中文版 | English
题名

拟南芥RNA结合蛋白FCA调控转录终止的机制

其他题名
THE REGULATORY MECHANISM OF ARABIDOPSIS RNA BINDING PROTEIN FCA IN TRANSCRIPTION TERMINATION
姓名
姓名拼音
ZHANG Qiqi
学号
11849502
学位类型
博士
学位专业
071001 植物学
学科门类/专业学位类别
07 理学
导师
吴柘
导师单位
生物系
论文答辩日期
2023-04-14
论文提交日期
2023-06-20
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

RNA的表达过程受到多方面因素的调控。来自于酵母和哺乳动物细胞的实验证据表明,在染色质层面即存在复杂的RNA质量控制机制。与动物相比,植物中对染色质水平的转录终止调控以及RNA质量控制的研究还较为初步。在此背景下,本论文主要研究了模式植物拟南芥中一个RNA结合蛋白FCA在调控转录终止及RNA质量控制方面的功能。FCA是植物中最早被鉴定到的RNA结合蛋白之一,也是调控开花的自主途径中的核心蛋白。FCA可以通过抑制FLC (Flowering locus C) 转录,从而促进开花。此外,FCA可以促进其编码基因的提前转录终止从而实现对其自身基因表达的负调控。早期基于基因芯片的数据显示,FCARNA结合蛋白FPA同时突变会引起部分基因组内部分位点发生3′ 端转录通读,暗示FCAFPA可能在转录终止或多聚腺苷酸化位点选择方面发挥重要功能。尽管FCA在调控开花及FLC基因上的调控功能已经基本清楚,但FCA在全转录组水平是否及如何调控转录终止尚待探究。

为了更好地探究FCA如何在染色质水平发挥基因转录相关的调控功能,本研究首先优化建立了一种从植物中分离纯化新生RNA并整合高通量测序的实验方法CB-RNA-seq (Chromatin-bound RNA sequencing)。结果发现,(1) CB-RNA在染色质上的分布沿基因5′ 3′ 端呈逐渐降低的趋势,且相比成熟mRNA,内含子区域的覆盖度显著升高,说明分离到的CB-RNA是正在转录的新生RNA(2) 正在进行转录延伸的RNA (Elongating RNAsRNAe) 的剪接效率显著低于mRNA,说明内含子剪接发生在共转录水平。(3) 已经发生3′ 端转录结束且多聚腺苷酸化的全长RNA (Full-length RNAsRNAf) 只占CB-RNAs的小部分,其内含子剪接效率低于mRNA,暗示RNAf仍然是新生RNA,需要在染色质上进一步加工将内含子剪接。本研究的结果显示CB-RNA-seq是一种简单高效的研究新生RNA的实验方法。

在建立了CB-RNA-seq方法的基础上,本研究进一步结合了其他多种组学测序及遗传学实验,详细探究了FCA对转录终止及核内RNA质量控制方面的分子机制。(1) 为了从全转录组水平上探究FCA结合RNA的特性,本研究首先通过eCLIP-seq (Enhanced UV crosslinking and immunoprecipitation sequencing) 实验,发现在野生型中FCA特异结合在内含子和pre-mRNA3′ 端及其下游区域的通读转录本上。(2) 为了探究FCA结合在pre-mRNA 3′ 端的功能,本研究结合pNET-seq实验及Nanopore数据,发现FCA3′ 端的结合和Pol II的转录终止效率呈负相关,即FCA偏向结合转录终止效率差的pre-mRNA 3′ 端区域;进一步在转录终止缺陷突变体fpa-7的通读转录本上,发现FCA的结合升高,验证了FCA特异结合在转录终止效率低或者异常的转录本上。(3) 为了探究FCApre-mRNA 3′ 端区域结合的机制,本研究在RNA 3′ 端加工相关缺失突变体fy-2fip37-4中,分别发现FCA3′ 端的结合降低,暗示FCApre-mRNA 3′ 端区域的结合部分依赖多聚腺苷酸化信号的识别以及m6A (N6-methyladenosine) 修饰。(4) 为了探究FCA结合在内含子上的功能,本研究结合CB-RNA-seq实验,发现这些内含子共转录剪接 (Co-transcriptional splicingCTS) 效率相对较低;当FCA缺失后,这些内含子的剪接效率相对野生型显著降低,说明FCA偏向结合CTS效率较低的内含子,促进共转录剪接。

综上所述,在染色质水平,FCA选择性结合部分共转录剪接效率低的内含子,促进这些内含子的共转录剪接;而在pre-mRNA 3′ 端区域,FCA会偏好结合转录终止效率低的转录本,促进这些转录本的转录终止,而且这种结合部分依赖多聚腺苷酸化信号和m6A修饰。本研究对于植物中RNA结合蛋白如何参与转录偶联的RNA加工及RNA质量控制提供了重要理论参考。

其他摘要

RNA expression is regulated by multiple factors. Evidence from yeast and mammalian cells suggests that complex RNA quality control mechanisms exist at the chromatin level. Compared with animals, how transcription termination is regulated and how RNA quality control works at the chromatin level in plants remains largely elusive. This study mainly focused on the function of FCA in transcription termination and RNA quality control in the model plant Arabidopsis. FCA is one of the first RNA-binding proteins identified in plants and a core protein in the autonomous flowering pathway. FCA promotes flowering by inhibiting FLC (Flowering locus C) transcription. In addition, FCA can promote the premature termination of its coding genes, thereby negatively regulating its own gene’s expression. Early microarray-based data showed that simultaneous mutations of FCA and another RNA-binding protein FPA caused transcriptional read-through at the 3′ end of several gene loci, suggesting that FCA and FPA may play important roles in transcription termination or alternative polyadenylation. Although the regulatory function of FCA in flowering has been extensively studied, the questions that whether and how FCA regulates transcription termination on a genome-wide scale remain to be answered.

To explore how FCA works on transcription termination at the chromatin level, this study first optimized the CB-RNA-seq, an experimental method for isolating and purifying nascent RNA from plants and combining it with high-throughput sequencing. The results showed that (1) the reads density of CB-RNA on chromatin declined gradually along 5′ to 3′ of the gene, and compared with mRNA, the coverage of intron region is significantly higher, indicating that the isolated CB-RNAs were nascent RNA; (2) the splicing efficiency of the elongating RNA (RNAe) was significantly lower than that of mRNA, indicating that splicing predominantly occurred at the co-transcriptional level; (3) a small fraction of full-length polyadenylated RNA (RNAf) was included in the isolated CB-RNAs, and its splicing efficiency was lower than that of mRNA, suggesting that RNAf was nascent RNA and further underwent processing steps such as RNA splicing on chromatin. The results of this study show that CB-RNA-seq is a simple and robust experimental method to study nascent RNA.

Taking advantage of the CB-RNA-seq, this study further studied the potential function of FCA in transcription termination and nuclear RNA quality control by applying multi-omics approaches combined with genetics. (1) To explore the features of FCA-bound RNAs at the whole transcriptome level, this study performed FCA-eCLIP-seq. Results showed that FCA bound specifically to the intronic regions and the RNAs correspond to gene 3′ end and downstream of the polyadenylation site. (2) To explore the function of FCA binding at the 3′ end of pre-mRNAs, by combing the pNET-seq experiment and Nanopore data, this study found that the binding of FCA at the 3′ end was negatively correlated with the transcription termination efficiency of Pol II, that was, FCA preferentially bound the 3′ end of pre-mRNAs with poor transcription termination efficiency. Furthermore, in a termination defective mutant fpa-7, FCA binding was significantly enhanced at regions where an increased read-through was observed in fpa-7 compared with that in Col-0. This result verified that FCA binding tended to associate with inefficient or defective termination. (3) To explore the mechanism of FCA binding in the pre-mRNAs 3′ end region, this study found that FCA binding at the 3′ end was reduced in both fy-2 and fip37-4 mutants, suggesting that FCA binding in the pre-mRNA 3′ end region was in part depends on polyadenylation signal recognition and m6A (N6-methyladenosine) modification. (4) To explore the function of FCA binding at introns, this study found that the co-transcription splicing (CTS) efficiency of FCA-bound introns was relatively low with CB-RNA-seq experiments; when FCA was not functioning, the CTS efficiency of these introns was significantly lower than that of the wild type, indicating that FCA tended to bind introns with low CTS efficiency to promote their CTS.

In summary, FCA selectively binds to introns with low co-transcriptional splicing efficiency promoting co-transcriptional splicing; in the pre-mRNA 3′ region, FCA prefers binding transcripts with low termination efficiency to promote transcription termination, which partially relies on polyadenylation signal and m6A modification. This study exemplifies how RNA-binding proteins in plants are involved in transcription-coupled RNA processing and RNA quality control.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-06
参考文献列表

[1] HARLEN K M, CHURCHMAN L S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain [J]. Nat Rev Mol Cell Biol, 2017, 18(4): 263-73.
[2] MACKNIGHT R, BANCROFT L, PAGE T, et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains [J]. Cell, 1997, 89(5): 737-45.
[3] FANG X, WU Z, RAITSKIN O, et al. The 3' processing of antisense RNAs physically links to chromatin-based transcriptional control [J]. Proc Natl Acad Sci U S A, 2020, 117(26): 15316-21.
[4] WU Z, FANG X, ZHU D, et al. Autonomous pathway: FLOWERING LOCUS C repression through an antisense-mediated chromatin-silencing mechanism [J]. Plant Physiol, 2020, 182(1): 27-37.
[5] MACKNIGHT R, DUROUX M, LAURIE R, et al. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA [J]. Plant Cell, 2002, 14(4): 877-88.
[6] QUESADA V M R, DEAN C, SIMPSON GG. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. [J]. EMBO J, 2003, 16(22): 3142-52.
[7] HORNYIK C, TERZI L C, SIMPSON G G. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA [J]. Dev Cell, 2010, 18(2): 203-13.
[8] SONMEZ C, BAURLE I, MAGUSIN A, et al. RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription [J]. Proc Natl Acad Sci U S A, 2011, 108(20): 8508-13.
[9] NECHAEV S, FARGO D C, DOS SANTOS G, et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila [J]. Science, 2010, 327(5963): 335-8.
[10] MEERS M P, ADELMAN K, DURONIO R J, et al. Transcription start site profiling uncovers divergent transcription and enhancer-associated RNAs in Drosophila melanogaster [J]. BMC Genomics, 2018, 19(1): 157.
[11] WISSINK E M, VIHERVAARA A, TIPPENS N D, et al. Nascent RNA analyses: tracking transcription and its regulation [J]. Nat Rev Genet, 2019, 20(12): 705-23.
[12] BHATT D M, PANDYA-JONES A, TONG A J, et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions [J]. Cell, 2012, 150(2): 279-90.
[13] PANDYA-JONES A, BHATT D M, LIN C H, et al. Splicing kinetics and transcript release from the chromatin compartment limit the rate of Lipid A-induced gene expression [J]. RNA, 2013, 19(6): 811-27.
[14] PANDYA-JONES A, BLACK D L. Co-transcriptional splicing of constitutive and alternative exons [J]. RNA, 2009, 15(10): 1896-908.
[15] YANG W L, QIU W, ZHANG T, et al. Nsun2 coupling with RoRγt shapes the fate of Th17 cells and promotes colitis [J]. Nat Commun, 2023, 14(1): 863.
[16] NOJIMA T, GOMES T, GROSSO A R F, et al. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing [J]. Cell, 2015, 161(3): 526-40.
[17] NOJIMA T, REBELO K, GOMES T, et al. RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co-transcriptional splicing [J]. Mol Cell, 2018, 72(2): 369-79.e4.
[18] SCHLACKOW M, NOJIMA T, GOMES T, et al. Distinctive patterns of transcription and RNA processing for human lincRNAs [J]. Mol Cell, 2017, 65(1): 25-38.
[19] CORE L J, WATERFALL J J, LIS J T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters [J]. Science, 2008, 322(5909): 1845-8.
[20] ZHU J, LIU M, LIU X, et al. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis [J]. Nat Plants, 2018, 4(12): 1112-23.
[21] KWAK H, FUDA N J, CORE L J, et al. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing [J]. Science, 2013, 339(6122): 950-3.
[22] BJöRN SCHWALB M M, BENEDIKT ZACHER, KATJA FRüHAUF, CARINA DEMEL, ACHIM TRESCH, JULIEN GAGNEUR, PATRICK CRAMER. TT-seq maps the human transient transcriptome. [J]. Science, 2016, 352(6290): 1125-8.
[23] BIRD G, ZORIO D A, BENTLEY D L. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3'-end formation [J]. Mol Cell Biol, 2004, 24(20): 8963-9.
[24] BENTLEY D L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors [J]. Curr Opin Cell Biol, 2005, 17(3): 251-6.
[25] EJ. C. RNA polymerase II carboxy-terminal domain with multiple connections [J]. Exp Mol Med, 2007, 39(3): 247-54.
[26] FONG N, SALDI T, SHERIDAN R M, et al. RNA Pol II dynamics modulate co-transcriptional chromatin modification, CTD phosphorylation, and transcriptional direction [J]. Mol Cell, 2017, 66(4): 546-57.e3.
[27] HEIDEMANN M, HINTERMAIR C, VOSS K, et al. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription [J]. Biochim Biophys Acta, 2013, 1829(1): 55-62.
[28] RODRIGUEZ-MOLINA J B, WEST S, PASSMORE L A. Knowing when to stop: transcription termination on protein-coding genes by eukaryotic RNAPII [J]. Mol Cell, 2023, 83(3): 404-15.
[29] SCHROEDER S C, SCHWER B, SHUMAN S, et al. Dynamic association of capping enzymes with transcribing RNA polymerase II [J]. Genes Dev, 2000, 14(19): 2435-40.
[30] HSIN J P, LI W, HOQUE M, et al. RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells [J]. Elife, 2014, 3: e02112.
[31] SHAH N, MAQBOOL M A, YAHIA Y, et al. Tyrosine-1 of RNA polymerase II CTD controls global termination of gene transcription in mammals [J]. Mol Cell, 2018, 69(1): 48-61.e6.
[32] NOJIMA T, GOMES T, CARMO-FONSECA M, et al. Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide [J]. Nat Protoc, 2016, 11(3): 413-28.
[33] EGLOFF S, ZABOROWSKA J, LAITEM C, et al. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes [J]. Mol Cell, 2012, 45(1): 111-22.
[34] COLLIN P, JERONIMO C, POITRAS C, et al. RNA polymerase II CTD tyrosine 1 is required for efficient termination by the Nrd1-Nab3-Sen1 pathway [J]. Mol Cell, 2019, 73(4): 655-69.e7.
[35] CHEN F X, SMITH E R, SHILATIFARD A. Born to run: control of transcription elongation by RNA polymerase II [J]. Nat Rev Mol Cell Biol, 2018, 19(7): 464-78.
[36] KAMIENIARZ-GDULA K, GDULA M R, PANSER K, et al. Selective roles of vertebrate PCF11 in premature and full-length transcript termination [J]. Mol Cell, 2019, 74(1): 158-72.e9.
[37] MCCRACKEN S F N, ROSONINA E, ET AL. 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. [J]. Genes Dev, 1997, 11(24): 3306-18.
[38] RASMUSSEN EB L J. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. [J]. Proc Natl Acad Sci U S A, 1993, 90(17): 7923-7.
[39] CHO EJ T T, MOORE CR, BURATOWSKI S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. [J]. Genes Dev 1997, 11(24): 3319-26.
[40] BRANNAN K, KIM H, ERICKSON B, et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription [J]. Mol Cell, 2012, 46(3): 311-24.
[41] GLOVER-CUTTER K, KIM S, ESPINOSA J, et al. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes [J]. Nat Struct Mol Biol, 2008, 15(1): 71-8.
[42] BENTLEY D L. Coupling mRNA processing with transcription in time and space [J]. Nat Rev Genet, 2014, 15(3): 163-75.
[43] ZHANG S A S, VOS SM, AGAFONOV DE, LüHRMANN R, CRAMER P. . Structure of a transcribing RNA polymerase II-U1 snRNP complex. [J]. Science, 2021, 371(6526): 305-9.
[44] PORRUA O, LIBRI D. Transcription termination and the control of the transcriptome: why, where and how to stop [J]. Nat Rev Mol Cell Biol, 2015, 16(3): 190-202.
[45] PROUDFOOT N J. Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut [J]. Science, 2016, 352(6291): aad9926.
[46] WAGSCHAL A, ROUSSET E, BASAVARAJAIAH P, et al. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII [J]. Cell, 2012, 150(6): 1147-57.
[47] HERZEL L, NEUGEBAUER K M. Quantification of co-transcriptional splicing from RNA-Seq data [J]. Methods, 2015, 85: 36-43.
[48] LI S, WANG Y, ZHAO Y, et al. Global co-transcriptional splicing in Arabidopsis and the correlation with splicing regulation in mature RNAs [J]. Mol Plant, 2020, 13(2): 266-77.
[49] ZHU D, MAO F, TIAN Y, et al. The features and regulation of co-transcriptional splicing in Arabidopsis [J]. Mol Plant, 2020, 13(2): 278-94.
[50] MO W, LIU B, ZHANG H, et al. Landscape of transcription termination in Arabidopsis revealed by single-molecule nascent RNA sequencing [J]. Genome Biol, 2021, 22(1): 322.
[51] L. STIRLING CHURCHMAN, WEISSMAN J S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. [J]. Nature, 2011, 469(7330): 368-73.
[52] MAYER A, DI IULIO J, MALERI S, et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution [J]. Cell, 2015, 161(3): 541-54.
[53] LIU W, DUTTKE S H, HETZEL J, et al. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis [J]. Nat Plants, 2018, 4(3): 181-8.
[54] HETZEL J, DUTTKE S H, BENNER C, et al. Nascent RNA sequencing reveals distinct features in plant transcription [J]. Proc Natl Acad Sci U S A, 2016, 113(43): 12316-21.
[55] ERHARD K F, JR., TALBOT J E, DEANS N C, et al. Nascent transcription affected by RNA polymerase IV in Zea mays [J]. Genetics, 2015, 199(4): 1107-25.
[56] CORE L J, MARTINS A L, DANKO C G, et al. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers [J]. Nat Genet, 2014, 46(12): 1311-20.
[57] QIN Y, LONG Y, ZHAI J. Genome-wide characterization of nascent RNA processing in plants [J]. Curr Opin Plant Biol, 2022, 69: 102294.
[58] REDDY A S. Alternative splicing of pre-messenger RNAs in plants in the genomic era [J]. Annu Rev Plant Biol, 2007, 58: 267-94.
[59] BLACK D L. Mechanisms of alternative pre-messenger RNA splicing [J]. Annu Rev Biochem, 2003, 72: 291-336.
[60] DE CONTI L, BARALLE M, BURATTI E. Exon and intron definition in pre-mRNA splicing [J]. Wiley Interdiscip Rev RNA, 2013, 4(1): 49-60.
[61] TALERICO M B S. Intron definition in splicing of small Drosophila introns. [J]. Mol Cell Biol, 1994, 14(5): 3434-45.
[62] STERNER DA C T, BERGET SM. Architectural limits on split genes. [J]. Proc Natl Acad Sci U S A, 1996, 93(26): 15081-5.
[63] IZAURRALDE E L J, MCGUIGAN C, ET AL. A nuclear cap binding protein complex involved in pre-mRNA splicing. [J]. Cell, 1994, 78(4): 657-68.
[64] LEWIS JD I E, JARMOLOWSKI A, MCGUIGAN C, MATTAJ IW. . A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5' splice site. [J]. Genes Dev, 1996, 19(13): 1683-98.
[65] LI X, LIU S, ZHANG L, et al. A unified mechanism for intron and exon definition and back-splicing [J]. Nature, 2019, 573(7774): 375-80.
[66] KIM E, MAGEN A, AST G. Different levels of alternative splicing among eukaryotes [J]. Nucleic Acids Res, 2007, 35(1): 125-31.
[67] SHANG X, CAO Y, MA L. Alternative splicing in plant genes: a means of regulating the environmental fitness of plants [J]. Int J Mol Sci, 2017, 18(2): 432.
[68] LEE Y, RIO D C. Mechanisms and regulation of alternative pre-mRNA splicing [J]. Annu Rev Biochem, 2015, 84: 291-323.
[69] JABRE I, REDDY A S N, KALYNA M, et al. Does co-transcriptional regulation of alternative splicing mediate plant stress responses? [J]. Nucleic Acids Res, 2019, 47(6): 2716-26.
[70] GODOY HERZ M A, KUBACZKA M G, BRZYZEK G, et al. Light regulates plant alternative splicing through the control of transcriptional elongation [J]. Mol Cell, 2019, 73(5): 1066-74.e3.
[71] WONG J J, SCHMITZ U. Intron retention: importance, challenges, and opportunities [J]. Trends Genet, 2022, 38(8): 789-92.
[72] HARTMANN L, WIESSNER T, WACHTER A. Subcellular compartmentation of alternatively spliced transcripts defines SERINE/ARGININE-RICH PROTEIN30 Expression [J]. Plant Physiol, 2018, 176(4): 2886-903.
[73] LERNER MR S J. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. [J]. Proc Natl Acad Sci U S A, 1979, 76(11): 5495-9.
[74] VENTERS C C, OH J M, DI C, et al. U1 snRNP telescripting: suppression of premature transcription termination in introns as a new layer of gene regulation [J]. Cold Spring Harb Perspect Biol, 2019, 11(2): a032235.
[75] ROGERS J W R. A mechanism for RNA splicing. [J]. Proc Natl Acad Sci U S A, 1980, 77(4): 1877-9.
[76] SO B R, DI C, CAI Z, et al. A complex of U1 snRNP with cleavage and polyadenylation factors controls telescripting, regulating mRNA transcription in human cells [J]. Mol Cell, 2019, 76(4): 590-9.e4.
[77] SHI Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome [J]. Nat Rev Mol Cell Bio, 2017, 18(11): 655-70.
[78] WILL C L, LUHRMANN R. Spliceosome structure and function [J]. Cold Spring Harb Perspect Biol, 2011, 3(7): a003707.
[79] LAROCHELLE M, ROBERT M A, HEBERT J N, et al. Common mechanism of transcription termination at coding and noncoding RNA genes in fission yeast [J]. Nat Commun, 2018, 9(1): 4364.
[80] RODRIGUEZ-MOLINA J B, O'REILLY F J, FAGARASAN H, et al. Mpe1 senses the binding of pre-mRNA and controls 3' end processing by CPF [J]. Mol Cell, 2022, 82(13): 2490-504.e12.
[81] CASAñAL A K A, HILL CH, ET AL. Architecture of eukaryotic mRNA 3'-end processing machinery. [J]. Science, 2017, 358(6366): 1056-9.
[82] LEE S D, LIU H Y, GRABER J H, et al. Regulation of the Ysh1 endonuclease of the mRNA cleavage/polyadenylation complex by ubiquitin-mediated degradation [J]. RNA Biol, 2020, 17(5): 689-702.
[83] ZHAO J, KESSLER M M, MOORE C L. Cleavage factor II of Saccharomyces cerevisiae contains homologues to subunits of the mammalian cleavage/polyadenylation specificity factor and exhibits sequence-specific, ATP-dependent interaction with precursor RNA [J]. J Biol Chem, 1997, 272(16): 10831-8.
[84] HELMLING S, ZHELKOVSKY A, MOORE C L. Fip1 regulates the activity of poly(A) polymerase through multiple interactions [J]. Mol Cell Biol, 2001, 21(6): 2026-37.
[85] OHNACKER M, BARABINO S M, PREKER P J, et al. The WD-repeat protein Pfs2p bridges two essential factors within the yeast pre-mRNA 3'-end-processing complex [J]. EMBO J, 2000, 19(1): 37-47.
[86] KRISHNAMURTHY S H X, REYES-REYES M, MOORE C, HAMPSEY M. . Ssu72 Is an RNA polymerase II CTD phosphatase. [J]. Mol Cell, 2004, 14(3): 387-94.
[87] SCHREIECK A, EASTER A D, ETZOLD S, et al. RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7 [J]. Nat Struct Mol Biol, 2014, 21(2): 175-9.
[88] KUEHNER J N, PEARSON E L, MOORE C. Unravelling the means to an end: RNA polymerase II transcription termination [J]. Nat Rev Mol Cell Biol, 2011, 12(5): 283-94.
[89] KESSLER MM H M, SHEN E, ET AL. Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3'-end formation in yeast. [J]. Genes Dev,1997, 11(19): 2545-56.
[90] KIM M, KROGAN N J, VASILJEVA L, et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II [J]. Nature, 2004, 432(7016): 517-22.
[91] PORRUA O, BOUDVILLAIN M, LIBRI D. Transcription termination: variations on common themes [J]. Trends Genet, 2016, 32(8): 508-22.
[92] STEINMETZ EJ C N, BROW DA, CORDEN JL. RNA-binding protein Nrd1 directs poly(A)-independent 3'-end formation of RNA polymerase II transcripts. [J]. Nature, 2001, 413(6853): 327-31.
[93] PORRUA O, HOBOR F, BOULAY J, et al. In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination [J]. EMBO J, 2012, 31(19): 3935-48.
[94] VASILJEVA L, KIM M, MUTSCHLER H, et al. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain [J]. Nat Struct Mol Biol, 2008, 15(8): 795-804.
[95] HAZELBAKER D Z, MARQUARDT S, WLOTZKA W, et al. Kinetic competition between RNA polymerase II and Sen1-dependent transcription termination [J]. Mol Cell, 2013, 49(1): 55-66.
[96] MISCHO H E, CHUN Y, HARLEN K M, et al. Cell-cycle modulation of transcription termination factor Sen1 [J]. Mol Cell, 2018, 70(2): 312-26.e7.
[97] WEBB S H R, KUDLA G, GRANNEMAN S. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. [J]. Genome Biol, 2014, 15(1): R8.
[98] EATON J D, WEST S. Termination of transcription by RNA polymerase II: BOOM! [J]. Trends Genet, 2020, 36(9): 664-75.
[99] RICHARD P, MANLEY J L. Transcription termination by nuclear RNA polymerases [J]. Genes Dev, 2009, 23(11): 1247-69.
[100] LIU H, MOORE C L. On the cutting edge: regulation and therapeutic potential of the mRNA 3' end nuclease [J]. Trends Biochem Sci, 2021, 46(9): 772-84.
[101] LIU H, HELLER-TRULLI D, MOORE C L. Targeting the mRNA endonuclease CPSF73 inhibits breast cancer cell migration, invasion, and self-renewal [J]. iScience, 2022, 25(8): 104804.
[102] BEAUDOING E F S, WYATT JR, CLAVERIE JM, GAUTHERET D. . Patterns of variant polyadenylation signal usage in human genes. [J]. Genome Res, 2000, 10(7): 1001-10.
[103] PROUDFOOT N J. Ending the message: poly(A) signals then and now [J]. Genes Dev, 2011, 25(17): 1770-82.
[104] ZHU Y, WANG X, FOROUZMAND E, et al. Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation [J]. Mol Cell, 2018, 69(1): 62-74.e4.
[105] KANNAN A, CUARTAS J, GANGWANI P, et al. Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4 [J]. Brain, 2022, 145(9): 3072-94.
[106] DAVIDSON L, FRANCIS L, EATON J D, et al. Integrator-dependent and allosteric/intrinsic mechanisms ensure efficient termination of snRNA transcription [J]. Cell Rep, 2020, 33(4): 108319.
[107] GUIRO J, MURPHY S. Regulation of expression of human RNA polymerase II-transcribed snRNA genes [J]. Open Biol, 2017, 7(6): 170073.
[108] O'REILLY D, KUZNETSOVA O V, LAITEM C, et al. Human snRNA genes use polyadenylation factors to promote efficient transcription termination [J]. Nucleic Acids Res, 2014, 42(1): 264-75.
[109] HUNT A G. mRNA 3' end formation in plants: novel connections to growth, development and environmental responses [J]. Wiley Interdiscip Rev RNA, 2020, 11(3): e1575.
[110] SONG P, YANG J, WANG C, et al. Arabidopsis N(6)-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies [J]. Mol Plant, 2021, 14(4): 571-87.
[111] LIN J, XU R, WU X, et al. Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination [J]. Plant J, 2017, 91(5): 829-39.
[112] TELLEZ-ROBLEDO B, MANZANO C, SAEZ A, et al. The polyadenylation factor FIP1 is important for plant development and root responses to abiotic stresses [J]. Plant J, 2019, 99(6): 1203-19.
[113] ZHANG Y, RAMMING A, HEINKE L, et al. The poly(A) polymerase PAPS1 interacts with the RNA-directed DNA-methylation pathway in sporophyte and pollen development [J]. Plant J, 2019, 99(4): 655-72.
[114] LIU F M S, LISTER C, SWIEZEWSKI S, DEAN C. Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. [J]. Science, 2010, 327(5961): 94-7.
[115] ZENG W, DAI X, SUN J, et al. Modulation of auxin signaling and development by polyadenylation machinery [J]. Plant Physiol, 2019, 179(2): 686-99.
[116] SIMPSON G G, DIJKWEL P P, QUESADA V, et al. FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition [J]. Cell, 2003, 113(6): 777-87.
[117] YU Z, LIN J, LI Q Q. Transcriptome analyses of FY mutants reveal its role in mRNA alternative polyadenylation [J]. Plant Cell, 2019, 31(10): 2332-52.
[118] YU X, MARTIN P G P, MICHAELS S D. BORDER proteins protect expression of neighboring genes by promoting 3' Pol II pausing in plants [J]. Nat Commun, 2019, 10(1): 4359.
[119] YU X, MARTIN P G P, ZHANG Y, et al. The BORDER family of negative transcription elongation factors regulates flowering time in Arabidopsis [J]. Curr Biol, 2021, 31(23): 5377-84.e5.
[120] PARKER M T, KNOP K, ZACHARAKI V, et al. Widespread premature transcription termination of Arabidopsis thaliana NLR genes by the spen protein FPA [J]. Elife, 2021, 10: e65537.
[121] KURIHARA Y. Activity and roles of Arabidopsis thaliana XRN family exoribonucleases in noncoding RNA pathways [J]. J Plant Res, 2017, 130(1): 25-31.
[122] CRISP P A, SMITH A B, GANGULY D R, et al. RNA polymerase II read-through promotes expression of neighboring genes in SAL1-PAP-XRN retrograde signaling [J]. Plant Physiol, 2018, 178(4): 1614-30.
[123] KRZYSZTON M, ZAKRZEWSKA-PLACZEK M, KWASNIK A, et al. Defective XRN3-mediated transcription termination in Arabidopsis affects the expression of protein-coding genes [J]. Plant J, 2018, 93(6): 1017-31.
[124] OSHEIM YN P N, BEYER AL. EM visualization of transcription by RNA polymerase II: downstream termination requires a poly(A) signal but not transcript cleavage. [J]. Mol Cell, 1999, 3(3): 379-87.
[125] EPSHTEIN V, CARDINALE C J, RUCKENSTEIN A E, et al. An allosteric path to transcription termination [J]. Mol Cell, 2007, 28(6): 991-1001.
[126] EPSHTEIN V, DUTTA D, WADE J, et al. An allosteric mechanism of Rho-dependent transcription termination [J]. Nature, 2010, 463(7278): 245-9.
[127] CONNELLY S M J. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. [J]. Genes Dev,1988, 2(4): 440-52.
[128] LUO W, JOHNSON A W, BENTLEY D L. The role of Rat1 in coupling mRNA 3'-end processing to transcription termination: implications for a unified allosteric-torpedo model [J]. Genes Dev, 2006, 20(8): 954-65.
[129] EATON J D, FRANCIS L, DAVIDSON L, et al. A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes [J]. Genes Dev, 2020, 34(1-2): 132-45.
[130] KOORNNEEF M H C, VAN DER VEEN JH. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. [J]. Mol Gen Genet, 1991, 229(1): 57-66.
[131] SIMPSON G G. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time [J]. Curr Opin Plant Biol, 2004, 7(5): 570-4.
[132] MYLNE J G T, LISTER C, DEAN C. Epigenetic regulation in the control of flowering. [J]. Cold Spring Harb Symp Quant Biol,2004, 69: 457-64.
[133] LIU F M S, LISTER C, SWIEZEWSKI S, DEAN C. Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. [J]. Science, 2010, 327(5961): 94-7.
[134] SCHOMBURG F M, PATTON D A, MEINKE D W, et al. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs [J]. Plant Cell, 2001, 13(6): 1427-36.
[135] MARQUARDT S, RAITSKIN O, WU Z, et al. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription [J]. Mol Cell, 2014, 54(1): 156-65.
[136] WANG Z W, WU Z, RAITSKIN O, et al. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor [J]. Proc Natl Acad Sci U S A, 2014, 111(20): 7468-73.
[137] LIU F, QUESADA V, CREVILLEN P, et al. The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC [J]. Mol Cell, 2007, 28(3): 398-407.
[138] SWIEZEWSKI S, LIU F, MAGUSIN A, et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target [J]. Nature, 2009, 462(7274): 799-802.
[139] XU C, WU Z, DUAN H C, et al. R-loop resolution promotes co-transcriptional chromatin silencing [J]. Nat Commun, 2021, 12(1): 1790.
[140] YUE Y, LIU J, HE C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation [J]. Genes Dev, 2015, 29(13): 1343-55.
[141] REICHEL M, KOSTER T, STAIGER D. Marking RNA: m6A writers, readers, and functions in Arabidopsis [J]. J Mol Cell Biol, 2019, 11(10): 899-910.
[142] ZHONG S, LI H, BODI Z, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor [J]. Plant Cell, 2008, 20(5): 1278-88.
[143] SHEN L, LIANG Z, GU X, et al. N6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis [J]. Dev Cell, 2016, 38(2): 186-200.
[144] SANTOS-PEREIRA J M, AGUILERA A. R loops: new modulators of genome dynamics and function [J]. Nat Rev Genet, 2015, 16(10): 583-97.
[145] YANG X, LIU Q L, XU W, et al. m6A promotes R-loop formation to facilitate transcription termination [J]. Cell Res, 2019, 29(12): 1035-8.
[146] BAULCOMBE D C, DUC C, SHERSTNEV A, et al. Transcription termination and chimeric RNA formation controlled by Arabidopsis thaliana FPA [J]. PLoS Genet, 2013, 9(10): e1003867.
[147] FANG X, WANG L, ISHIKAWA R, et al. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes [J]. Nature, 2019, 569(7755): 265-9.
[148] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-20.
[149] KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype [J]. Nat Biotechnol, 2019, 37(8): 907-15.
[150] LI H, HANDSAKER B, WYSOKER A, et al. The Sequence Alignment/Map format and SAMtools [J]. Bioinformatics, 2009, 25(16): 2078-9.
[151] LIAO Y, SMYTH G K, SHI W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features [J]. Bioinformatics, 2014, 30(7): 923-30.
[152] VERA ALVAREZ R, PONGOR L S, MARINO-RAMIREZ L, et al. TPMCalculator: one-step software to quantify mRNA abundance of genomic features [J]. Bioinformatics, 2019, 35(11): 1960-2.
[153] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. Genome Biol, 2014, 15(12): 550.
[154] XIA Z, DONEHOWER L A, COOPER T A, et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3'-UTR landscape across seven tumour types [J]. Nat Commun, 2014, 5: 5274.
[155] PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads [J]. Nat Biotechnol, 2015, 33(3): 290-5.
[156] CHEN S, ZHOU Y, CHEN Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor [J]. Bioinformatics, 2018, 34(17): i884-i90.
[157] CHEN S, ZHOU Y, CHEN Y, et al. Gencore: an efficient tool to generate consensus reads for error suppressing and duplicate removing of NGS data [J]. BMC Bioinformatics, 2019, 20(Suppl 23): 606.
[158] KRAKAU S, RICHARD H, MARSICO A. PureCLIP: capturing target-specific protein-RNA interaction footprints from single-nucleotide CLIP-seq data [J]. Genome Biol, 2017, 18(1): 240.
[159] HEINZ S, BENNER C, SPANN N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities [J]. Mol Cell, 2010, 38(4): 576-89.
[160] ZHU S, YE W, YE L, et al. PlantAPAdb: a comprehensive database for alternative polyadenylation sites in plants [J]. Plant Physiol, 2020, 182(1): 228-42.
[161] YE C, ZHAO D, YE W, et al. QuantifyPoly(A): reshaping alternative polyadenylation landscapes of eukaryotes with weighted density peak clustering [J]. Brief Bioinform, 2021, 22(6): bbab268.
[162] WUARIN J S U. Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. [J]. Mol Cell Biol, 1994, 14(11): 7219-25.
[163] PARKHOMCHUK D, BORODINA T, AMSTISLAVSKIY V, et al. Transcriptome analysis by strand-specific sequencing of complementary DNA [J]. Nucleic Acids Res, 2009, 37(18): e123.
[164] BORODINA T, ADJAYE J, SULTAN M. A strand-specific library preparation protocol for RNA sequencing [J]. Methods Enzymol, 2011, 500: 79-98.
[165] KHODOR Y L, RODRIGUEZ J, ABRUZZI K C, et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila [J]. Genes Dev, 2011, 25(23): 2502-12.
[166] KHODOR Y L, MENET J S, TOLAN M, et al. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse [J]. RNA, 2012, 18(12): 2174-86.
[167] ZELLER R, DESCHAMPS, J. First come, first served. [J]. Nature, 2002, 420: 138-9.
[168] ZHAO J, OHSUMI T K, KUNG J T, et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq [J]. Mol Cell, 2010, 40(6): 939-53.
[169] ZHANG C, DARNELL R B. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data [J]. Nat Biotechnol, 2011, 29(7): 607-14.
[170] ULE J J K, RUGGIU M, MELE A, ULE A, DARNELL RB. CLIP identifies Nova-regulated RNA networks in the brain. [J]. Science, 2003, 14(302): 1212-5.
[171] KONIG J, ZARNACK K, ROT G, et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution [J]. Nat Struct Mol Biol, 2010, 17(7): 909-15.
[172] VAN NOSTRAND E L, PRATT G A, SHISHKIN A A, et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP) [J]. Nat Methods, 2016, 13(6): 508-14.
[173] RAMANATHAN M, PORTER D F, KHAVARI P A. Methods to study RNA-protein interactions [J]. Nat Methods, 2019, 16(3): 225-34.
[174] URLAUB H H K, LüHRMANN R. A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. [J]. Methods, 2002, 26(2): 170-81.
[175] DYE MJ P N. Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II. [J]. Cell, 2001, 105(5): 669-81.
[176] SHI Y, DI GIAMMARTINO D C, TAYLOR D, et al. Molecular architecture of the human pre-mRNA 3' processing complex [J]. Mol Cell, 2009, 33(3): 365-76.
[177] XU W, XU H, LI K, et al. The R-loop is a common chromatin feature of the Arabidopsis genome [J]. Nat Plants, 2017, 3(9): 704-14.
[178] CHEDIN F. Nascent connections: R-loops and chromatin patterning [J]. Trends Genet, 2016, 32(12): 828-38.
[179] LIU J, YUE Y, HAN D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation [J]. Nat Chem Biol, 2014, 10(2): 93-5.
[180] WU X, LIU M, DOWNIE B, et al. Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation [J]. Proc Natl Acad Sci U S A, 2011, 108(30): 12533-8.
[181] KAMIENIARZ-GDULA K, PROUDFOOT N J. Transcriptional control by premature termination: a forgotten mechanism [J]. Trends Genet, 2019, 35(8): 553-64.
[182] YAP K, LIM Z Q, KHANDELIA P, et al. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention [J]. Genes Dev, 2012, 26(11): 1209-23.
[183] NER-GAON H, HALACHMI R, SAVALDI-GOLDSTEIN S, et al. Intron retention is a major phenomenon in alternative splicing in Arabidopsis [J]. Plant J, 2004, 39(6): 877-85.
[184] DENG X, XU X, LIU Y, et al. Induction of gamma-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae [J]. J Integr Plant Biol, 2020, 62(11): 1797-812.
[185] WANG Z, LI X, WANG X, et al. Arabidopsis endoplasmic reticulum-localized UBAC2 proteins interact with PAMP-INDUCED COILED-COIL to regulate pathogen-induced callose deposition and plant immunity [J]. Plant Cell, 2019, 31(1): 153-71.
[186] SINAPIDOU E, WILLIAMS K, NOTT L, et al. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis [J]. Plant J, 2004, 38(6): 898-909.
[187] KIM S Y, HE Y, JACOB Y, et al. Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase [J]. Plant Cell, 2005, 17(12): 3301-10.

所在学位评定分委会
生物学
国内图书分类号
Q37
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543834
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
张琦琦. 拟南芥RNA结合蛋白FCA调控转录终止的机制[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849502-张琦琦-生物系.pdf(11284KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张琦琦]的文章
百度学术
百度学术中相似的文章
[张琦琦]的文章
必应学术
必应学术中相似的文章
[张琦琦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。