[1] HARLEN K M, CHURCHMAN L S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain [J]. Nat Rev Mol Cell Biol, 2017, 18(4): 263-73.
[2] MACKNIGHT R, BANCROFT L, PAGE T, et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains [J]. Cell, 1997, 89(5): 737-45.
[3] FANG X, WU Z, RAITSKIN O, et al. The 3' processing of antisense RNAs physically links to chromatin-based transcriptional control [J]. Proc Natl Acad Sci U S A, 2020, 117(26): 15316-21.
[4] WU Z, FANG X, ZHU D, et al. Autonomous pathway: FLOWERING LOCUS C repression through an antisense-mediated chromatin-silencing mechanism [J]. Plant Physiol, 2020, 182(1): 27-37.
[5] MACKNIGHT R, DUROUX M, LAURIE R, et al. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA [J]. Plant Cell, 2002, 14(4): 877-88.
[6] QUESADA V M R, DEAN C, SIMPSON GG. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. [J]. EMBO J, 2003, 16(22): 3142-52.
[7] HORNYIK C, TERZI L C, SIMPSON G G. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA [J]. Dev Cell, 2010, 18(2): 203-13.
[8] SONMEZ C, BAURLE I, MAGUSIN A, et al. RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription [J]. Proc Natl Acad Sci U S A, 2011, 108(20): 8508-13.
[9] NECHAEV S, FARGO D C, DOS SANTOS G, et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila [J]. Science, 2010, 327(5963): 335-8.
[10] MEERS M P, ADELMAN K, DURONIO R J, et al. Transcription start site profiling uncovers divergent transcription and enhancer-associated RNAs in Drosophila melanogaster [J]. BMC Genomics, 2018, 19(1): 157.
[11] WISSINK E M, VIHERVAARA A, TIPPENS N D, et al. Nascent RNA analyses: tracking transcription and its regulation [J]. Nat Rev Genet, 2019, 20(12): 705-23.
[12] BHATT D M, PANDYA-JONES A, TONG A J, et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions [J]. Cell, 2012, 150(2): 279-90.
[13] PANDYA-JONES A, BHATT D M, LIN C H, et al. Splicing kinetics and transcript release from the chromatin compartment limit the rate of Lipid A-induced gene expression [J]. RNA, 2013, 19(6): 811-27.
[14] PANDYA-JONES A, BLACK D L. Co-transcriptional splicing of constitutive and alternative exons [J]. RNA, 2009, 15(10): 1896-908.
[15] YANG W L, QIU W, ZHANG T, et al. Nsun2 coupling with RoRγt shapes the fate of Th17 cells and promotes colitis [J]. Nat Commun, 2023, 14(1): 863.
[16] NOJIMA T, GOMES T, GROSSO A R F, et al. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing [J]. Cell, 2015, 161(3): 526-40.
[17] NOJIMA T, REBELO K, GOMES T, et al. RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co-transcriptional splicing [J]. Mol Cell, 2018, 72(2): 369-79.e4.
[18] SCHLACKOW M, NOJIMA T, GOMES T, et al. Distinctive patterns of transcription and RNA processing for human lincRNAs [J]. Mol Cell, 2017, 65(1): 25-38.
[19] CORE L J, WATERFALL J J, LIS J T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters [J]. Science, 2008, 322(5909): 1845-8.
[20] ZHU J, LIU M, LIU X, et al. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis [J]. Nat Plants, 2018, 4(12): 1112-23.
[21] KWAK H, FUDA N J, CORE L J, et al. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing [J]. Science, 2013, 339(6122): 950-3.
[22] BJöRN SCHWALB M M, BENEDIKT ZACHER, KATJA FRüHAUF, CARINA DEMEL, ACHIM TRESCH, JULIEN GAGNEUR, PATRICK CRAMER. TT-seq maps the human transient transcriptome. [J]. Science, 2016, 352(6290): 1125-8.
[23] BIRD G, ZORIO D A, BENTLEY D L. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3'-end formation [J]. Mol Cell Biol, 2004, 24(20): 8963-9.
[24] BENTLEY D L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors [J]. Curr Opin Cell Biol, 2005, 17(3): 251-6.
[25] EJ. C. RNA polymerase II carboxy-terminal domain with multiple connections [J]. Exp Mol Med, 2007, 39(3): 247-54.
[26] FONG N, SALDI T, SHERIDAN R M, et al. RNA Pol II dynamics modulate co-transcriptional chromatin modification, CTD phosphorylation, and transcriptional direction [J]. Mol Cell, 2017, 66(4): 546-57.e3.
[27] HEIDEMANN M, HINTERMAIR C, VOSS K, et al. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription [J]. Biochim Biophys Acta, 2013, 1829(1): 55-62.
[28] RODRIGUEZ-MOLINA J B, WEST S, PASSMORE L A. Knowing when to stop: transcription termination on protein-coding genes by eukaryotic RNAPII [J]. Mol Cell, 2023, 83(3): 404-15.
[29] SCHROEDER S C, SCHWER B, SHUMAN S, et al. Dynamic association of capping enzymes with transcribing RNA polymerase II [J]. Genes Dev, 2000, 14(19): 2435-40.
[30] HSIN J P, LI W, HOQUE M, et al. RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells [J]. Elife, 2014, 3: e02112.
[31] SHAH N, MAQBOOL M A, YAHIA Y, et al. Tyrosine-1 of RNA polymerase II CTD controls global termination of gene transcription in mammals [J]. Mol Cell, 2018, 69(1): 48-61.e6.
[32] NOJIMA T, GOMES T, CARMO-FONSECA M, et al. Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide [J]. Nat Protoc, 2016, 11(3): 413-28.
[33] EGLOFF S, ZABOROWSKA J, LAITEM C, et al. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes [J]. Mol Cell, 2012, 45(1): 111-22.
[34] COLLIN P, JERONIMO C, POITRAS C, et al. RNA polymerase II CTD tyrosine 1 is required for efficient termination by the Nrd1-Nab3-Sen1 pathway [J]. Mol Cell, 2019, 73(4): 655-69.e7.
[35] CHEN F X, SMITH E R, SHILATIFARD A. Born to run: control of transcription elongation by RNA polymerase II [J]. Nat Rev Mol Cell Biol, 2018, 19(7): 464-78.
[36] KAMIENIARZ-GDULA K, GDULA M R, PANSER K, et al. Selective roles of vertebrate PCF11 in premature and full-length transcript termination [J]. Mol Cell, 2019, 74(1): 158-72.e9.
[37] MCCRACKEN S F N, ROSONINA E, ET AL. 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. [J]. Genes Dev, 1997, 11(24): 3306-18.
[38] RASMUSSEN EB L J. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. [J]. Proc Natl Acad Sci U S A, 1993, 90(17): 7923-7.
[39] CHO EJ T T, MOORE CR, BURATOWSKI S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. [J]. Genes Dev 1997, 11(24): 3319-26.
[40] BRANNAN K, KIM H, ERICKSON B, et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription [J]. Mol Cell, 2012, 46(3): 311-24.
[41] GLOVER-CUTTER K, KIM S, ESPINOSA J, et al. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes [J]. Nat Struct Mol Biol, 2008, 15(1): 71-8.
[42] BENTLEY D L. Coupling mRNA processing with transcription in time and space [J]. Nat Rev Genet, 2014, 15(3): 163-75.
[43] ZHANG S A S, VOS SM, AGAFONOV DE, LüHRMANN R, CRAMER P. . Structure of a transcribing RNA polymerase II-U1 snRNP complex. [J]. Science, 2021, 371(6526): 305-9.
[44] PORRUA O, LIBRI D. Transcription termination and the control of the transcriptome: why, where and how to stop [J]. Nat Rev Mol Cell Biol, 2015, 16(3): 190-202.
[45] PROUDFOOT N J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut [J]. Science, 2016, 352(6291): aad9926.
[46] WAGSCHAL A, ROUSSET E, BASAVARAJAIAH P, et al. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII [J]. Cell, 2012, 150(6): 1147-57.
[47] HERZEL L, NEUGEBAUER K M. Quantification of co-transcriptional splicing from RNA-Seq data [J]. Methods, 2015, 85: 36-43.
[48] LI S, WANG Y, ZHAO Y, et al. Global co-transcriptional splicing in Arabidopsis and the correlation with splicing regulation in mature RNAs [J]. Mol Plant, 2020, 13(2): 266-77.
[49] ZHU D, MAO F, TIAN Y, et al. The features and regulation of co-transcriptional splicing in Arabidopsis [J]. Mol Plant, 2020, 13(2): 278-94.
[50] MO W, LIU B, ZHANG H, et al. Landscape of transcription termination in Arabidopsis revealed by single-molecule nascent RNA sequencing [J]. Genome Biol, 2021, 22(1): 322.
[51] L. STIRLING CHURCHMAN, WEISSMAN J S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. [J]. Nature, 2011, 469(7330): 368-73.
[52] MAYER A, DI IULIO J, MALERI S, et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution [J]. Cell, 2015, 161(3): 541-54.
[53] LIU W, DUTTKE S H, HETZEL J, et al. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis [J]. Nat Plants, 2018, 4(3): 181-8.
[54] HETZEL J, DUTTKE S H, BENNER C, et al. Nascent RNA sequencing reveals distinct features in plant transcription [J]. Proc Natl Acad Sci U S A, 2016, 113(43): 12316-21.
[55] ERHARD K F, JR., TALBOT J E, DEANS N C, et al. Nascent transcription affected by RNA polymerase IV in Zea mays [J]. Genetics, 2015, 199(4): 1107-25.
[56] CORE L J, MARTINS A L, DANKO C G, et al. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers [J]. Nat Genet, 2014, 46(12): 1311-20.
[57] QIN Y, LONG Y, ZHAI J. Genome-wide characterization of nascent RNA processing in plants [J]. Curr Opin Plant Biol, 2022, 69: 102294.
[58] REDDY A S. Alternative splicing of pre-messenger RNAs in plants in the genomic era [J]. Annu Rev Plant Biol, 2007, 58: 267-94.
[59] BLACK D L. Mechanisms of alternative pre-messenger RNA splicing [J]. Annu Rev Biochem, 2003, 72: 291-336.
[60] DE CONTI L, BARALLE M, BURATTI E. Exon and intron definition in pre-mRNA splicing [J]. Wiley Interdiscip Rev RNA, 2013, 4(1): 49-60.
[61] TALERICO M B S. Intron definition in splicing of small Drosophila introns. [J]. Mol Cell Biol, 1994, 14(5): 3434-45.
[62] STERNER DA C T, BERGET SM. Architectural limits on split genes. [J]. Proc Natl Acad Sci U S A, 1996, 93(26): 15081-5.
[63] IZAURRALDE E L J, MCGUIGAN C, ET AL. A nuclear cap binding protein complex involved in pre-mRNA splicing. [J]. Cell, 1994, 78(4): 657-68.
[64] LEWIS JD I E, JARMOLOWSKI A, MCGUIGAN C, MATTAJ IW. . A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5' splice site. [J]. Genes Dev, 1996, 19(13): 1683-98.
[65] LI X, LIU S, ZHANG L, et al. A unified mechanism for intron and exon definition and back-splicing [J]. Nature, 2019, 573(7774): 375-80.
[66] KIM E, MAGEN A, AST G. Different levels of alternative splicing among eukaryotes [J]. Nucleic Acids Res, 2007, 35(1): 125-31.
[67] SHANG X, CAO Y, MA L. Alternative splicing in plant genes: a means of regulating the environmental fitness of plants [J]. Int J Mol Sci, 2017, 18(2): 432.
[68] LEE Y, RIO D C. Mechanisms and regulation of alternative pre-mRNA splicing [J]. Annu Rev Biochem, 2015, 84: 291-323.
[69] JABRE I, REDDY A S N, KALYNA M, et al. Does co-transcriptional regulation of alternative splicing mediate plant stress responses? [J]. Nucleic Acids Res, 2019, 47(6): 2716-26.
[70] GODOY HERZ M A, KUBACZKA M G, BRZYZEK G, et al. Light regulates plant alternative splicing through the control of transcriptional elongation [J]. Mol Cell, 2019, 73(5): 1066-74.e3.
[71] WONG J J, SCHMITZ U. Intron retention: importance, challenges, and opportunities [J]. Trends Genet, 2022, 38(8): 789-92.
[72] HARTMANN L, WIESSNER T, WACHTER A. Subcellular compartmentation of alternatively spliced transcripts defines SERINE/ARGININE-RICH PROTEIN30 Expression [J]. Plant Physiol, 2018, 176(4): 2886-903.
[73] LERNER MR S J. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. [J]. Proc Natl Acad Sci U S A, 1979, 76(11): 5495-9.
[74] VENTERS C C, OH J M, DI C, et al. U1 snRNP telescripting: suppression of premature transcription termination in introns as a new layer of gene regulation [J]. Cold Spring Harb Perspect Biol, 2019, 11(2): a032235.
[75] ROGERS J W R. A mechanism for RNA splicing. [J]. Proc Natl Acad Sci U S A, 1980, 77(4): 1877-9.
[76] SO B R, DI C, CAI Z, et al. A complex of U1 snRNP with cleavage and polyadenylation factors controls telescripting, regulating mRNA transcription in human cells [J]. Mol Cell, 2019, 76(4): 590-9.e4.
[77] SHI Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome [J]. Nat Rev Mol Cell Bio, 2017, 18(11): 655-70.
[78] WILL C L, LUHRMANN R. Spliceosome structure and function [J]. Cold Spring Harb Perspect Biol, 2011, 3(7): a003707.
[79] LAROCHELLE M, ROBERT M A, HEBERT J N, et al. Common mechanism of transcription termination at coding and noncoding RNA genes in fission yeast [J]. Nat Commun, 2018, 9(1): 4364.
[80] RODRIGUEZ-MOLINA J B, O'REILLY F J, FAGARASAN H, et al. Mpe1 senses the binding of pre-mRNA and controls 3' end processing by CPF [J]. Mol Cell, 2022, 82(13): 2490-504.e12.
[81] CASAñAL A K A, HILL CH, ET AL. Architecture of eukaryotic mRNA 3'-end processing machinery. [J]. Science, 2017, 358(6366): 1056-9.
[82] LEE S D, LIU H Y, GRABER J H, et al. Regulation of the Ysh1 endonuclease of the mRNA cleavage/polyadenylation complex by ubiquitin-mediated degradation [J]. RNA Biol, 2020, 17(5): 689-702.
[83] ZHAO J, KESSLER M M, MOORE C L. Cleavage factor II of Saccharomyces cerevisiae contains homologues to subunits of the mammalian cleavage/polyadenylation specificity factor and exhibits sequence-specific, ATP-dependent interaction with precursor RNA [J]. J Biol Chem, 1997, 272(16): 10831-8.
[84] HELMLING S, ZHELKOVSKY A, MOORE C L. Fip1 regulates the activity of poly(A) polymerase through multiple interactions [J]. Mol Cell Biol, 2001, 21(6): 2026-37.
[85] OHNACKER M, BARABINO S M, PREKER P J, et al. The WD-repeat protein Pfs2p bridges two essential factors within the yeast pre-mRNA 3'-end-processing complex [J]. EMBO J, 2000, 19(1): 37-47.
[86] KRISHNAMURTHY S H X, REYES-REYES M, MOORE C, HAMPSEY M. . Ssu72 Is an RNA polymerase II CTD phosphatase. [J]. Mol Cell, 2004, 14(3): 387-94.
[87] SCHREIECK A, EASTER A D, ETZOLD S, et al. RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7 [J]. Nat Struct Mol Biol, 2014, 21(2): 175-9.
[88] KUEHNER J N, PEARSON E L, MOORE C. Unravelling the means to an end: RNA polymerase II transcription termination [J]. Nat Rev Mol Cell Biol, 2011, 12(5): 283-94.
[89] KESSLER MM H M, SHEN E, ET AL. Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3'-end formation in yeast. [J]. Genes Dev,1997, 11(19): 2545-56.
[90] KIM M, KROGAN N J, VASILJEVA L, et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II [J]. Nature, 2004, 432(7016): 517-22.
[91] PORRUA O, BOUDVILLAIN M, LIBRI D. Transcription termination: variations on common themes [J]. Trends Genet, 2016, 32(8): 508-22.
[92] STEINMETZ EJ C N, BROW DA, CORDEN JL. RNA-binding protein Nrd1 directs poly(A)-independent 3'-end formation of RNA polymerase II transcripts. [J]. Nature, 2001, 413(6853): 327-31.
[93] PORRUA O, HOBOR F, BOULAY J, et al. In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination [J]. EMBO J, 2012, 31(19): 3935-48.
[94] VASILJEVA L, KIM M, MUTSCHLER H, et al. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain [J]. Nat Struct Mol Biol, 2008, 15(8): 795-804.
[95] HAZELBAKER D Z, MARQUARDT S, WLOTZKA W, et al. Kinetic competition between RNA polymerase II and Sen1-dependent transcription termination [J]. Mol Cell, 2013, 49(1): 55-66.
[96] MISCHO H E, CHUN Y, HARLEN K M, et al. Cell-cycle modulation of transcription termination factor Sen1 [J]. Mol Cell, 2018, 70(2): 312-26.e7.
[97] WEBB S H R, KUDLA G, GRANNEMAN S. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. [J]. Genome Biol, 2014, 15(1): R8.
[98] EATON J D, WEST S. Termination of transcription by RNA polymerase II: BOOM! [J]. Trends Genet, 2020, 36(9): 664-75.
[99] RICHARD P, MANLEY J L. Transcription termination by nuclear RNA polymerases [J]. Genes Dev, 2009, 23(11): 1247-69.
[100] LIU H, MOORE C L. On the cutting edge: regulation and therapeutic potential of the mRNA 3' end nuclease [J]. Trends Biochem Sci, 2021, 46(9): 772-84.
[101] LIU H, HELLER-TRULLI D, MOORE C L. Targeting the mRNA endonuclease CPSF73 inhibits breast cancer cell migration, invasion, and self-renewal [J]. iScience, 2022, 25(8): 104804.
[102] BEAUDOING E F S, WYATT JR, CLAVERIE JM, GAUTHERET D. . Patterns of variant polyadenylation signal usage in human genes. [J]. Genome Res, 2000, 10(7): 1001-10.
[103] PROUDFOOT N J. Ending the message: poly(A) signals then and now [J]. Genes Dev, 2011, 25(17): 1770-82.
[104] ZHU Y, WANG X, FOROUZMAND E, et al. Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation [J]. Mol Cell, 2018, 69(1): 62-74.e4.
[105] KANNAN A, CUARTAS J, GANGWANI P, et al. Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4 [J]. Brain, 2022, 145(9): 3072-94.
[106] DAVIDSON L, FRANCIS L, EATON J D, et al. Integrator-dependent and allosteric/intrinsic mechanisms ensure efficient termination of snRNA transcription [J]. Cell Rep, 2020, 33(4): 108319.
[107] GUIRO J, MURPHY S. Regulation of expression of human RNA polymerase II-transcribed snRNA genes [J]. Open Biol, 2017, 7(6): 170073.
[108] O'REILLY D, KUZNETSOVA O V, LAITEM C, et al. Human snRNA genes use polyadenylation factors to promote efficient transcription termination [J]. Nucleic Acids Res, 2014, 42(1): 264-75.
[109] HUNT A G. mRNA 3' end formation in plants: novel connections to growth, development and environmental responses [J]. Wiley Interdiscip Rev RNA, 2020, 11(3): e1575.
[110] SONG P, YANG J, WANG C, et al. Arabidopsis N(6)-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies [J]. Mol Plant, 2021, 14(4): 571-87.
[111] LIN J, XU R, WU X, et al. Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination [J]. Plant J, 2017, 91(5): 829-39.
[112] TELLEZ-ROBLEDO B, MANZANO C, SAEZ A, et al. The polyadenylation factor FIP1 is important for plant development and root responses to abiotic stresses [J]. Plant J, 2019, 99(6): 1203-19.
[113] ZHANG Y, RAMMING A, HEINKE L, et al. The poly(A) polymerase PAPS1 interacts with the RNA-directed DNA-methylation pathway in sporophyte and pollen development [J]. Plant J, 2019, 99(4): 655-72.
[114] LIU F M S, LISTER C, SWIEZEWSKI S, DEAN C. Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. [J]. Science, 2010, 327(5961): 94-7.
[115] ZENG W, DAI X, SUN J, et al. Modulation of auxin signaling and development by polyadenylation machinery [J]. Plant Physiol, 2019, 179(2): 686-99.
[116] SIMPSON G G, DIJKWEL P P, QUESADA V, et al. FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition [J]. Cell, 2003, 113(6): 777-87.
[117] YU Z, LIN J, LI Q Q. Transcriptome analyses of FY mutants reveal its role in mRNA alternative polyadenylation [J]. Plant Cell, 2019, 31(10): 2332-52.
[118] YU X, MARTIN P G P, MICHAELS S D. BORDER proteins protect expression of neighboring genes by promoting 3' Pol II pausing in plants [J]. Nat Commun, 2019, 10(1): 4359.
[119] YU X, MARTIN P G P, ZHANG Y, et al. The BORDER family of negative transcription elongation factors regulates flowering time in Arabidopsis [J]. Curr Biol, 2021, 31(23): 5377-84.e5.
[120] PARKER M T, KNOP K, ZACHARAKI V, et al. Widespread premature transcription termination of Arabidopsis thaliana NLR genes by the spen protein FPA [J]. Elife, 2021, 10: e65537.
[121] KURIHARA Y. Activity and roles of Arabidopsis thaliana XRN family exoribonucleases in noncoding RNA pathways [J]. J Plant Res, 2017, 130(1): 25-31.
[122] CRISP P A, SMITH A B, GANGULY D R, et al. RNA polymerase II read-through promotes expression of neighboring genes in SAL1-PAP-XRN retrograde signaling [J]. Plant Physiol, 2018, 178(4): 1614-30.
[123] KRZYSZTON M, ZAKRZEWSKA-PLACZEK M, KWASNIK A, et al. Defective XRN3-mediated transcription termination in Arabidopsis affects the expression of protein-coding genes [J]. Plant J, 2018, 93(6): 1017-31.
[124] OSHEIM YN P N, BEYER AL. EM visualization of transcription by RNA polymerase II: downstream termination requires a poly(A) signal but not transcript cleavage. [J]. Mol Cell, 1999, 3(3): 379-87.
[125] EPSHTEIN V, CARDINALE C J, RUCKENSTEIN A E, et al. An allosteric path to transcription termination [J]. Mol Cell, 2007, 28(6): 991-1001.
[126] EPSHTEIN V, DUTTA D, WADE J, et al. An allosteric mechanism of Rho-dependent transcription termination [J]. Nature, 2010, 463(7278): 245-9.
[127] CONNELLY S M J. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. [J]. Genes Dev,1988, 2(4): 440-52.
[128] LUO W, JOHNSON A W, BENTLEY D L. The role of Rat1 in coupling mRNA 3'-end processing to transcription termination: implications for a unified allosteric-torpedo model [J]. Genes Dev, 2006, 20(8): 954-65.
[129] EATON J D, FRANCIS L, DAVIDSON L, et al. A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes [J]. Genes Dev, 2020, 34(1-2): 132-45.
[130] KOORNNEEF M H C, VAN DER VEEN JH. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. [J]. Mol Gen Genet, 1991, 229(1): 57-66.
[131] SIMPSON G G. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time [J]. Curr Opin Plant Biol, 2004, 7(5): 570-4.
[132] MYLNE J G T, LISTER C, DEAN C. Epigenetic regulation in the control of flowering. [J]. Cold Spring Harb Symp Quant Biol,2004, 69: 457-64.
[133] LIU F M S, LISTER C, SWIEZEWSKI S, DEAN C. Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. [J]. Science, 2010, 327(5961): 94-7.
[134] SCHOMBURG F M, PATTON D A, MEINKE D W, et al. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs [J]. Plant Cell, 2001, 13(6): 1427-36.
[135] MARQUARDT S, RAITSKIN O, WU Z, et al. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription [J]. Mol Cell, 2014, 54(1): 156-65.
[136] WANG Z W, WU Z, RAITSKIN O, et al. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor [J]. Proc Natl Acad Sci U S A, 2014, 111(20): 7468-73.
[137] LIU F, QUESADA V, CREVILLEN P, et al. The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC [J]. Mol Cell, 2007, 28(3): 398-407.
[138] SWIEZEWSKI S, LIU F, MAGUSIN A, et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target [J]. Nature, 2009, 462(7274): 799-802.
[139] XU C, WU Z, DUAN H C, et al. R-loop resolution promotes co-transcriptional chromatin silencing [J]. Nat Commun, 2021, 12(1): 1790.
[140] YUE Y, LIU J, HE C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation [J]. Genes Dev, 2015, 29(13): 1343-55.
[141] REICHEL M, KOSTER T, STAIGER D. Marking RNA: m6A writers, readers, and functions in Arabidopsis [J]. J Mol Cell Biol, 2019, 11(10): 899-910.
[142] ZHONG S, LI H, BODI Z, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor [J]. Plant Cell, 2008, 20(5): 1278-88.
[143] SHEN L, LIANG Z, GU X, et al. N6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis [J]. Dev Cell, 2016, 38(2): 186-200.
[144] SANTOS-PEREIRA J M, AGUILERA A. R loops: new modulators of genome dynamics and function [J]. Nat Rev Genet, 2015, 16(10): 583-97.
[145] YANG X, LIU Q L, XU W, et al. m6A promotes R-loop formation to facilitate transcription termination [J]. Cell Res, 2019, 29(12): 1035-8.
[146] BAULCOMBE D C, DUC C, SHERSTNEV A, et al. Transcription termination and chimeric RNA formation controlled by Arabidopsis thaliana FPA [J]. PLoS Genet, 2013, 9(10): e1003867.
[147] FANG X, WANG L, ISHIKAWA R, et al. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes [J]. Nature, 2019, 569(7755): 265-9.
[148] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-20.
[149] KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype [J]. Nat Biotechnol, 2019, 37(8): 907-15.
[150] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/Map format and SAMtools [J]. Bioinformatics, 2009, 25(16): 2078-9.
[151] LIAO Y, SMYTH G K, SHI W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features [J]. Bioinformatics, 2014, 30(7): 923-30.
[152] VERA ALVAREZ R, PONGOR L S, MARINO-RAMIREZ L, et al. TPMCalculator: one-step software to quantify mRNA abundance of genomic features [J]. Bioinformatics, 2019, 35(11): 1960-2.
[153] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. Genome Biol, 2014, 15(12): 550.
[154] XIA Z, DONEHOWER L A, COOPER T A, et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3'-UTR landscape across seven tumour types [J]. Nat Commun, 2014, 5: 5274.
[155] PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads [J]. Nat Biotechnol, 2015, 33(3): 290-5.
[156] CHEN S, ZHOU Y, CHEN Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 2018, 34(17): i884-i90.
[157] CHEN S, ZHOU Y, CHEN Y, et al. Gencore: an efficient tool to generate consensus reads for error suppressing and duplicate removing of NGS data [J]. BMC Bioinformatics, 2019, 20(Suppl 23): 606.
[158] KRAKAU S, RICHARD H, MARSICO A. PureCLIP: capturing target-specific protein-RNA interaction footprints from single-nucleotide CLIP-seq data [J]. Genome Biol, 2017, 18(1): 240.
[159] HEINZ S, BENNER C, SPANN N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities [J]. Mol Cell, 2010, 38(4): 576-89.
[160] ZHU S, YE W, YE L, et al. PlantAPAdb: a comprehensive database for alternative polyadenylation sites in plants [J]. Plant Physiol, 2020, 182(1): 228-42.
[161] YE C, ZHAO D, YE W, et al. QuantifyPoly(A): reshaping alternative polyadenylation landscapes of eukaryotes with weighted density peak clustering [J]. Brief Bioinform, 2021, 22(6): bbab268.
[162] WUARIN J S U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. [J]. Mol Cell Biol, 1994, 14(11): 7219-25.
[163] PARKHOMCHUK D, BORODINA T, AMSTISLAVSKIY V, et al. Transcriptome analysis by strand-specific sequencing of complementary DNA [J]. Nucleic Acids Res, 2009, 37(18): e123.
[164] BORODINA T, ADJAYE J, SULTAN M. A strand-specific library preparation protocol for RNA sequencing [J]. Methods Enzymol, 2011, 500: 79-98.
[165] KHODOR Y L, RODRIGUEZ J, ABRUZZI K C, et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila [J]. Genes Dev, 2011, 25(23): 2502-12.
[166] KHODOR Y L, MENET J S, TOLAN M, et al. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse [J]. RNA, 2012, 18(12): 2174-86.
[167] ZELLER R, DESCHAMPS, J. First come, first served. [J]. Nature, 2002, 420: 138-9.
[168] ZHAO J, OHSUMI T K, KUNG J T, et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq [J]. Mol Cell, 2010, 40(6): 939-53.
[169] ZHANG C, DARNELL R B. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data [J]. Nat Biotechnol, 2011, 29(7): 607-14.
[170] ULE J J K, RUGGIU M, MELE A, ULE A, DARNELL RB. CLIP identifies Nova-regulated RNA networks in the brain. [J]. Science, 2003, 14(302): 1212-5.
[171] KONIG J, ZARNACK K, ROT G, et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution [J]. Nat Struct Mol Biol, 2010, 17(7): 909-15.
[172] VAN NOSTRAND E L, PRATT G A, SHISHKIN A A, et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP) [J]. Nat Methods, 2016, 13(6): 508-14.
[173] RAMANATHAN M, PORTER D F, KHAVARI P A. Methods to study RNA-protein interactions [J]. Nat Methods, 2019, 16(3): 225-34.
[174] URLAUB H H K, LüHRMANN R. A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. [J]. Methods, 2002, 26(2): 170-81.
[175] DYE MJ P N. Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II. [J]. Cell, 2001, 105(5): 669-81.
[176] SHI Y, DI GIAMMARTINO D C, TAYLOR D, et al. Molecular architecture of the human pre-mRNA 3' processing complex [J]. Mol Cell, 2009, 33(3): 365-76.
[177] XU W, XU H, LI K, et al. The R-loop is a common chromatin feature of the Arabidopsis genome [J]. Nat Plants, 2017, 3(9): 704-14.
[178] CHEDIN F. Nascent connections: R-loops and chromatin patterning [J]. Trends Genet, 2016, 32(12): 828-38.
[179] LIU J, YUE Y, HAN D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation [J]. Nat Chem Biol, 2014, 10(2): 93-5.
[180] WU X, LIU M, DOWNIE B, et al. Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation [J]. Proc Natl Acad Sci U S A, 2011, 108(30): 12533-8.
[181] KAMIENIARZ-GDULA K, PROUDFOOT N J. Transcriptional control by premature termination: a forgotten mechanism [J]. Trends Genet, 2019, 35(8): 553-64.
[182] YAP K, LIM Z Q, KHANDELIA P, et al. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention [J]. Genes Dev, 2012, 26(11): 1209-23.
[183] NER-GAON H, HALACHMI R, SAVALDI-GOLDSTEIN S, et al. Intron retention is a major phenomenon in alternative splicing in Arabidopsis [J]. Plant J, 2004, 39(6): 877-85.
[184] DENG X, XU X, LIU Y, et al. Induction of gamma-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae [J]. J Integr Plant Biol, 2020, 62(11): 1797-812.
[185] WANG Z, LI X, WANG X, et al. Arabidopsis endoplasmic reticulum-localized UBAC2 proteins interact with PAMP-INDUCED COILED-COIL to regulate pathogen-induced callose deposition and plant immunity [J]. Plant Cell, 2019, 31(1): 153-71.
[186] SINAPIDOU E, WILLIAMS K, NOTT L, et al. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis [J]. Plant J, 2004, 38(6): 898-909.
[187] KIM S Y, HE Y, JACOB Y, et al. Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase [J]. Plant Cell, 2005, 17(12): 3301-10.
修改评论