中文版 | English
题名

水相酰胺萘管与葫芦脲的分子识别及半缩醛胺的捕获

其他题名
MOLECULAR RECOGNITION OF AMIDE NAPHTHOTUBES AND CUCURBITURILS AND CAPTURE OF HEMIAMINALS IN WATER
姓名
姓名拼音
LI Mingshuang
学号
11949013
学位类型
博士
学位专业
085274 能源与环保
学科门类/专业学位类别
0852 工程博士
导师
蒋伟
导师单位
化学系
论文答辩日期
2023-04-14
论文提交日期
2023-06-19
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

  分子识别广泛存在于自然界中,是很多复杂生物功能的基础。基于大环主体的人工分子识别不仅可以作为模型体系帮助理解复杂的生物分子识别现象,而且能够被用于环境科学、分析化学、生物医药、精细化工、材料科学等领域。有机相分子识别体系比较容易构建,相关研究也较为广泛,但能够对亲水分子进行选择性键合的水相分子识别体系却很难构建。通过模拟生物受体的结构,将极性识别位点置于深穴疏水空腔内部而构筑的仿生大环主体酰胺萘管,能够在水中高选择性识别亲水分子。

      虽然亲水分子的水相识别研究取得了一定进展,但发展新的人工亲水分子识别体系仍然较为困难,因为亲水分子的水相识别机理仍不清晰。此外,在水中进行化学反应在生物分子修饰、节约成本、环境保护等方面具有重要意义。然而一些反应的中间体或最终产物对水敏感,反应很难在水中进行;而且水相化学反应的机理研究也较为困难,因为水环境通常会增加反应中间体的捕获难度。

      本文利用仿生大环酰胺萘管与经典大环葫芦脲详细研究了水相亲水分子的识别机理;并基于酰胺萘管的水相识别性质,设计合成了单修饰酰胺萘管衍生物,使其能够在水中生成对水敏感的脂肪族亚胺,并捕获活泼中间体半缩醛胺。

      研究了葫芦脲在水中对中性亲水分子的识别,揭示了由疏水空腔引起的疏水效应在水相亲水分子识别中的重要作用。研究发现葫芦脲可以在水中有效的键合中性亲水分子,例如1,4-二氧六环、冠醚、单糖等。其中葫芦[8]脲与12-冠-4醚的键合常数高达107 L/mol;葫芦[7]脲与2-脱氧-D-核糖的键合常数也有103 L/mol。葫芦脲与这些亲水分子之间不存在明显的非共价相互作用;它们的键合主要是由疏水效应驱动的;所形成的主客体复合物的空腔占有率在52%至65%之间,客体被适宜的容纳在主体的空腔中,既没有造成空间位阻,也没有过分松散。

      进一步测定了葫芦[7]脲对35个中性亲水分子的键合参数,并将其与酰胺萘管的水相识别性质进行对比。主成分分析表明葫芦[7]脲的本征键合强度与客体的体积呈正相关,与客体的非球面系数呈负相关,即葫芦[7]脲选择性键合分子体积与其空腔匹配的球形客体;而酰胺萘管的本征键合强度主要与客体中的杂原子个数、有效氢键碱性呈正相关,与客体的油水分配系数呈负相关,即酰胺萘管选择性键合能与其形成匹配氢键的亲水分子。酰胺萘管不键合绝大多数氨基酸、脱氧核糖核苷酸、D-葡萄糖以及D-果糖,其对中性分子的水相识别也不受盐、PBS和Tris-HCl的缓冲体系的干扰;但HEPES缓冲溶液会通过竞争键合抑制酰胺萘管对客体的识别强度。

      在酰胺萘管选择性识别亲水分子的基础上,模拟生物受体醛缩酶的结构,设计合成了连有氨基尾链的单修饰酰胺萘管。单修饰酰胺萘管的氨基尾链在水中是弯入空腔内部的,能够捕获溶液中的脂肪族醛或者苯甲醛,并与其反应生成亚胺;且所生成的亚胺具有较好的稳定性,不受热、强碱、亲核试剂或亲电试剂的干扰。在该主体与乙醛或丙醛的反应过程中,利用核磁氢谱以及质谱能够检测到反应的活泼中间体半缩醛胺;对于具有更大疏水基团的正丁醛、正戊醛、正己醛以及苯甲醛,则不能观察到中间体半缩醛胺。无论是亚胺,还是半缩醛,它们的官能团均能与主体空腔内部的酰胺形成氢键,同时被主体的疏水空腔严密包裹。

关键词
语种
中文
培养类别
联合培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] CHATTERJI D. Basics of Molecular Recognition[M]. Boca Raton: CRC Press, 2016.
[2] PEDERSEN C J. Cyclic Polyethers and Their Complexes with Metal Salts[J]. Journal of the American Chemical Society, 1967, 89(26): 7017-7036.
[3] 罗琴会. 大环化学:主-客体化合物和超分子[M]. 北京:科学出版社,2009.
[4] HILL C, DOZOL J F, LAMARE V, et al. Nuclear Waste Treatment by Means of Supported Liquid Membranes Containing Calixcrown Compounds[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1994, 19: 399-408.
[5] GERHARD K E S. Chiral Separations: Methods and Protocols[M]. New York: Humana Press, 2019.
[6] SLATER A G, COOPER A I. Function-Led Design of New Porous Materials[J]. Science, 2015, 348(6238): aaa8075.
[7] Directorate-General for Research and Innovation. 100 Radical Innovation Breakthroughs for the Future[R]. Publications Office of the European Union, 2019.
[8] FERGUSON JOHNS H P, HARRISON E E, STINGLEY K J, et al. Mimicking Biological Recognition: Lessons in Binding Hydrophilic Guests in Water[J]. Chemistry–A European Journal, 2021, 27(22): 6620-6644.
[9] ESCOBAR L, BALLESTER P. Molecular Recognition in Water Using Macrocyclic Synthetic Receptors[J]. Chemical Reviews, 2021, 121(4): 2445-2514.
[10] KUBIK S. When Molecules Meet in Water-Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water[J]. ChemistryOpen, 2022, 11(4): e202200028.
[11] LEE H H L, LEE J W, JANG Y, et al. Manifesting Subtle Differences of Neutral Hydrophilic Guest Isomers in a Molecular Container by Phase Transfer[J]. Angewandte Chemie International Edition, 2016, 55(29): 8249-8253.
[12] DONG J, DAVIS A P. Molecular Recognition Mediated by Hydrogen Bonding in Aqueous Media[J]. Angewandte Chemie International Edition, 2021, 60(15): 8035-8048.
[13] TANFORD C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes[M]. New York: Wiley, 1980.
[14] CREMER P S, FLOOD A H, GIBB B C, et al. Collaborative Routes to Clarifying the Murky Waters of Aqueous Supramolecular Chemistry[J]. Nature Chemistry, 2018, 10(1): 8-16.
[15] YANG L P, WANG X, YAO H, et al. Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature[J]. Accounts of Chemical Research, 2019, 53(1): 198-208.
[16] HUANG G B, WANG S H, KE H, et al. Selective Recognition of Highly Hydrophilic Molecules in Water by Endo-Functionalized Molecular Tubes[J]. Journal of the American Chemical Society, 2016, 138(44): 14550-14553.
[17] MA Y L, QUAN M, LIN X L, et al. Biomimetic Eecognition of Organic Drug Molecules in Water by Amide Naphthotubes[J]. CCS Chemistry, 2021, 3(4): 1078-1092.
[18] MA Y L, SUN C, LI Z, et al. Biomimetic Recognition-Based Bioorthogonal Host-Guest Pairs for Cell Targeting and Tissue Imaging in Living Animals[J]. CCS Chemistry, 2022, 4(6): 1977-1989.
[19] YAO H, KE H, ZHANG X, et al. Molecular Recognition of Hydrophilic Molecules in Water by Combining the Hydrophobic Effect with Hydrogen Bonding[J]. Journal of the American Chemical Society, 2018, 140(41): 13466-13477.
[20] STEFAN K. Supramolecular Chemistry in Water[M]. Weinheim: Wiley-VCH, 2019.
[21] BEATTY M A, HOF F. Host-Guest Binding in Water, Salty Water, and Biofluids: General Lessons for Synthetic, Bio-Targeted Molecular Recognition[J]. Chemical Society Reviews, 2021, 50(8): 4812-4832.
[22] WILLIAMS G T, HAYNES C J E, FARES M, et al. Advances in Applied Supramolecular Technologies[J]. Chemical Society Reviews, 2021, 50(4): 2737-2763.
[23] LIU S, ZAVALIJ P Y, ISAACS L. Cucurbit
[10]uril[J]. Journal of the American Chemical Society, 2005, 127(48): 16798-16799.
[24] GANAPATI S, ISAACS L. Acyclic Cucurbit[n]uril-type Receptors: Preparation, Molecular Recognition Properties and Biological Applications[J]. Israel Journal of Chemistry, 2018, 58(3-4): 250-263.
[25] ASSAF K I, NAU W M. Cucurbiturils: from Synthesis to High-Affinity Binding and Catalysis[J]. Chemical Society Reviews, 2015, 44(2): 394-418.
[26] BARROW S J, KASERA S, ROWLAND M J, et al. Cucurbituril-Based Molecular Recognition[J]. Chemical. Reviews, 2015, 115(22): 12320-12406.
[27] CAO L, ŠEKUTOR M, ZAVALIJ P Y, et al. Cucurbit
[7]uril•Guest Pair with an Attomolar Dissociation Constant[J]. Angewandte Chemie International Edition, 2014, 53(4): 988-993.
[28] NAU W M, FLOREA M, ASSAF K I. Deep Inside Cucurbiturils: Physical Properties and Volumes of Their Inner Cavity Determine the Hydrophobic Driving Force for Gost-Guest Complexation[J]. Israel Journal of Chemistry, 2011, 51(5-6): 559-577.
[29] HUANG Z, CHEN X, WU G, et al. Host-Enhanced Phenyl-Perfluorophenyl Polar-π Interactions[J]. Journal of the American Chemical Society, 2020, 142(16): 7356-7361.
[30] BIEDERMANN F, UZUNOVA V D, SCHERMAN O A, et al. Release of High-Energy Water as an Essential Driving Force for the High-Affinity Binding of Cucurbit[n]urils[J]. Journal of the American Chemical Society, 2012, 134(37): 15318-15323.
[31] BIEDERMANN F, NAU W M, SCHNEIDER H J. The Hydrophobic Effect Revisited‒Studies with Supramolecular Complexes Imply High-Energy Water as a Noncovalent Driving Force[J]. Angewandte Chemie International Edition, 2014, 53(42): 11158-11171.
[32] BIEDERMANN F, VENDRUSCOLO M, SCHERMAN O A, et al. Cucurbit
[8]uril and Blue-Box: High-Energy Water Release Overwhelms Electrostatic Interactions[J]. Journal of the American Chemical Society, 2013, 135(39): 14879-14888.
[33] HE S, BIEDERMANN F, VANKOVA N, et al. Cavitation Energies can Outperform Dispersion Interactions[J]. Nature Chemistry, 2018, 10(12): 1252-1257.
[34] CRINI G. Review: A History of Cyclodextrins[J]. Chemical Reviews, 2014, 114(21): 10940-10975.
[35] IKUTA D, HIRATA Y, WAKAMORI S, et al. Conformationally Supple Glucose Monomers Enable Synthesis of the Smallest Cyclodextrins[J]. Science, 2019, 364(6441): 674-677.
[36] HARADA A, OSAKI M, TAKASHIMA Y, et al. Ring-Opening Polymerization of Cyclic Esters by Cyclodextrins[J]. Accounts of Chemical Research, 2008, 41(9): 1143-1152.
[37] REKHARSKY M V, INOUE Y. Complexation Thermodynamics of Cyclodextrins[J]. Chemical Reviews, 1998, 98(5): 1875-1918.
[38] PALEPU R, REINSBOROUGH V C. β-Cyclodextrin Inclusion of Adamantane Derivatives in Solution[J]. Australian Journal of Chemistry, 1990, 43(12): 2119-2123.
[39] BOM A, BRADLEY M, CAMERON K, et al. A Novel Concept of Reversing Neuromuscular Block: Chemical Encapsulation of Rocuronium Bromide by a Cyclodextrin-Based Synthetic Host[J]. Angewandte Chemie International Edition, 2002, 41(2): 265-270.
[40] SZEJTLI J. Introduction and General Overview of Cyclodextrin Chemistry[J]. Chemical Reviews, 1998, 98(5): 1743-1754.
[41] ASSAF K I, URAL M S, PAN F, et al. Water Structure Recovery in Chaotropic Anion Recognition: High-Affinity Binding of Dodecaborate Clusters to γ-Cyclodextrin[J]. Angewandte Chemie International Edition, 2015, 54(23): 6852-6856.
[42] ASSAF K I, NAU W M. The Chaotropic Effect as an Assembly Motif in Chemistry[J]. Angewandte Chemie International Edition, 2018, 57(43): 13968-13981.
[43] DE NAMOR A F D, BLACKETT P M, CABALEIRO M C, et al. Cyclodextrin-Monosaccharide Interactions in Water[J]. Journal of the Chemical Society, Faraday Transactions, 1994, 90(6): 845-847.
[44] ZHANG Y M, YANG Z X, CHEN Y, et al. Molecular Binding and Assembly Behavior of β-Cyclodextrin with Piperazine and 1,4-Dioxane in Aqueous Solution and Solid State[J]. Crystal Growth & Design, 2012, 12(3): 1370-1377.
[45] NERI P, SESSLER J L, WANG M X, Calixarenes and Beyond[M]. Switzerland: Springer Cham, 2016.
[46] GUTSCHE C D, BAUER L J. Calixarenes. 13. The Conformational Properties of Calix
[4]arenes, Calix
[6]arenes, Calix
[8]arenes, and Oxacalixarenes[J]. Journal of the American Chemical Society, 1985, 107(21): 6052-6059.
[47] PAN Y C, HU X Y, GUO D S. Biomedical Applications of Calixarenes: State of the Art and Perspectives[J]. Angewandte Chemie International Edition, 2021, 60(6): 2768-2794.
[48] REHM M, FRANK M, SCHATZ J. Water-Soluble Calixarenes‒Self-Aggregation and Complexation of Noncharged Aromatic Guests in Buffered Aqueous Solution[J]. Tetrahedron Letters, 2009, 50(1): 93-96.
[49] GUO D S, UZUNOVA V D, ASSAF K I, et al. Inclusion of Neutral Guests by Water-Soluble Macrocyclic Hosts – A Comparative Thermodynamic Investigation with Cyclodextrins, Calixarenes and Cucurbiturils[J]. Supramolecular Chemistry, 2016, 28(5-6): 384-395.
[50] OGOSHI T, KANAI S, FUJINAMI S, et al. para-Bridged Symmetrical Pillar
[5]arenes: Their Lewis Acid Catalyzed Synthesis and Host–Guest Property[J]. Journal of the American Chemical Society, 2008, 130(15): 5022-5023.
[51] OGOSHI T, YAMAGISHI T, NAKAMOTO Y. Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry[J]. Chemical Reviews, 2016, 116(14): 7937-8002.
[52] 李晶, 韩莹, 陈传峰. 新型大环芳烃的研究进展[J]. 有机化学, 2020, 40(11): 3714-3737.
[53] HAN X N, LI P F, HAN Y, et al. Enantiomeric Water-Soluble Octopus
[3]arenes for Highly Enantioselective Recognition of Chiral Ammonium Salts in Water[J]. Angewandte Chemie International Edition, 2022, 61(21): e202202527.
[54] GROPP C, QUIGLEY B L, DIEDERICH F. Molecular Recognition with Resorcin
[4]arene Cavitands: Cwitching, Halogen-Bonded Capsules, and Enantioselective Complexation[J]. Journal of the American Chemical Society, 2018, 140(8): 2705-2717.
[55] BIROS S M, REBEK JR J. Structure and Binding Properties of Water-Soluble Cavitands and Capsules[J]. Chemical Society Reviews, 2007, 36(1): 93-104.
[56] ZHU Y J, ZHAO M K, REBEK JR J, et al. Recent Advances in the Applications of Water-soluble Resorcinarene-based Deep Cavitands[J]. ChemistryOpen, 2022, 11(6): e202200026.
[57] HAINO T, RUDKEVICH D M, SHIVANYUK A, et al. Induced-Fit Molecular Recognition with Water-Soluble Cavitands[J]. Chemistry‒A European Journal, 2000, 6(20): 3797-3805.
[58] ZHU Y, TANG M, ZHANG H, et al. Water and the Cation-π Interaction[J]. Journal of the American Chemical Society, 2021, 143(31): 12397-12403.
[59] RAHMAN F U, LI Y, PETSALAKIS I D, et al. Recognition with Metallo Cavitands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(36): 17648-17653.
[60] KOROM S, BALLESTER P. Attachment of a RuII Complex to a Self-Folding Hexaamide Deep Cavitand[J]. Journal of the American Chemical Society, 2017, 139(35): 12109-12112.
[61] YANG J M, CHEN Y Q, YU Y, et al. Rigidified Cavitand Hosts in Water: Bent Guests, Shape Selectivity, and Encapsulation[J]. Journal of the American Chemical Society, 2021, 143(46): 19517-19524.
[62] YU Y, YANG J M, REBEK JR J. Molecules in Confined Spaces: Reactivities and Possibilities in Cavitands[J]. Chem, 2020, 6(6): 1265-1274.
[63] JORDAN J H, GIBB B C. Molecular Containers Assembled through the Hydrophobic Effect[J]. Chemical Society Reviews, 2015, 44(2): 547-585.
[64] SUN H, GIBB C L D, GIBB B C. Calorimetric Analysis of the 1:1 Complexes Formed Between a Water-Soluble Deep-Cavity Cavitand, and Cyclic and Acyclic Carboxylic Acids[J]. Supramolecular Chemistry, 2008, 20(1-2): 141-147.
[65] GIBB C L D, GIBB B C. Well-Defined, Organic Nanoenvironments in Water:  The Hydrophobic Effect Drives a Capsular Assembly[J]. Journal of the American Chemical Society, 2004, 126(37): 11408-11409.
[66] GIBB C L D, GIBB B C. Guests of Differing Polarities Provide Insight into Structural Requirements for Templates of Water-Soluble Nano-Capsules[J]. Tetrahedron, 2009, 65(35): 7240-7248.
[67] GIBB C L D, GIBB B C. Anion Binding to Hydrophobic Concavity Is Central to the Salting-in Effects of Hofmeister Chaotropes[J]. Journal of the American Chemical Society, 2011, 133(19): 7344-7347.
[68] CARNEGIE R S, GIBB C L D, GIBB B C. Anion Complexation and the Hofmeister Effect[J]. Angewandte Chemie International Edition, 2014, 53(43): 11498-11500.
[69] SOKKALINGAM P, SHRABERG J, RICK S W, et al. Binding Hydrated Anions with Hydrophobic Pockets[J]. Journal of the American Chemical Society, 2016, 138(1): 48-51.
[70] JORDAN J H, GIBB C L D, WISHARD A, et al. Ion-Hydrocarbon and/or Ion-Ion Interactions: Direct and Reverse Hofmeister Effects in a Synthetic Host[J]. Journal of the American Chemical Society, 2018, 140(11): 4092-4099.
[71] JORDAN J H, ASHBAUGH H S, MAGUE J T, et al. Buffer and Salt Effects in Aqueous Host-Guest Systems: Screening, Competitive Binding, or Both?[J]. Journal of the American Chemical Society, 2021, 143(44): 18605-18616.
[72] MURRAY J, KIM K, OGOSHI T, et al. The Aqueous Supramolecular Chemistry of Cucurbit[n]urils, Pillar[n]arenes and Deep-Cavity Cavitands[J]. Chemical Society Reviews, 2017, 46(9): 2479-2496.
[73] BARNETT J, SULLIVAN M R, LONG J A, et al. Spontaneous Drying of Non-Polar Deep-Cavity Cavitand Pockets in Aqueous Solution[J]. Nature Chemistry, 2020, 12(7): 589-594.
[74] KLÄRNER F G, SCHRADER T. Aromatic Interactions by Molecular Tweezers and Clips in Chemical and Biological Systems[J]. Accounts of Chemical Research, 2013, 46(4): 967-978.
[75] BIER D, ROSE R, BRAVO-RODRIGUEZ K, et al. Molecular Tweezers Modulate 14-3-3 Protein–Protein Interactions[J]. Nature Chemistry, 2013, 5(3): 234-239.
[76] GUILLORY X, HADROVIĆ I, DE VINK P J, et al. Supramolecular Enhancement of a Natural 14-3-3 Protein Ligand[J]. Journal of the American Chemical Society, 2021, 143(34): 13495-13500.
[77] SCHRADER T, BITAN G, KLÄRNER F G. Molecular Tweezers for Lysine and Arginine-Powerful Inhibitors of Pathologic Protein Aggregation[J]. Chemical Communications, 2016, 52(76): 11318-11334.
[78] BIEDERMANN F, SCHNEIDER H J. Experimental Binding Energies in Supramolecular Complexes[J]. Chemical Reviews, 2016, 116(9): 5216-5300.
[79] SOLOV'EV V P, STRAKHOVA N N, RAEVSKY O A, et al. Solvent Effects on Crown Ether Complexations1[J]. The Journal of Organic Chemistry, 1996, 61(16): 5221-5226.
[80] WILLIAMS K, ASKEW B, BALLESTER P, et al. Molecular Recognition with Convergent Functional Groups. 7. Energetics of Adenine Binding with Model Receptors[J]. Journal of the American Chemical Society, 1989, 111(3): 1090-1094.
[81] ROTELLO V M, VIANI E A, DESLONGCHAMPS G, et al. Molecular Recognition in Water: New Receptors for Adenine Derivatives[J]. Journal of the American Chemical Society, 1993, 115(2): 797-798.
[82] SCHMUCK C. Highly Stable Self-Association of 5-(Guanidiniocarbonyl)-1H-pyrrole-2-carboxylate in DMSO ‒ The Importance of Electrostatic Interactions[J]. European Journal of Organic Chemistry, 1999, 1999(9): 2397-2403.
[83] SCHMUCK C, WIENAND W. Highly Stable Self-Assembly in Water: Ion Pair Driven Dimerization of a Guanidiniocarbonyl Pyrrole Carboxylate Zwitterion[J]. Journal of the American Chemical Society, 2003, 125(2): 452-459.
[84] SUN Y, GU J, WANG H, et al. AAAA–DDDD Quadruple H-Bond-Assisted Ionic Interactions: Robust Bis(guanidinium)/Dicarboxylate Heteroduplexes in Water[J]. Journal of the American Chemical Society, 2019, 141(51): 20146-20154.
[85] KOŠMRLJ J. Click Triazoles[M]. Heidelberg: Springer Berlin, 2012.
[86] LIU Y, ZHAO W, CHEN C H, et al. Chloride Capture Using a C-H Hydrogen-Bonding Cage[J]. Science, 2019, 365(6449): 159-161.
[87] LIU Y, SENGUPTA A, RAGHAVACHARI K, et al. Anion Binding in Solution: Beyond the Electrostatic Regime[J]. Chem, 2017, 3(3): 411-427.
[88] LIU W, SAMANTA S K, SMITH B D, et al. Synthetic Mimics of Biotin/(Strept) Avidin[J]. Chemical Society Reviews, 2017, 46(9): 2391-2403.
[89] WEBER P C, OHLENDORF D H, WENDOLOSKI J J, et al. Structural Origins of High-Affinity Biotin Binding to Streptavidin[J]. Science, 1989, 243(4887): 85-88.
[90] ELIAS M, WELLNER A, GOLDIN-AZULAY K, et al. The Molecular Basis of Phosphate Discrimination in Arsenate-Rich Environments[J]. Nature, 2012, 491(7422): 134-137.
[91] BUGG T D H, WRIGHT G D, DUTKA-MALEN S, et al. Molecular Basis for Vancomycin Resistance in Enterococcus Faecium BM4147: Biosynthesis of a Depsipeptide Peptidoglycan Precursor by Vancomycin Resistance Proteins VanH and VanA[J]. Biochemistry, 1991, 30(43): 10408-10415.
[92] NITANAI Y, KIKUCHI T, KAKOI K, et al. Crystal Structures of the Complexes between Vancomycin and Cell-Wall Precursor Analogs[J]. Journal of Molecular Biology, 2009, 385(5): 1422-1432.
[93] TOONE E J. Structure and Energetics of Protein-Carbohydrate Complexes[J]. Current Opinion in Structural Biology, 1994, 4(5): 719-728.
[94] QUIOCHO F A. Protein-Carbohydrate Interactions: Basic Molecular Features[J]. Pure and Applied Chemistry, 1989, 61(7): 1293-1306.
[95] VYAS N K, VYAS M N, QUIOCHO F A. Sugar and Signal-Transducer Binding Sites of the Escherichia coli Galactose Chemoreceptor Protein[J]. Science, 1988, 242(4883): 1290-1295.
[96] CARCANAGUE D R, KNOBLER C B, DIEDERICH F. Water-Soluble Cyclophane Receptors with Convergent Functional Groups[J]. Journal of the American Chemical Society, 1992, 114(4): 1515-1517.
[97] ALLOTT C, ADAMS H, BERNAD JR P L, et al. Hydrogen-Bond Recognition of Cyclic Dipeptides in Water[J]. Chemical Communications, 1998(22): 2449-2450.
[98] SAWADA T, YOSHIZAWA M, SATO S, et al. Minimal Nucleotide Duplex Formation in Water through Enclathration in Self-Assembled Hosts[J]. Nature Chemistry, 2009, 1(1): 53-56.
[99] SAWADA T, FUJITA M. A Single Watson-Crick G•C Base Pair in Water: Aqueous Hydrogen Bonds in Hydrophobic Cavities[J]. Journal of the American Chemical Society, 2010, 132(20): 7194-7201.
[100] GAO J, BOSCO D A, POWERS E T, et al. Localized Thermodynamic Coupling Between Hydrogen Bonding and Microenvironment Polarity Substantially Stabilizes Proteins[J]. Nature Structural & Molecular Biology, 2009, 16(7): 684-690.
[101] BUTTERFIELD S M, REBEK J. A Synthetic Mimic of Protein Inner Space: Buried Polar Interactions in a Deep Water-Soluble Host[J]. Journal of the American Chemical Society, 2006, 128(48): 15366-15367.
[102] REBILLY J N, COLASSON B, BISTRI O, et al. Biomimetic Cavity-Based Metal Complexes[J]. Chemical Society Reviews, 2015, 44(2): 467-489.
[103] VERDEJO B, GIL-RAMÍREZ G, BALLESTER P. Molecular Recognition of Pyridine N-Oxides in Water Using Calix
[4]pyrrole Receptors[J]. Journal of the American Chemical Society, 2009, 131(9): 3178-3179.
[104] ESCOBAR L, DÍAZ-MOSCOSO A, BALLESTER P. Conformational Selectivity and High-Affinity Binding in the Complexation of N-Phenyl Amides in Water by a Phenyl Extended Calix
[4]pyrrole[J]. Chemical Science, 2018, 9(36): 7186-7192.
[105] PEÑUELAS-HARO G, BALLESTER P. Efficient Hydrogen Bonding Recognition in Water Using Aryl-Extended Calix
[4]pyrrole Receptors[J]. Chemical Science, 2019, 10(8): 2413-2423.
[106] HERNÁNDEZ-ALONSO D, ZANKOWSKI S, ADRIAENSSENS L, et al. Water-Soluble Aryl-Extended Calix
[4]pyrroles with Unperturbed Aromatic Cavities: Synthesis and Binding Studies[J]. Organic & Biomolecular Chemistry, 2015, 13(4): 1022-1029.
[107] ESCOBAR L, BALLESTER P. Quantification of the Hydrophobic Effect Using Water-Soluble Super Aryl-Extended Calix
[4]pyrroles[J]. Organic Chemistry Frontiers, 2019, 6(11): 1738-1748.
[108] DAVIS A P. Biomimetic Carbohydrate Recognition[J]. Chemical Society Reviews, 2020, 49(9): 2531-2545.
[109] KLEIN E, CRUMP M P, DAVIS A P. Carbohydrate Recognition in Water by a Tricyclic Polyamide Receptor[J]. Angewandte Chemie International Edition, 2005, 44(2): 298-302.
[110] FERRAND Y, CRUMP M P, DAVIS A P. A Synthetic Lectin Analog for Biomimetic Disaccharide Recognition[J]. Science, 2007, 318(5850): 619-622.
[111] KE C, DESTECROIX H, CRUMP M P, et al. A Simple and Accessible Synthetic Lectin for Glucose Recognition and Sensing[J]. Nature Chemistry, 2012, 4(9): 718-723.
[112] RIOS P, CARTER T S, MOOIBROEK T J, et al. Synthetic Receptors for the High-Affinity Recognition of O-GlcNAc Derivatives[J]. Angewandte Chemie International Edition, 2016, 55(10): 3387-3392.
[113] FERRAND Y, KLEIN E, BARWELL N P, et al. A Synthetic Lectin for O-Linked β-N-Acetylglucosamine[J]. Angewandte Chemie International Edition, 2009, 48(10): 1775-1779.
[114] SOOKCHAROENPINYO B, KLEIN E, FERRAND Y, et al. High-Affinity Disaccharide Binding by Tricyclic Synthetic Lectins[J]. Angewandte Chemie International Edition, 2012, 51(19): 4586-4590.
[115] MOOIBROEK T J, CASAS-SOLVAS J M, HARNIMAN R L, et al. A Threading Receptor for Polysaccharides[J]. Nature Chemistry, 2016, 8(1): 69-74.
[116] BARWELL N P, CRUMP M P, DAVIS A P. A Synthetic Lectin for β-Glucosyl[J]. Angewandte Chemie International Edition, 2009, 48(41): 7673-7676.
[117] KLEIN E, FERRAND Y, BARWELL N P, et al. Solvent Effects in Carbohydrate Binding by Synthetic Receptors: Implications for the Role of Water in Natural Carbohydrate Recognition[J]. Angewandte Chemie International Edition, 2008, 47(14): 2693-2696.
[118] TROMANS R A, CARTER T S, CHABANNE L, et al. A Biomimetic Receptor for Glucose[J]. Nature Chemistry, 2019, 11(1): 52-56.
[119] DESTECROIX H, RENNEY C M, MOOIBROEK T J, et al. Affinity Enhancement by Dendritic Side Chains in Synthetic Carbohydrate Receptors[J]. Angewandte Chemie International Edition, 2015, 54(7): 2057-2061.
[120] TROMANS R A, SAMANTA S K, CHAPMAN A M, et al. Selective Glucose Sensing in Complex Media Using a Biomimetic Receptor[J]. Chemical Science, 2020, 11(12): 3223-3227.
[121] PECK E M, LIU W, SPENCE G T, et al. Rapid Macrocycle Threading by a Fluorescent Dye–Polymer Conjugate in Water with Nanomolar Affinity[J]. Journal of the American Chemical Society, 2015, 137(27): 8668-8671.
[122] LIU W, JOHNSON A, SMITH B D. Guest Back-Folding: A Molecular Design Strategy That Produces a Deep-Red Fluorescent Host/Guest Pair with Picomolar Affinity in Water[J]. Journal of the American Chemical Society, 2018, 140(9): 3361-3370.
[123] ZHAI C, SCHREIBER C L, PADILLA-COLEY S, et al. Fluorescent Self-Threaded Peptide Probes for Biological Imaging[J]. Angewandte Chemie International Edition, 2020, 59(52): 23740-23747.
[124] FRANCESCONI O, MARTINUCCI M, BADII L, et al. A Biomimetic Synthetic Receptor Selectively Recognising Fucose in Water[J]. Chemistry–A European Journal, 2018, 24(26): 6828-6836.
[125] LIU W, TAN Y, JONES L O, et al. PCage: Fluorescent Molecular Temples for Binding Sugars in Water[J]. Journal of the American Chemical Society, 2021, 143(38): 15688-15700.
[126] CUSTELCEAN R, BOSANO J, BONNESEN P V, et al. Computer-Aided Design of a Sulfate-Encapsulating Receptor[J]. Angewandte Chemie International Edition, 2009, 48(22): 4025-4029.
[127] CUSTELCEAN R, BONNESEN P V, DUNCAN N C, et al. Urea-Functionalized M4L6 Cage Receptors: Anion-Templated Self-Assembly and Selective Guest Exchange in Aqueous Solutions[J]. Journal of the American Chemical Society, 2012, 134(20): 8525-8534.
[128] ZHANG D, RONSON T K, MOSQUERA J, et al. Anion Binding in Water Drives Structural Adaptation in an Azaphosphatrane-Functionalized FeII4L4 Tetrahedron[J]. Journal of the American Chemical Society, 2017, 139(19): 6574-6577.
[129] LIZAL T, SINDELAR V. Bambusuril Anion Receptors[J]. Israel Journal of Chemistry, 2018, 58(3-4): 326-333.
[130] YAWER M A, HAVEL V, SINDELAR V. A Bambusuril Macrocycle that Binds Anions in Water with High Affinity and Selectivity[J]. Angewandte Chemie International Edition, 2015, 54(1): 276-279.
[131] GIBB C L D, STEVENS E D, GIBB B C. C-H···X-R (X = Cl, Br, and I) Hydrogen Bonds Drive the Complexation Properties of a Nanoscale Molecular Basket[J]. Journal of the American Chemical Society, 2001, 123(24): 5849-5850.
[132] YAMASHINA M, AKITA M, HASEGAWA T, et al. A Polyaromatic Nanocapsule as a Sucrose Receptor in Water[J]. Science Advances, 2017, 3(8): e1701126.
[133] KUSABA S, YAMASHINA M, AKITA M, et al. Hydrophilic Oligo(lactic acid)s Captured by a Hydrophobic Polyaromatic Cavity in Water[J]. Angewandte Chemie International Edition, 2018, 57(14): 3706-3710.
[134] YAMASHINA M, KUSABA S, AKITA M, et al. Cramming versus Threading of Long Amphiphilic Oligomers into a Polyaromatic Capsule[J]. Nature Communications, 2018, 9: 4227.
[135] YAMASHINA M, TSUTSUI T, SEI Y, et al. A Polyaromatic Receptor with High Androgen Affinity[J]. Science Advances, 2019, 5(4): eaav3179.
[136] TUREGA S, CULLEN W, WHITEHEAD M, et al. Mapping the Internal Recognition Surface of an Octanuclear Coordination Cage Using Guest Libraries[J]. Journal of the American Chemical Society, 2014, 136(23): 8475-8483.
[137] 姚欢, 孙娇囡, 柯华, 等. 桥联双萘及其衍生物的合成以及对有机阳离子的络合作用[J]. 有机化学, 2017, 37(3): 603-607.
[138] WANG L L, CHEN Z, LIU W E, et al. Molecular Recognition and Chirality Sensing of Epoxides in Water Using Endo-Functionalized Molecular Tubes[J]. Journal of the American Chemical Society, 2017, 139(25): 8436-8439.
[139] KE H, YANG L P, XIE M, et al. Shear-Induced Assembly of a Transient yet Highly Stretchable Hydrogel Based on Pseudopolyrotaxanes[J]. Nature Chemistry, 2019, 11(5): 470-477.
[140] BAI L M, ZHOU H, LIU W E, et al. Fluorescent Monitoring of the Reaction Kinetics of Nonfluorescent Molecules Enabled by a Fluorescent Receptor[J]. Chemical Communications, 2019, 55(21): 3128-3131.
[141] LIU W E, CHEN Z, YANG L P, et al. Molecular Recognition of Organophosphorus Compounds in Water and Inhibition of Their Toxicity to Acetylcholinesterase[J]. Chemical Communications, 2019, 55(66): 9797-9800.
[142] BAI L M, YAO H, YANG L P, et al. Molecular Recognition and Fluorescent Sensing of Urethane in Water[J]. Chinese Chemical Letters, 2019, 30(4): 881-884.
[143] YANG L P, KE H, YAO H, et al. Effective and Rapid Removal of Polar Organic Micropollutants from Water by Amide Naphthotube-Crosslinked Polymers[J]. Angewandte Chemie International Edition, 2021, 60(39): 21404-21411.
[144] YAO H, WANG X, XIE M, et al. Mono-Functionalized Derivatives and Revised Configurational Assignment of Amide Naphthotubes[J]. Organic & Biomolecular Chemistry, 2020, 18(10): 1900-1909.
[145] WANG L L, QUAN M, YANG T L, et al. A Green and Wide-Scope Approach for Chiroptical Sensing of Organic Molecules through Biomimetic Recognition in Water[J]. Angewandte Chemie International Edition, 2020, 59(52): 23817-23824.
[146] 姚欢. 内修饰酰胺萘管的合成及其分子识别与自组装研究[D]. 哈尔滨:哈尔滨工业大学, 2021.
[147] LI S, YAO H, KAMEDA T, et al. Volumetric Properties for the Binding of 1,4-dioxane to Amide Naphthotubes in Water[J]. The Journal of Physical Chemistry B, 2020, 124(41): 9175-9181.
[148] CHEN Z, QUAN M, DONG Y W, et al. Molecular Recognition and Spectral Tuning of Organic Dyes in Water by Amide Naphthotubes[J]. Chemical Communications, 2022, 58(67): 9413-9416.
[149] HUANG X, WANG X, QUAN M, et al. Biomimetic Recognition and Optical Sensing of Carboxylic Acids in Water by Using a Buried Salt Bridge and the Hydrophobic Effect[J]. Angewandte Chemie International Edition, 2021, 60(4): 1929-1935.
[150] WANG X, QUAN M, YAO H, et al. Switchable Bifunctional Molecular Recognition in Water Using a pH-Responsive Endo-Functionalized Cavity[J]. Nature Communications, 2022, 13: 2291.
[151] CHAI H, CHEN Z, WANG S H, et al. Enantioselective Recognition of Neutral Molecules in Water by a Pair of Chiral Biomimetic Macrocyclic Receptors[J]. CCS Chemistry, 2020, 2(6): 440-452.
[152] ZHOU H, PANG X Y, WANG X, et al. Biomimetic Recognition of Quinones in Water by an Endo-Functionalized Cavity with Anthracene Sidewalls[J]. Angewandte Chemie International Edition, 2021, 60(49): 25981-25987.
[153] ZHANG H, WANG L L, PANG X Y, et al. Molecular Recognition and Photoprotection of Riboflavin in Water by a Biomimetic Host[J]. Chemical Communications, 2021, 57(100): 13724-13727.
[154] MOBLEY D L, BAYLY C I, COOPER M D, et al. Small Molecule Hydration Free Energies in Explicit Solvent: An Extensive Test of Fixed-Charge Atomistic Simulations[J]. Journal of Chemical Theory and Computation, 2009, 5(2): 350-358.
[155] SHIVAKUMAR D, WILLIAMS J, WU Y, et al. Prediction of Absolute Solvation Free Energies Using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field[J]. Journal of Chemical Theory and Computation, 2010, 6(5): 1509-1519.
[156] ASSAF K I, FLOREA M, ANTONY J, et al. HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host–Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions[J]. The Journal of Physical Chemistry B, 2017, 121(49): 11144-11162.
[157] SMULDERS M M J, ZARRA S, NITSCHKE J R. Quantitative Understanding of Guest Binding Enables the Design of Complex Host–Guest Behavior[J]. Journal of the American Chemical Society, 2013, 135(18): 7039-7046.
[158] GIBB C L D, GIBB B C. Guests of Differing Polarities Provide Insight into Structural Requirements for Templates of Water-Soluble Nano-Capsules[J]. Tetrahedron, 2009, 65(35): 7240-7248.
[159] BUSCHMANN H J, JANSEN K, SCHOLLMEYER E. Cucurbituril as Host Molecule for the Complexation of Aliphatic Alcohols, Acids and Nitriles in Aqueous Solution[J]. Thermochimica acta, 2000, 346(1-2): 33-36.
[160] WYMAN I W, MACARTNEY D H. Cucurbit
[7]uril Host-Guest Complexes with Small Polar Organic Guests in Aqueous Solution[J]. Organic & Biomolecular Chemistry, 2008, 6(10): 1796-1801.
[161] EL HAOUAJ M, KO Y H, LUHMER M, et al. NMR Investigation of the Complexation of Neutral Guests by Cucurbituril[J]. Journal of the Chemical Society, Perkin Transactions 2, 2001, (11): 2104-2107.
[162] JANG Y, NATARAJAN R, KO Y H, et al. Cucurbit
[7]uril: A High-Affinity Host for Encapsulation of Amino Saccharides and Supramolecular Stabilization of Their α-Anomers in Water[J]. Angewandte Chemie International Edition, 2014, 53(4): 1003-1007.
[163] LEE H H L, LEE J W, JANG Y, et al. Manifesting Subtle Differences of Neutral Hydrophilic Guest Isomers in a Molecular Container by Phase Transfer[J]. Angewandte Chemie International Edition, 2016, 55(29): 8249-8253.
[164] KO Y H, KIM Y, KIM H, et al. U-Shaped Conformation of Alkyl Chains Bound to a Synthetic Receptor Cucurbit
[8]uril[J]. Chemistry‒An Asian Journal, 2011, 6(2): 652-657.
[165] SNYDER P W, MECINOVIĆ J, MOUSTAKAS D T, et al. Mechanism of the Hydrophobic Effect in the Biomolecular Recognition of Arylsulfonamides by Carbonic Anhydrase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(44): 17889-17894.
[166] MECOZZI S, REBEK, JR J. The 55% Solution: A Formula for Molecular Recognition in the Liquid State[J]. Chemistry–A European Journal, 1998, 4(6): 1016-1022.
[167] GENG W C, SESSLER J L, GUO D S. Supramolecular Prodrugs Based on Host-Guest Interactions[J]. Chemical Society Reviews, 2020, 49(8): 2303-2315.
[168] LIDE D R. CRC Handbook of Chemistry and Physics, Internet Version 2005[M]. Boca Raton, FL: CRC Press, 2005.
[169] ZISSIMOS A M, ABRAHAM M H, KLAMT A, et al. A Comparison between the Two General Sets of Linear Free Energy Descriptors of Abraham and Klamt[J]. Journal of Chemical Information and Computer Sciences, 2002, 42(6): 1320-1331.
[170] ABRAHAM M H. Hydrogen Bonding. 31. Construction of a Scale of Solute Effective or Summation Hydrogen-Bond Basicity[J]. Journal of Physical Organic Chemistry, 1993, 6(12): 660-684.
[171] ABRAHAM M H, PLATTS J A. Hydrogen Bond Structural Group Constants[J]. The Journal of Organic Chemistry, 2001, 66(10): 3484-3491.
[172] 丛航, 陶龙玲, 余亦华, 等. 瓜环对氨基酸的分子识别研究[J]. 化学学报, 2006, 64(10): 989-996.
[173] KREBS H A. Chemical Composition of Blood Plasma and Serum[J]. Annual Review of Biochemistry, 1950, 19(1): 409-430.
[174] REMBERT K B, PATEROVÁ J, HEYDA J, et al. Molecular Mechanisms of Ion-Specific Effects on Proteins[J]. Journal of the American Chemical Society, 2012, 134(24): 10039-10046.
[175] SHORTHILL B J, AVETTA C T, GLASS T E. Shape-Selective Sensing of Lipids in Aqueous Solution by a Designed Fluorescent Molecular Tube[J]. Journal of the American Chemical Society, 2004, 126(40): 12732-12733.
[176] ROMNEY D K, ARNOLD F H, LIPSHUTZ B H, et al. Chemistry Takes a Bath: Reactions in Aqueous Media[J]. The Journal of Organic Chemistry, 2018, 83(14): 7319-7322.
[177] GODOY-ALCÁNTAR C, YATSIMIRSKY A K, LEHN J M. Structure-Stability Correlations for Imine Formation in Aqueous Solution[J]. Journal of Physical Organic Chemistry, 2005, 18(10): 979-985.
[178] HEINE A, DESANTIS G, LUZ J G, et al. Observation of Covalent Intermediates in an Enzyme Mechanism at Atomic Resolution[J]. Science, 2001, 294(5541): 369-374.
[179] HANEDA T, KAWANO M, KAWAMICHI T, et al. Direct Observation of the Labile Imine Formation through Single-Crystal-to-Single-Crystal Reactions in the Pores of a Porous Coordination Network[J]. Journal of the American Chemical Society, 2008, 130(5): 1578-1579.
[180] KAWAMICHI T, HANEDA T, KAWANO M, et al. X-Ray Observation of a Transient Hemiaminal Trapped in a Porous Network[J]. Nature, 2009, 461(7264): 633-635.
[181] GALAN A, BALLESTER P. Stabilization of Reactive Species by Supramolecular Encapsulation[J]. Chemical Society Reviews, 2016, 45(6): 1720-1737.
[182] IWASAWA T, HOOLEY R J, REBEK JR J. Stabilization of Labile Carbonyl Addition Intermediates by a Synthetic Receptor[J]. Science, 2007, 317(5837): 493-496.
[183] HOOLEY R J, IWASAWA T, REBEK JR J. Detection of Reactive Tetrahedral Intermediates in a Deep Cavitand with an Introverted Functionality[J]. Journal of the American Chemical Society, 2007, 129(49): 15330-15339.
[184] XU L, HUA S, LI S. Insight into the Reaction between a Primary Amine and a Cavitand with an Introverted Aldehyde Group: An Enzyme-Like Mechanism[J]. Chemical Communications, 2013, 49(15): 1542-1544.
[185] HOOLEY R J, RESTORP P, IWASAWA T, et al. Cavitands with Introverted Functionality Stabilize Tetrahedral Intermediates[J]. Journal of the American Chemical Society, 2007, 129(50): 15639-15643.
[186] RESTORP P, REBEK JR J. Reaction of Isonitriles with Carboxylic Acids in a Cavitand: Observation of Elusive Isoimide Intermediates[J]. Journal of the American Chemical Society, 2008, 130(36): 11850-11851.

所在学位评定分委会
化学
国内图书分类号
O641.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543827
专题理学院_化学系
推荐引用方式
GB/T 7714
李明爽. 水相酰胺萘管与葫芦脲的分子识别及半缩醛胺的捕获[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11949013-李明爽-化学系.pdf(19954KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李明爽]的文章
百度学术
百度学术中相似的文章
[李明爽]的文章
必应学术
必应学术中相似的文章
[李明爽]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。