2017: 88-99.
[181] CAO J, LIU L, WANG P, et al. Where to focus: Query adaptive match-ing for instance retrieval using convolutional feature maps[J]. arXiv preprintarXiv:1606.06811, 2016.
[182] SALVADOR A, GIRÓ-I NIETO X, MARQUÉS F, et al. Faster r-cnn features forinstance search[C]//Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2016: 9- 16.
[183] KIM J, YOON S E. Regional attention based deep feature for image retrieval.[C]//BMVC. 2018: 209.
[184] TSCHANNEN M, BACHEM O, LUCIC M. Recent advances in autoencoder-basedrepresentation learning[J]. arXiv preprint arXiv:1812.05069, 2018.
[185] VAN DEN OORD A, VINYALS O, et al. Neural discrete representation learning[J]. Advances in neural information processing systems, 2017, 30.
[186] WU H, FLIERL M. Learning product codebooks using vector-quantized autoen-coders for image retrieval[C]//2019 IEEE Global Conference on Signal and Infor-mation Processing (GlobalSIP). IEEE, 2019: 1-5.
[187] JIN G, ZHANG Y, LU K. Deep hashing based on vae-gan for efficient similarityretrieval[J]. Chinese Journal of Electronics, 2019, 28(6): 1191- 1197.
[188] DOERSCH C. Tutorial on variational autoencoders[J]. stat, 2016, 1050: 13.
[189] ZHANG M, XIAO T Z, PAIGE B, et al. Improving vae-based representation learn-ing[J]. arXiv preprint arXiv:2205. 14539, 2022.
[190] NISHIMAKI K, IKUTA K, ONGA Y, et al. Loc-vae: Learning structurally local-ized representation from 3d brain mr images for content-based image retrieval[C]// 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2022: 2433-2438.
[191] LEE K, LEE Y, KO H H, et al. A study on the channel expansion vae for content-based image retrieval[J]. Applied Sciences, 2022, 12(18): 9160.
[192] WANG X, DU Y, YANG S, et al. Retccl: clustering-guided contrastive learningfor whole-slide image retrieval[J]. Medical Image Analysis, 2022: 102645.
[193] ALVES C, TRAINA A J. Variational autoencoders for medical image retrieval[C]//2022 International Conference on INnovations in Intelligent SysTems and Appli- cations (INISTA). IEEE, 2022: 1-6.
[194] AHONEN T, HADID A, PIETIKAINEN M. Face description with local binarypatterns: Application to face recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(12): 2037-2041.
[195] JAIN A K, FARROKHNIA F. Unsupervised texture segmentation using gabor fil-ters[J]. Pattern recognition, 1991, 24(12): 1167- 1186.
[196] JUEFEI-XU F, NARESH BODDETI V, SAVVIDES M. Local binary convolu-tional neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 19-28.
[197] LUAN S, CHEN C, ZHANG B, et al. Gabor convolutional networks[J]. IEEETransactions on Image Processing, 2018, 27(9): 4357-4366.
[198] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J].arXiv preprint arXiv:1511.07122, 2015.
[199] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedingsof the IEEE international conference on computer vision. 2017: 764-773.
[200] YU Z, ZHAO C, WANG Z, et al. Searching central difference convolutional networks for face anti-spoofing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 5295-5305.
[201] YU Z, QIN Y, ZHAO H, et al. Dual-cross central difference network for face anti-spoofing[C]//ZHOU Z H. Proceedings of the Thirtieth International Joint Con- ference on Artificial Intelligence, IJCAI-21. International Joint Conferences on Artificial Intelligence Organization, 2021: 1281- 1287.
[202] AKBAR S, SHARIF M, AKRAM M U, et al. Automated techniques for bloodvessels segmentation through fundus retinal images: A review[J]. Microscopy re- search and technique, 2019, 82(2): 153- 170.
[203] JIN K, HUANG X, ZHOU J, et al. Fives: A fundus image dataset for artificialintelligence based vessel segmentation[J]. Scientific Data, 2022, 9(1): 1-8.
[204] FU Y, CHEN J, LI J, et al. Optic disc segmentation by u-net and probability bubblein abnormal fundus images[J]. Pattern Recognition, 2021, 117: 107971.
[205] HASAN M K, ALAM M A, ELAHI M T E, et al. Drnet: Segmentation and lo-calization of optic disc and fovea from diabetic retinopathy image[J]. Artificial Intelligence in Medicine, 2021, 111: 102001.
[206] GARIFULLIN A, LENSU L, UUSITALO H. Deep bayesian baseline for segment-ing diabetic retinopathy lesions: Advances and challenges[J]. Computers in Biol- ogy and Medicine, 2021, 136: 104725.
[207] HUANG S, LI J, XIAO Y, et al. Rtnet: relation transformer network for diabeticretinopathy multi-lesion segmentation[J]. IEEE Transactions on Medical Imaging,2022, 41(6): 1596- 1607.
[208] ROYCHOWDHURY S, KOOZEKANANI D D, PARHI K K. Iterative vessel seg-mentation of fundus images[J]. IEEE Transactions on Biomedical Engineering,2015, 62(7): 1738- 1749.
[209] HE A, WANG K, LI T, et al. Progressive multi-scale consistent network for multi-class fundus lesion segmentation[J]. IEEE Transactions on Medical Imaging, 2022.
[210] LI Y, ZHU M, SUN G, et al. Weakly supervised training for eye fundus lesionsegmentation in patients with diabetic retinopathy[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 5293-5311.
[211] KINGMA D P, WELLING M. Auto-encoding variational bayes[J]. stat, 2014,1050: 1.
修改评论