[[1]SCHULTZ M. G, DIEHL T, BRASSEUR G P, et al. Air Pollution and Climate-Forcing Impacts of a Global Hydrogen Economy[J]. Science, 2003, 302(5645): 624-627.[2]安攀, 张庆慧, 杨状, 等. 双碳目标下太阳能制氢技术的研究进展[J]. 化学学报, 1-15
[2022-12-10].[3]CHU S, CUI Y, LIU N. The Path towards Sustainable Energy[J]. Nature Materials, 2017, 16(1), 16-22.[4]LI S, HAO X, ABUDULA A, et al. Nanostructured Co-Based Bifunctional Electrocatalysts for Energy Conversion and Storage: Current Status and Perspectives[J]. Journal of Materials Chemistry A, 2019, 7 (32): 18674-18707.[5]程俊, 黄蕊, 雷惊雷, 等. 电化学能源核心技术的关键科学问题[J]. 中国科学基金, 2020, 34(03): 350-357.[6]LI X, HAO X, ABUDULA A, et al. Nanostructured Catalysts for Electrochemical Water Splitting: Current State and Prospects[J]. Journal of Materials Chemistry A, 2016, 4(31): 11973-12000. [7]CANO Z P, BANHAM D, YE S, et al. Batteries and Fuel Cells for Emerging Electric Vehicle Markets[J]. Nature Energy, 2018, 3(4): 279-289.[8]TIAN N, LU B A, YANG X D, et al. Rational Design and Synthesis of Low-Temperature Fuel Cell Electrocatalysts[J]. Electrochemical Energy Reviews, 2018, 1(1): 54-83. [9]HUANG Z F, WANG J, PENG Y, et al. Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives[J]. Advanced Energy Materials. 2017, 7(23): 1700544.[10]TAHIR M, PAN L, IDREES F, et al. Electrocatalytic Oxygen Evolution Reaction for Energy Conversion and Storage: A Comprehensive Review[J]. Nano Energy, 2017, 37, 136-157.[11]KUANG M, HAN P, HUANG L, et al. Electronic Tuning of Co, Ni-Based Nanostructured (Hydr)Oxides for Aqueous Electrocatalysis[J]. Advanced Functional Materials, 2018, 28(52): 1804886. [12]JIAO Y, ZHENG Y, JARONIEC M, et al. Design of Electrocatalysts for Oxygen- and Hydrogen-Involving Energy Conversion Reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086. [13]KUANG M, ZHENG G. Nanostructured Bifunctional Redox Electrocatalysts[J]. Small, 2016, 12(41): 56565675.[14]YU M, BUDIYANTO E, TÜYSÜZ H. Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction[J]. Angewandte Chemie International Edition, 2022, 61(1): 202103824. [15]GREWE T, DENG X, WEIDENTHALER C, et al. Design of Ordered Mesoporous Composite Materials and Their Electrocatalytic Activities for Water Oxidation[J]. Chemistry of Materials, 2013, 25(24): 4926-4935.[16]MÖLLER S, BARWE S, MASA J, et al. Online Monitoring of Electrochemical Carbon Corrosion in Alkaline Electrolytes by Differential Electrochemical Mass Spectrometry[J]. Angewandte Chemie International Edition, 2020, 59(4): 1585-1589. [17]BADWAL S P S, GIDDEY S S, MUNNINGS C, et al. Emerging Electrochemical Energy Conversion and Storage Technologies[J]. Frontiers in Chemistry, 2014, 2: 79. [18]MCCRORY C C L, JUNG S, FERRER I M, et al. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices[J]. Journal of the American Chemical Society, 2015, 137(13): 4347-4357. [19]SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. [20]DAU H, LIMBERG C, REIER T, et al. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis[J]. ChemCatChem, 2010, 2(7): 724-761. [21]MAN I C, SU H, CALLE-VALLEJO F, et al. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165. [22]SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design[J]. Science, 2017, 355(6321): 4998.[23]LEI Z, WANG T, ZHAO B, et al. Recent Progress in Electrocatalysts for Acidic Water Oxidation[J]. Advanced Energy Materials, 2020, 10(23): 2000478. [24]ZHANG K, ZOU R. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges[J]. Small, 2021, 17(37): 2100129.[25]DEBE, M. K. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells[J]. Nature, 2012, 486(7401): 43-51. [26]GEWIRTH A A, VARNELL J A, DIASCRO A M. Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems[J]. Chemical Reviews, 2018, 118(5): 2313-2339. [27]GEWIRTH A A, THORUM M S. Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges[J]. Inorganic Chemistry, 2010, 49(8): 3557-3566.[28]KARTHA S, GRIMES P. Fuel cells: Energy conversion for the next century[J]. Physics Today, 1994, 47(11): 54-61.[29]HANSEN H A, VISWANATHAN V, NØRSKOV J K. Unifying Kinetic and Thermodynamic Analysis of 2 e– and 4 e– Reduction of Oxygen on Metal Surfaces[J]. The Journal of Physical Chemistry C, 2014, 118(13): 6706-6718.[30]HOLTON O T, STEVENSON J W. The Role of Platinum in Pproton Exchange Membrane Fuel Cells[J]. Platinum Metals Review, 2013, 57(4): 259-271.[31]STACYA J, REGMIB, Y N, LEONARDB, B, et al. The Recent Progress and Future of Oxygen Reduction Reaction Catalysis: A Review[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 401-414.[32]GOSWAMI C, HAZARIKA K K, BHARALI P. Transition Metal Oxide Nanocatalysts for Oxygen Reduction Reaction[J]. Materials Science for Energy Technologies, 2018, 1(2): 117-128. [33]VISWANATHAN V, HANSEN H A, ROSSMEISL J, et al. Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces[J]. ACS Catalysis, 2012, 2(8): 1654-1660.[34]NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.[35]VOJVODIC A, NØRSKOV J K. New Design Paradigm for Heterogeneous Catalysts[J]. National Science Review, 2015, 2(2): 140-143.[36]STOERZINGER K A, DIAZ-MORALES O, KOLB M, et al. Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange[J]. ACS Energy Letters, 2017, 2(4): 876-881. [37]RAO R R, KOLB M J, GIORDANO L, et al. Operando Identification of Site-Dependent Water Oxidation Activity on Ruthenium Dioxide Single-Crystal Surfaces[J]. Nature Catalysis, 2020, 3(6): 516-525. [38]STOERZINGER K A, QIAO L, BIEGALSKI M D, et al. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1636-1641. [39]KÖTZ1 R, LEWERENZ1 H J, STUCKI S. XPS Studies of Oxygen Evolution on Ru and RuO2 Anodes[J]. Journal of the Electrochemical Society, 1983, 130: 825-829.[40]KÖTZ1 R, NEFF H, STUCKI S. Anodic Iridium Oxide Films: XPS-Studies of Oxidation State Changes and O2-Evolution[J]. Journal of the Electrochemical Society, 1984, 131: 72-77.[41]MENG G, SUN W, MON A A, et al. Strain Regulation to Optimize the Acidic Water Oxidation Performance of Atomic-Layer IrOx[J]. Advanced Materials, 2019, 31(37): 1903616. [42]SUN W, SONG Y, GONG X -Q, et al. An Efficiently Tuned d-Orbital Occupation of IrO2 by Doping with Cu for Enhancing the Oxygen Evolution Reaction Activity[J]. Chemical Science, 2015, 6(8): 4993-4999.[43]OH H -S, NONG H N, REIER T, et al. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction[J]. Journal of the American Chemical Society, 2016, 138(38): 12552-12563.[44]CUI X, REN P, MA C, et al. Robust Interface Ru Centers for High-Performance Acidic Oxygen Evolution[J]. Advanced Materials, 2020, 32(25): 1908126. [45]FRYDENDAL R, PAOLI E A, KNUDSEN B P, et al. Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses[J]. ChemElectroChem, 2014, 1(12): 2075-2081.[46]WANG C, DAIMON H, LEE Y, et al. Synthesis of Monodisperse Pt Nanocubes and Their Enhanced Catalysis for Oxygen Reduction[J]. Journal of the American Chemical Society, 2007, 129(22): 6974-6975.[47]WANG D, XIN H L, HOVDEN R, et al. Structurally Ordered Intermetallic Platinum-Cobalt Core-Shell Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts[J]. Nature Materials, 2013, 12(1): 81-87.[48]STAMENKOVIC V R, FOWLER B, MUN B S, et al. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability[J]. Science, 2007, 315 (5811): 493-497.[49]GREELEY J, STEPHENS I E L, BONDARENKO A S, et al. Alloys of Platinum and Early Transition Metals as Oxygen Reduction Electrocatalysts[J]. Nature Chemistry, 2009, 1(7): 552-556. [50]ESCUDERO-ESCRIBANO M, MALACRIDA P, HANSEN M H, et al. Tuning the Activity of Pt Alloy Electrocatalysts by Means of the Lanthanide Contraction[J]. Science, 2016, 352(6281): 73-76.[51]VELÁZQUEZ-PALENZUELA A, MASINI F, PEDERSEN A F, et al. The Enhanced Activity of Mass-Selected PtGd Nanoparticles for Oxygen Electroreduction[J]. Journal of Catalysis, 2015, 328: 297-307.[52]XU Y, KRAFT M, XU R. Metal-Free Carbonaceous Electrocatalysts and Photocatalysts for Water Splitting[J]. Chemical Society Reviews, 2016, 45(11): 3039-3052.[53]CHEN S, DUAN J, JARONIEC M, et al. Nitrogen and Oxygen Dual-Doped Carbon Hydrogel Film as a Substrate-Free Electrode for Highly Efficient Oxygen Evolution Reaction[J]. Advanced Materials, 2014, 26(18): 2925-2930.[54]QU L, LIU Y, BAEK J B, et al. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells[J]. ACS Nano, 2010, 4 (3): 1321-1326.[55]YANG L, JIANG S, ZHAO Y, et al. Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction[J]. Angewandte Chemie International Edition, 2011, 50(31): 7132-7135.[56]ZHANG J, ZHAO Z, XIA Z, et al. A Metal-Free Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions[J]. Nature Nanotechnology, 2015, 10(5): 444-452. [57]WANG S, ZHANG L, XIA Z, et al. BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction[J]. Angewandte Chemie International Edition, 2012, 51(17): 4209-4212. [58]HAN L, DONG S J, WANG E K. Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction[J]. Advanced Materials, 2016, 28(42): 9266-9291.[59]BURKE M S, ENMAN L J, BATCHELLOR A S, et al. Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles[J]. Chemistry of Materials, 2015, 27(22): 7549-7558.[60]LYU F L, WANG Q F, CHOI S M, et al. Noble-Metal-Free Electrocatalysts for Oxygen Evolution[J]. Small, 2019, 15(1): 1804201.[61]FENG C, FAHEEM M B, FU J, et al. Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives[J]. ACS Catalysis, 2020, 10(7): 4019-4047.[62]WU H, YANG T, DU Y H, et al. Identification of Facet-Governing Reactivity in Hematite for Oxygen Evolution[J]. Advanced Materials, 2018, 30(52): 1804341.[63]LYONS M E G, BRANDON M P. Redox Switching and Oxygen Evolution Electrocatalysis in Polymeric Iron Oxyhydroxide Films[J]. Physical Chemistry Chemical Physics, 2009, 11(13): 2203-2217.[64]FENG J X, YE S H, XU H, et al. Design and Synthesis of FeOOH/CeO2 Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction[J]. Advanced Materials, 2016, 28(23), 4698-4703.[65]LIU B, WANG Y, PENG H Q, et al. Iron Vacancies Induced Bifunctionality in Ultrathin Feroxyhyte Nanosheets for Overall Water Splitting[J]. Advanced Materials, 2018, 30(36): 1803144.[66]GAO R, YAN D P. Recent Development of Ni/Fe-Based Micro/Nanostructures toward Photo/Electrochemical Water Oxidation[J]. Advanced Energy Materials, 2020, 10(11): 1900954.[67]XUE B W, ZHANG C H, WANG Y Z, et al. Recent progress of Ni-Fe layered double hydroxide and beyond towards electrochemical water splitting[J]. Nanoscale Advances, 2020, 2(12): 5555-5566.[68]FRIEBEL D, LOUIE M W, BAJDICH M, et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting[J]. Journal of the American Chemical Society, 2015, 137(3): 1305-1313.[69]CHEN J Y C, DANG L N, LIANG H F, et al. Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mössbauer Spectroscopy[J]. Journal of the American Chemical Society, 2015, 137(3): 15090-15093.[70]BAI L, LEE S, HU X. Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction[J]. Angewandte Chemie International Edition, 2021, 60(6), 3095-3103.[71]ANANTHARAJ S, KUNDU S , NODA S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts[J]. Nano energy, 2021, 80: 105514.[72]YAN Y, CHENG H, QU Z, et al. Recent Progress on the Synthesis and Oxygen Reduction Applications of Fe-Based Single-Atom and Double-Atom Catalysts[J]. Journal of Materials Chemistry A, 2021, 9(35): 19489-19507.[73]WEI X, LUO X, WANG H, et al. Highly-Defective Fe-N-C Catalysts towards pH-Universal Oxygen Reduction Reaction[J]. Applied Catalysis B: Environmental, 2020, 263: 118347.[74]刘虎, 杨东辉, 王许云, 等. 金属-有机框架衍生的中空碳材料及其在电化学能源存储与氧还原领域中的应用[J]. 无机化学学报, 2019, 35(11):1921-1933.[75]CHEN Y, JI S, WANG Y, et al. Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction[J]. Angewandte Chemie International Edition, 2017, 56(24): 6937-6941.[76]JIN H, KOU Z, CAI W, et al. P-Fe Bond Oxygen Reduction Catalysts toward High-Efficiency Metal-Air Batteries and Fuel Cells[J]. Journal of Materials Chemistry A, 2020, 8(18): 9121-9127. [77]WANG M R, YANG W J, LI X Z, et al. Atomically Dispersed Fe-Heteroatom (N, S) Bridge Sites Anchored on Carbon Nanosheets for Promoting Oxygen Reduction Reaction[J]. ACS Energy Letters, 2021, 6(2): 379-386.[78]WANG J, LIU W, LUO G, et al. Synergistic Effect of Well-Defined Dual Sites Boosting the Oxygen Reduction Reaction[J]. Energy & Environmental Science, 2018, 11(12): 3375-3379. [79]GUBLER L, DOCKHEER S M, KOPPENOL W H. Radical (HO•, H• and HOO•) Formation and Ionomer Degradation in Polymer Electrolyte Fuel Cells[J]. Journal of The Electrochemical Society, 2011, 158: B755.[80]COMS F D. The Chemistry of Fuel Cell Membrane Chemical Degradation[J]. ECS Transactions, 2008, 16(2): 235.[81]LI Y T, BAO X H, CHEN D S, et al. A Minireview on Nickel-Based Heterogeneous Electrocatalysts for Water Splitting[J]. ChemCatChem, 2019, 11(24): 5913-5928.[82]FOMINYKH K, FECKL J M, SICKLINGER J, et al. Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as High-Performance Catalysts for Electrochemical Water Splitting[J]. Advanced Functional Materials, 2014, 24(21): 3123-3129.[83]GAO M R, SHENG W C, ZHUANG Z B, et al. Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst[J]. Journal of the American Chemical Society, 2014, 136(19): 7077-7084.[84]ZHAO D D, PI Y C, SHAO Q, et al. Enhancing Oxygen Evolution Electrocatalysis via the Intimate Hydroxide-Oxide Interface[J]. ACS Nano, 2018, 12(6): 6245-6251.[85]LONG X, LI J, XIAO S, et al. A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction[J]. Angewandte Chemie International Edition, 2014, 53(29): 7584-7588. [86]ZHOU W, WU X J, CAO X, et al. Ni3S2 Nanorods/Ni Foam Composite Electrode with Low Overpotential for Electrocatalytic Oxygen Evolution[J]. Energy & Environmental Science, 2013, 6(10): 2921-2924. [87]STERN L A, FENG L, SONG F, et al. Ni2P as a Janus Catalyst for Water Splitting: The Oxygen Evolution Activity of Ni2P Nanoparticles[J]. Energy & Environmental Science, 2015, 8(8): 2347-2351. [88]YU F, ZHOU H, HUANG Y, et al. High-Performance Bifunctional Porous Non-Noble Metal Phosphide Catalyst for Overall Water Splitting[J]. Nature Communication, 2018, 9(1): 2551. [89]PENG H L, LIU F F, LIU X J, et al. Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived From Polyaniline[J]. ACS Catalysis, 2014, 4(10): 3797-3805.[90]CAI Z, DU P, LIANG W, et al. Single-Atom-Sized Ni-N4 Sites Anchored in Three-Dimensional Hierarchical Carbon Nanostructures for the Oxygen Reduction Reaction[J]. Journal of Materials Chemistry A, 2020, 8(30): 15012-15022. [91]SAMARJEET S S, YANG W Q, ZHANG Q B. Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media[J]. Journal of Energy Chemistry, 2020, 51: 113-133.[92]INDRA A, MENEZES P W, DRIESS M. Uncovering Structure-Activity Relationships in Manganese-Oxide-Based Heterogeneous Catalysts forEfficient Water Oxidation. ChemSusChem, 2015, 8(5): 776-785.[93]KAKIZAKI H, OOKA H, HAYASHI T, et al. Evidence That Crystal Facet Orientation Dictates Oxygen Evolution Intermediates on Rutile Manganese Oxide[J]. Advanced Functional Materials, 2018, 28(24): 1706319.[94]KANG Q, VERNISSE L, REMSING R C, et al. Effect of Interlayer Spacing on the Activity of Layered Manganese Oxide Bilayer Catalysts for the Oxygen Evolution Reaction[J]. Journal of the American Chemical Society, 2017, 139(5): 1863-1870. [95]ZHAO Y, CHANG C, TENG F, et al. Defect-Engineered Ultrathin δ-MnO2 Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting[J]. Advanced Energy Materials, 2017, 7(18): 1700005.[96]CAO Y L, YANG H X, AI X P, et al. The Mechanism of Oxygen Reduction on MnO2-Catalyzed Air Cathode in Alkaline Solution[J]. Journal of Electroanalytical Chemistry, 2003, 557: 127-134.[97]LI T, XUE B, WANG B, et al. Tubular Monolayer Superlattices of Hollow Mn3O4 Nanocrystals and Their Oxygen Reduction Activity[J]. Journal of the American Chemical Society, 2017, 139(35): 12133-12136.[98]DONG C, LIU Z W, LIU J Y, et al. Modest Oxygen-Defective Amorphous Manganese-Based Nanoparticle Mullite with Superior Overall Electrocatalytic Performance for Oxygen Reduction Reaction[J]. Small, 2017, 13(16): 1603903.[99]STOERZINGER K A, RISCH M, HAN B, et al. Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics[J]. ACS Catalysis, 2015, 5(10): 6021-6031.[100]LI J, CHEN M, CULLEN D A, et al. Atomically Dispersed Manganese Catalysts for Oxygen Reduction in Proton-Exchange Membrane Fuel Cells[J]. Nature Catalysis, 2018, 1(12): 935-945.[101]SHANG H, JIANG Z, ZHOU D, et al. Engineering a Metal-Organic Framework Derived Mn-N4-CxSy Atomic Interface for Highly Efficient Oxygen Reduction Reaction[J]. Chemical Science, 2020, 11(23): 5994-5999.[102]SUBBARAMAN R, TRIPKOVIC D, CHANG K C, et al. Trends in Activity for the Water Electrolyser Reactions on 3d M (Ni, Co, Fe, Mn) Hydr(Oxy)Oxide Catalysts[J]. Nature Materials, 2012, 11(6): 550-557.[103]PENG H, LIU F, LIU X, et al. Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived from Polyaniline and Melamine for ORR Application[J]. ACS Catalysis, 2014, 4(10): 3797-3805.[104]WANG X X, PRABHAKARAN V, HE Y, et al. Iron-Free Cathode Catalysts for Proton‐Exchange-Membrane Fuel Cells: Cobalt Catalysts and the Peroxide Mitigation Approach[J]. Advanced Materials, 2019, 31(31): 1805126. [105]WANG S, CHEN S, MA L, et al. Recent Progress in Cobalt-Based Carbon Materials as Oxygen Electrocatalysts for Zinc-Air Battery Applications[J]. Materials Today Energy, 2021, 20: 100659.[106]李莎莎. 钴基电催化剂的结构设计, 合成及其电催化性能[D]. 太原: 太原理工大学, 2019.[107]钟海红. 高效钴基氧电极催化材料的构筑及电催化性能研究[D]. 北京化工大学, 2020.[108]SUN S, SUN Y, ZHOU Y, et al. Shifting Oxygen Charge towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides[J]. Angewandte Chemie International Edition, 2019, 58(18): 6042-6047.[109]WEI C, FENG Z, SCHERER G G, et al. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Mmetal Spinels[J]. Advanced Materials, 2017, 29(23): 1606800.[110]LIU Z, WANG G, ZHU X, et al. Optimal Geometrical Configuration of Cobalt Cations in Spinel Oxides to Ppromote Oxygen Evolution Reaction[J]. Angewandte Chemie International Edition, 2020, 59(12): 4736-4742.[111]FANG H, HUANG T, LIANG D, et al. Prussian Blue Analog-Derived 2D Ultrathin CoFe2O4 Nanosheets as High-Activity Electrocatalysts for the Oxygen Evolution Reaction in Alkaline and Neutral Mmedia[J]. Journal of Materials Chemistry A, 2019, 7(13): 7328-7332. [112]SHAHID M M, RAMESHKUMAR P, BASIRUN W J, et al. Cobalt Oxide Nanocubes Interleaved Reduced Graphene Oxide as An Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium[J]. Electrochimica Acta, 2017, 237: 61-68. [113]JIN J, FU X, LIU Q, et al. A Highly Active and Stable Electrocatalyst for the Oxygen Reduction Reaction Based on A Graphene-Supported g-C3N4@Cobalt Oxide Core-Shell Hybrid in Alkaline Solution[J]. Journal of Materials Chemistry A, 2013, 1(35): 10538-10545.[114]WANG C, ZHAO Z, LI X, et al. Three-Dimensional Framework of Graphene Nanomeshes Shell/Co3O4 Synthesized as Superior Bifunctional Electrocatalyst for Zinc-Air Batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41273-41283.[115]MA R, LIU Z, TAKADA K, et al. Synthesis and Exfoliation of Co2+-Fe3+ Layered Double Hydroxides: An Innovative Topochemical Approach[J]. Journal of the American Chemical Society, 2007, 129(16): 5257-5263.[116]ZOU X, GOSWAMI A, ASEFA T. Efficient Noble Metal-Free (Electro)Catalysis of Water and Alcohol Oxidations by Zinc-Cobalt Layered Double Hydroxide[J]. Journal of the American Chemical Society, 2013, 135(46): 17242-17245.[117]ZHANG S, NI B, LI H, et al. Cobalt Carbonate Hydroxide Superstructures for Oxygen Evolution Reactions[J]. Chemical Communications, 2017, 53(57): 8010-8013.[118]SONG F, HU X. Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis[J]. Nature Communications, 2014, 5(1): 1-9.[119]HUANG J, CHEN J, YAO T, et al. CoOOH Nanosheets with High Mass Activity for Water Oxidation[J]. Angewandte Chemie International Edition, 2015, 54(30): 8722-8727.[120]ZHANG B, ZHENG X, VOZNYY O, et al. Homogeneously Dispersed Multimetal Oxygen-Evolving Catalysts[J]. Science, 2016, 352(6283): 333-337.[121]TANG T, JIANG W J, NIU S, et al. Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting[J]. Journal of the American Chemical Society, 2017, 139(24): 8320-8328.[122]PING J, WANG Y, LU Q, et al. Self-Assembly of Single-Layer CoAl‐Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction[J]. Advanced Materials, 2016, 28(35): 7640-7645.[123]WANG D, CHEN X, EVANS D G, et al. Well-Dispersed Co3O4/Co2MnO4 Nanocomposites as A Synergistic Bifunctional Catalyst for Oxygen Reduction and Oxygen Evolution Reactions[J]. Nanoscale, 2013, 5(12): 5312-5315.[124]HUANG W, ZHONG H, LI D, et al. Reduced Graphene Oxide Supported CoO/MnO2 Electrocatalysts from Layered Double Hydroxides for Oxygen Reduction Reaction[J]. Electrochimica Acta, 2015, 173: 575-580.[125]MA X, ZHANG W, DENG Y, et al. Phase and Composition Controlled Synthesis of Cobalt Sulfide Hollow Nanospheres for Electrocatalytic Water Splitting[J]. Nanoscale, 2018, 10(10): 4816-4824. [126]CAI P, HUANG J, CHEN J, et al. Oxygen-Containing Amorphous Cobalt Sulfide Porous Nanocubes as High‐Activity Electrocatalysts for the Oxygen Evolution Reaction in An Alkaline/Neutral Medium[J]. Angewandte Chemie International Edition, 2017, 56(17): 4858-4861.[127]QIU B, CAI L, WANG Y, et al. Phosphorus Incorporation into Co9S8 Nanocages for Highly Efficient Oxygen Evolution Catalysis[J]. Small, 2019, 15(45): 1904507.[128]SUN Y, GUAN Y, WU X, et al. ZIF-Derived “Senbei”-Like Co9S8/CeO2/Co Heterostructural Nitrogen-Doped Carbon Nanosheets as Bifunctional Oxygen Electrocatalysts for Zn-Air Batteries[J]. Nanoscale, 2021, 13(5): 3227-3236.[129]XU H, CAO J, SHAN C, et al. MOF-Derived Hollow CoS Decorated with CeOx Nanoparticles for Boosting Oxygen Evolution Reaction Electrocatalysis[J]. Angewandte Chemie International Edition, 2018, 57(28): 8654-8658.[130]LIANG L, CHENG H, LEI F, et al. Metallic Single‐Unit‐Cell Orthorhombic Cobalt Diselenide Atomic Layers: Robust Water‐Electrolysis Catalysts[J]. Angewandte Chemie International Edition, 2015, 54(41): 12004-12008.[131]ZHANG K, ZHANG G, QU J, et al. Zinc Substitution-Induced Subtle Lattice Distortion Mediates the Active Center of Cobalt Diselenide Electrocatalysts for Enhanced Oxygen Evolution[J]. Small, 2020, 16(11): 1907001.[132]ZHANG H, WANG T, SUMBOJA A, et al. Integrated Hierarchical Carbon Flake Arrays with Hollow P-Doped CoSe2 Nanoclusters as An Advanced Bifunctional Catalyst for Zn-Air Batteries[J]. Advanced Functional Materials, 2018, 28(40): 1804846.[133]BARESEL V D, SARHOLZ W, SCHARNER P, et al. Transition Metal Chalcogenides as Oxygen Catalysts for Fuel Cells[J]. Ber. Bunsenges. Phys. Chem.;(Germany, Federal Republic of), 1974, 78(6): 608-618. [134]BEHRET H, BINDER H, SANDSTEDE G. Electrocatalytic Oxygen Reduction with Thiospinels and Other Sulphides of Transition Metals[J]. Electrochimica Acta, 1975, 20(2): 111-117.[135]DOU S, TAO L, HUO J, et al. Etched and Ddoped Co9S8/Graphene Hybrid for Oxygen Electrocatalysis[J]. Energy & Environmental Science, 2016, 9(4): 1320-1326.[136]CHEN P, XU K, FANG Z, et al. Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction[J]. Angewandte Chemie International Edition, 2015, 54(49): 14710-14714.[137]ZHANG Y, OUYANG B, XU J, et al. Rapid Synthesis of Cobalt Nitride Nanowires: Highly Efficient and Low-Cost Catalysts for Oxygen Evolution[J]. Angewandte Chemie International Edition, 2016, 55(30), 8670-8674.[138]SUN H, TIAN C, FAN G, et al. Boosting Activity on Co4N Porous Nanosheet by Coupling CeO2 for Efficient Electrochemical Overall Water Splitting at High Current Densities[J]. Advanced Functional Materials, 2020, 30(32): 1910596. [139]ZHOU L, SHAO M, LI J, et al. Two-Dimensional Ultrathin Arrays of CoP: Electronic Modulation toward High Performance Overall Water Splitting[J]. Nano Energy, 2017, 41: 583-590.[140]THOMPSON S T, WILSON A R, ZELENAY P, et al. ElectroCat: DOE's Approach to PGM-Free Catalyst and Electrode R&D[J]. Solid State Ionics, 2018, 319: 68-76.[141]YIN P, YAO T, WU Y, et al. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts[J]. Angewandte Chemie International Edition, 2016, 55(36): 10800-10805.[142]HAN X, LING X, WANG Y, et al. Generation of Nanoparticle, Atomic-Cluster, and Aingle-Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Ttheir Use in Zinc-Air Batteries[J]. Angewandte Chemie International Edition, 2019, 58(16): 5359-5364.[143]HE Y, HWANG S, CULLEN D A, et al. Highly Active Atomically Dispersed CoN4 Fuel Cell Cathode Catalysts Derived from Surfactant-Assisted MOFs: Carbon-Shell Confinement Strategy[J]. Energy & Environmental Science, 2019, 12(1): 250-260.[144]HAI X, ZHAO X, GUO N, et al. Engineering Local and Global Structures of Single Co Atoms for A Superior Oxygen Reduction Reaction[J]. ACS Catalysis, 2020, 10(10): 5862-5870.[145]XIAO M, CHEN Y, ZHU J, et al. Climbing the Apex of the ORR Volcano Plot via Binuclear Site Construction: Electronic and Geometric Engineering[J]. Journal of the American Chemical Society, 2019, 141(44): 17763-17770.[146]WANG J, HUANG Z, LIU W, et al. Design of N-coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction[J]. Journal of the American Chemical Society, 2017, 139(48): 17281-17284.[147]LU Z, WANG B, HU Y, et al. An Isolated Zinc-Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction[J]. Angewandte Chemie International Edition, 2019, 58(19): 2622-2626.[148]LIU Z, LI N, ZHAO H, et al. Regulating the Active Species of Ni(OH)2 Using CeO2: 3D CeO2/Ni(OH)2/Carbon Foam as An Efficient Electrode for the Oxygen Evolution Reaction[J]. Chemical Science, 2017, 8(4): 3211-3217.[149]WANG Y, DING W, CHEN S, et al. Cobalt Carbonate Hydroxide/C: An Efficient Dual Electrocatalyst for Oxygen Reduction/Evolution Reactions[J]. Chemical Communications, 2014, 50(98): 15529-15532. [150]KARMAKAR A, SRIVASTAVA S K. Transition-Metal-Substituted Cobalt Carbonate Hydroxide Nanostructures as Electrocatalysts in Alkaline Oxygen Evolution Reaction[J]. ACS Applied Energy Materials, 2020, 3(8): 7335-7344.[151]LI Y, ZHANG X, ZHENG Z. A Review of Transition Metal Oxygen-Evolving Catalysts Decorated by Cerium-Based Materials: Current Status and Future Prospects[J]. CCS Chemistry, 2022, 4(1): 31-53.[152]LU G, ZHENG H, LV J, et al. Review of Recent Research Work on CeO2-Based Electrocatalysts in Liquid-Phase Electrolytes[J]. Journal of Power Sources, 2020, 480: 229091.[153]WANG J, XIAO X, LIU Y, et al. The Application of CeO2-Based Materials in Electrocatalysis[J]. Journal of Materials Chemistry A, 2019, 7(30): 17675-17702.[154]TOMBOC G M, KIM J, WANG Y, et al. Hybrid Layered Double Hydroxides as Multifunctional Nanomaterials for Overall Water Splitting and Supercapacitor Applications[J]. Journal of Materials Chemistry A, 2021, 9(8): 4528-4557. [155]LIU J, YE L Y, XIONG W H, et al. A Cerium Oxide@Metal-Organic Framework Nanoenzyme as A Tandem Catalyst for Enhanced Photodynamic Therapy[J]. Chemical Communications, 2021, 57(22): 2820-2823.[156]DIONIGI F, ZHU J, ZENG Z, et al. Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3d-Transition Metal Layered Double Hydroxides[J]. Angewandte Chemie International Edition, 2021, 60(26): 14446-14457.[157]FEI H, DONG J, FENG Y, et al. General Synthesis and Definitive Structural Identification of MN4C4 Single-Atom Catalysts with Tunable Electrocatalytic Activities[J]. Nature Catalysis, 2018, 1(1): 63-72. [158]MA T Y, DAI S, JARONIEC M, et al. Metal-Organic Framework Derived Hybrid Co3O4-Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes[J]. Journal of the American Chemical Society, 2014, 136(39): 13925-13931.[159]SONG F, HU X. Ultrathin Cobalt-Manganese Layered Double Hydroxide is An Efficient Oxygen Evolution Catalyst[J]. Journal of the American Chemical Society, 2014, 136(47): 16481-16484.[160]HAN X, YU C, ZHOU S, et al. Ultrasensitive Iron-Triggered Nanosized Fe-CoOOH Integrated with Graphene for Highly Rfficient Oxygen Evolution[J]. Advanced Energy Materials, 2017, 7(14): 1602148.[161]SIVANANTHAM A, GANESAN P, SHANMUGAM S. A Synergistic Effect of Co and CeO2 in Nitrogen-Doped Carbon Nanostructure for the Enhanced Oxygen Electrode Activity and Stability[J]. Applied Catalysis B: Environmental, 2018, 237: 1148-1159.[162]XU H, SHAN C, WU X, et al. Fabrication of Layered Double Hydroxide Microcapsules Mediated by Cerium Doping in Metal-Organic Frameworks for Boosting Water Splitting[J]. Energy & Environmental Science, 2020, 13(9): 2949-2956.[163]ZHOU Y N, FAN R Y, DOU S Y, et al. Tailoring Electron Transfer with Ce Integration in Ultrathin Co(OH)2 Nanosheets by Fast Microwave for Oxygen Rvolution Reaction[J]. Journal of Energy Chemistry, 2021, 59: 299-305.[164]DAI T, ZHANG X, SUN M, et al. Uncovering the Promotion of CeO2/CoS1.97 Heterostructure with Specific Spatial Architectures on Oxygen Evolution Reaction[J]. Advanced Materials, 2021, 33(42): 2102593. [165]ZHENG Y, ZHAO C, LI Y, et al. Directly Visualizing and Exploring Local Heterointerface with High Electro-Catalytic Activity[J]. Nano Energy, 2020, 78: 105236. [166]CHEN J, LI H, CHEN S, et al. Co-Fe-Cr (Oxy)hydroxides as Efficient Oxygen Evolution Reaction Catalysts[J]. Advanced Energy Materials, 2021, 11(11): 2003412.[167]LIU Y, MA C, ZHANG Q, et al. 2D Electron Gas and Oxygen Vacancy Induced High Oxygen Evolution Performances for Advanced Co3O4/CeO2 Nanohybrids[J]. Advanced Materials, 2019, 31(21): 1900062.[168]YANG G, MÖBUS G, HAND R J. Cerium and Boron Chemistry in Doped Borosilicate Glasses Examined by EELS[J]. Micron, 2006, 37(5): 433-441.[169]KOU Z, YU Y, LIU X, et al. Potential-Dependent Phase Transition and Mo-Enriched Surface Reconstruction of γ-CoOOH in A Heterostructured Co-Mo2C Precatalyst Enable Water Oxidation[J]. ACS Catalysis, 2020, 10(7): 4411-4419.[170]MOYSIADOU A, LEE S, HSU C S, et al. Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as A Key Intermediate and Dioxygen Release as A Rate-Determining Step[J]. Journal of the American Chemical Society, 2020, 142(27): 11901-11914.[171]FENG J X, XU H, DONG Y T, et al. FeOOH/Co/FeOOH Hybrid Nanotube Arrays as High-Performance Electrocatalysts for the Oxygen Evolution Reaction[J]. Angewandte Chemie International Edition, 2016, 55(11): 3694-3698.[172]ZHANG S, HUANG B, WANG L, et al. Boosted Oxygen Evolution Reactivity via Atomic Iron Doping in Cobalt Carbonate Hydroxide Hydrate[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40220-40228.[173]DAI M, FAN H, XU G, et al. Boosting Electrocatalytic Oxygen Evolution Using Ultrathin Carbon Protected Iron-Cobalt Carbonate Hydroxide Nanoneedle Arrays[J]. Journal of Power Sources, 2020, 450: 227639.[174]BURKE M S, KAST M G, TROTOCHAUD L, et al. Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism[J]. Journal of the American Chemical Society, 2015, 137(10): 3638-3648.[175]GAO W, XIA Z, CAO F, et al. Comprehensive Understanding of the Spatial Configurations of CeO2 in NiO for the Electrocatalytic Oxygen Evolution Reaction: Embedded or Surface-Loaded[J]. Advanced Functional Materials, 2018, 28(11): 1706056.[176]QIU B, WANG C, ZHANG N, et al. CeO2-Induced Interfacial Co2+ Octahedral Sites and Oxygen Vacancies for Water Oxidation[J]. ACS Catalysis, 2019, 9(7): 6484-6490.[177]LIU M, MIN K A, HAN B, et al. Interfacing or Doping? Role of Ce in Highly Promoted Water Oxidation of NiFe-Layered Double Hydroxide[J]. Advanced Energy Materials, 2021, 11(33): 2101281.[178]LIU S, WANG Z, ZHOU S, et al. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as A Bifunctional Electrocatalyst for Oxygen Reduction and Evolution[J]. Advanced Materials, 2017, 29(31): 1700874.[179]LAI Q, ZHAO Y, LIANG Y, et al. In situ Confinement Pyrolysis Transformation of ZIF-8 to Nitrogen-Enriched Meso-Microporous Carbon Frameworks for Oxygen Reduction[J]. Advanced Functional Materials, 2016, 26(45): 8334-8344.[180]SUN X, SUN S, GU S, et al. High-Performance Single Atom Bifunctional Oxygen Catalysts Derived from ZIF-67 Superstructures[J]. Nano Energy, 2019, 61: 245-250.[181]HE Y, HWANG S, CULLEN D A, et al. Highly Active Atomically Dispersed CoN4 Fuel Cell Cathode Catalysts Derived From Surfactant-Assisted MOFs: Carbon-Shell Confinement Strategy[J]. Energy & Environmental Science, 2019, 12(1): 250-260.[182]ZHANG H, ZHOU W, CHEN T, et al. A Modular Strategy for Decorating Isolated Cobalt Atoms into Multichannel Carbon Matrix for Electrocatalytic Oxygen Reduction[J]. Energy & Environmental Science, 2018, 11(8): 1980-1984.[183]PIMENTA M A, DRESSELHAUS G, DRESSELHAUS M S, et al. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy[J]. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1290.[184]WANG Y, CHEN L, MAO Z, et al. Controlled Synthesis of Single Cobalt Atom Catalysts via A Facile One-Pot Pyrolysis for Efficient Oxygen Reduction and Hydrogen Evolution Reactions[J]. Science Bulletin, 2019, 64(15): 1095-1102.[185]YANG L, SHI L, WANG D, et al. Single-Atom Cobalt Electrocatalysts for Foldable Solid-State Zn-Air Battery[J]. Nano Energy, 2018, 50: 691-698.[186]BAN J, WEN X, XU H, et al. Dual Evolution in Defect and Morphology of Single-Atom Dispersed Carbon Based Oxygen Electrocatalyst[J]. Advanced Functional Materials, 2021, 31(19): 2010472.[187]HAI X, ZHAO X, GUO N, et al. Engineering Local and Global Structures of Single Co Atoms for A Superior Oxygen Reduction Reaction[J]. ACS Catalysis, 2020, 10(10): 5862-5870.[188]HA Y, FEI B, YAN X, et al. Atomically Dispersed Co-Pyridinic N-C for Superior Oxygen Reduction Reaction[J]. Advanced Energy Materials, 2020, 10(46): 2002592.[189]ZHANG Z, ZHAO X, XI S, et al. Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn-Air Battery and Self-Driven Water Splitting[J]. Advanced Energy Materials, 2020, 10(48): 2002896.[190]LI B Q, ZHAO C X, CHEN S, et al. Framework-Porphyrin-Derived Single-Atom Bifunctional Oxygen Electrocatalysts and Their Applications in Zn-Air Batteries[J]. Advanced Materials, 2019, 31(19): 1900592.[191]CHENG Q, YANG L, ZOU L, et al. Single Cobalt Atom and N Codoped Carbon Nanofibers as Highly Durable Electrocatalyst for Oxygen Reduction Reaction[J]. ACS Catalysis, 2017, 7(10): 6864-6871.[192]RONG W, ZOU H, ZANG W, et al. Size-Dependent Activity and Selectivity of Atomic-Level Copper Nanoclusters during CO/CO2 Electroreduction[J]. Angewandte Chemie International Edition, 2021, 60(1): 466-472.[193]ZHANG P, GUAN B Y, YU L, et al. Formation of Double-Shelled Zinc-Cobalt Sulfide Dodecahedral Cages from Bimetallic Zeolitic Imidazolate Frameworks for Hybrid Supercapacitors[J]. Angewandte Chemie International Edition, 2017, 56(25): 7141-7145.[194]HU H, HAN L, YU M, et al. Metal-Organic-Framework-Engaged Formation of Co Nanoparticle-Embedded Carbon@Co9S8 Double-Shelled Nanocages for Efficient Oxygen Reduction[J]. Energy & Environmental Science, 2016, 9(1): 107-111.[195]WANG L, WAN J, ZHAO Y, et al. Hollow Multi-Shelled Structures of Co3O4 Dodecahedron with Unique Crystal Orientation for Enhanced Photocatalytic CO2 Reduction[J]. Journal of the American Chemical Society, 2019, 141(6): 2238-2241.[196]WANG J, WAN J, WANG D. Hollow Multishelled Structures for Promising Applications: Understanding the Structure-Performance Correlation[J]. Accounts of Chemical Research, 2019, 52(8): 2169-2178.[197]ZANG W, SUMBOJA A, MA Y, et al. Single Co Atoms Anchored in Porous N-Doped Carbon for Efficient Zinc-Air Battery Cathodes[J]. ACS Catalysis, 2018, 8(10): 8961-8969.[198]WAN G, YU P, CHEN H, et al. Engineering Single-Atom Cobalt Catalysts toward Improved Electrocatalysis[J]. Small, 2018, 14(15): 1704319.[199]YI J D, XU R, CHAI G L, et al. Cobalt Single-Atoms Anchored on Porphyrinic Triazine-Based Frameworks as Bifunctional Electrocatalysts for Oxygen Reduction and Hydrogen Evolution Reactions[J]. Journal of Materials Chemistry A, 2019, 7(3): 1252-1259.[200]LYU X, LI G, CHEN X, et al. Atomic Cobalt on Defective Bimodal Mesoporous Carbon toward Efficient Oxygen Reduction for Zinc-Air Batteries[J]. Small Methods, 2019, 3(9): 1800450.
修改评论