中文版 | English
题名

几类界面问题的相场建模及其数值方法

其他题名
Phase-field modelling and numerical methods for several interface problems
姓名
姓名拼音
WANG Chenxi
学号
11749308
学位类型
博士
学位专业
070102 计算数学
学科门类/专业学位类别
07 理学
导师
张振
导师单位
数学系
论文答辩日期
2023-04-19
论文提交日期
2023-06-23
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

       相场方法起源于热力学,具有不需要显式追踪界面的优势,被广泛应用于各类界面问题的建模和数值模拟。相场模型使用一组连续变量来描述物质微观结构,这些变量基于系统自由能递减,在时间与空间上演化,且可以通过求解偏微分方程研究这类动力学。本文将运用相场模型及其数值方法对表面活性剂吸附、液滴撞击及细菌趋化这三类界面问题进行研究,主要由以下三个部分组成。

       第一部分运用相场模型研究表面活性剂动力学问题。该模型由两个分别控制界面动力学和活性剂浓度演化的Cahn-Hilliard型方程组成,并带有接触线动力学边界条件。基于Flory-Huggins势的对数奇异性和凸分裂技术,构造了一类无条件能量稳定的保界数值格式,其是解耦的、唯一可解的和质量守恒的。一阶全离散格式被严格证明具备上述所有性质;二阶格式也是如此,除能量稳定性外。通过数值实验不仅验证了所期望的性质,还确定了表面活性剂对接触线动力学的影响。

       第二部分通过将相场表面活性剂模型与流体动力学耦合,进行了液滴撞击固壁的数值研究。该两相流系统的相场建模通过引入Navier-Stokes方程实现,且广义Navier边界条件被应用于移动接触线之上。基于凸分裂和压力稳定化技术,提出了该系统的能量稳定数值格式,且一阶格式的原始能量耗散律被严格证明。通过在准三维下实现算法,在数值实验中对干净液滴和污染液滴的撞击动力学系统地研究。一般而言,污染液滴的撞击动力学产生的耗散小于干净液滴,且污染液滴更容易发生拓扑形变。此外,数值实验还获得了与真实实验一致的结果。

       最后一部分通过基于相场的扩散域方法来研究复杂几何区域中的趋化-流体系统。该模型将对流趋化系统与Navier-Stokes方程相耦合,来描述流体环境中的生物趋化现象。本文为所研究的趋化-流体系统提供了一种新的保正的高分辨率方法。该方法基于扩散域方法导出了新的趋化-流体扩散域模型,其中复杂几何区域被嵌入到更大的矩形域中,原始边界被具有有限厚度的扩散界面所代替。经分析表明,随着扩散界面的厚度收缩到零,新模型渐近收敛到原趋化-流体模型。二阶混合有限体积-有限差分格式被用来求解新模型。大量数值实验证实了方法的性能,并展示了不同形状液滴中的趋化现象。

其他摘要

Phase-field methods originate from thermodynamics and have the advantage of implicitly tracking the interface between phases, so it is widely used in modelling and numerical simulations for various interface problems. Phase-field models describe the microstructure of matter using a set of continuous variables that evolve in time and space based on free energy dissipation, and dynamics of this microstructure can be studied by solving partial differential equations. In this paper, phase-field models and numerical methods will be used to study three interface problems: surfactant adsorption, droplet impact and bacterial chemotaxis. This paper consists of the following three parts.

In the first part, a phase-field model is used to study the problem of the surfactant dynamics. This model consists of two Cahn-Hilliard type equations, governing the dynamics of interface and surfactant concentration, with dynamical boundary condition for contact lines. Based on the logarithmic singularity of Flory-Huggins potential and the convex splitting technique, we propose a set of unconditionally energy stable and bound-preserving schemes for the new model. The proposed schemes are decoupled, uniquely solvable, and mass conservative. These properties are rigorously proved for the first-order fully discrete scheme. In addition, we prove that the second-order scheme satisfies all these properties except for the energy stability. We numerically validate the desired properties for both schemes and present numerical results to systematically study the influence of surfactants on contact line dynamics.

The second part is devoted to the study of droplet impact on solid substrate by coupling the phase-field surfactant model with hydrodynamics. We introduce the Navier-Stokes equations for the phase-field modeling of two-phase flows. The generalized Navier boundary condition are used to account for moving contact lines. Based on the convex splitting and pressure stabilization technique, we develop unconditionally energy stable schemes for this model. The energy dissipation law for the original energy is rigorously proved for the first-order scheme. Using the proposed methods implemented in quasi-three-dimensional coordinates for this model, we systematically study the impact dynamics of both clean and contaminated droplets in a series of numerical experiments. In general, the dissipation in the impact dynamics of a contaminated drop is smaller than that in the clean case, and topological changes are more likely to occur for contaminated drops. Moreover, some quantitative agreements with experiments are also obtained.

In the final part, we investigate a chemotaxis-fluid system in complex geometry using a phase-field based diffuse-domain approach. This model describes the biological chemotaxis phenomenon in the fluid environment and couples a convective chemotaxis system with the Navier-Stokes equations. We develop a new positivity preserving and high-resolution method for the studied chemotaxis-fluid system. Our method is based on the diffuse-domain approach, which we use to derive a new chemotaxis-fluid diffuse-domain (cf-DD) model. The complex geometric domain is imbedded into a larger rectangular domain, and the original boundary is replaced by a diffuse interface with finite thickness. We show that the cf-DD model converges to the original system asymptotically as the width of the diffuse interface shrinks to zero. We numerically solve the resulting cf-DD system by a second-order hybrid finite-volume finite-difference method and demonstrate the performance of the proposed approach on a number of numerical experiments that showcase several chemotactic phenomena in sessile drops of different shapes.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2023-06
参考文献列表

[1] Fix G J. Phase field methods for free boundary problems[J]. Free Boundary Problems: Theory and Applications, 1982, 2: 580-600.
[2] Rowlinson J S. Translation of J. D. van der Waals' "The thermodynamik theory ofcapillarity under the hypothesis of a continuous variation of density" [J]. Journalof Statistical Physics, 1979, 20: 197-200.
[3] ter Haar D. Collected Papers of L. D. Landau[M]. UK: Elsevier, Pergamon, Oxford,2013.
[4] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial freeenergy[J]. The Journal of Chemical Physics, 1958, 28(2): 258-267.
[5] Cahn J W. On spinodal decomposition[J]. Acta Metallurgica, 1961, 9(9): 795-801.
[6] Cahn J W, Allen S M. A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics[J]. Journal de Physique Colloques, 1977, 38(C7): 51-54.
[7] Duong T C, Hackenberg R E, Attari V, et al. Investigation of the discontinuous precipitation of U-Nb alloys via thermodynamic analysis and phase-field modeling[J].Computational Materials Science, 2020, 175: 109573.
[8] Perumal R, Selzer M, Nestler B. Concurrent grain growth and coarsening of two-phase microstructures; large scale phase-field study[J]. Computational Materials Science, 2019, 159: 160-176.
[9] Qian T, Wang X-P, Sheng P. A variational approach to moving contact line hydrodynamics[J]. Journal of Fluid Mechanics, 2006, 564: 333-360.
[10] Gao M, Wang X-P. An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity[J]. Journal of ComputationalPhysics, 2014, 272: 704-718.
[11] Zhang Q, Qian T-Z, Wang X-P. Phase field simulation of a droplet impacting a solid surface[J]. Physics of Fluids, 2016, 28(2): 022103.
[12] Yu H, Yang X. Numerical approximations for a phase-field moving contact line model with variable densities and viscosities[J]. Journal of Computational Physics,2017, 334: 665-686.
[13] Xu X, Di Y, Yu H. Sharp-interface limits of a phase-field model with a generalizedNavier slip boundary condition for moving contact lines[J]. Journal of Fluid Mechanics, 2018, 849: 805-833.
[14] Zhu G, Kou J, Yao B, et al. Thermodynamically consistent modelling of two-phaseflows with moving contact line and soluble surfactants[J]. Journal of Fluid Mechanics,2019, 879: 327-359.
[15] Zhu G, Kou J, Yao J, et al. A phase-field moving contact line model with soluble surfactants[J]. Journal of Computational Physics, 2020, 405: 109170, 29.
[16] Laradji M, Guo H, Grant M, et al. The effect of surfactants on the dynamics ofphase separation[J]. Journal of Physics. Condensed Matter, 1992, 4(32): 6715.
[17] van der Sman R, van der Graaf S. Diffuse interface model of surfactant adsorption onto flat and droplet interfaces[J]. Rheologica Acta, 2006, 46(1): 3-11.
[18] Engblom S, Do-Quang M, Amberg G, et al. On diffuse interface modeling andsimulation of surfactants in two-phase fluid flow[J]. Communications in Computational Physics, 2013, 14(4): 879-915.
[19] Gu S, Zhang H, Zhang Z. An energy-stable finite-difference scheme for the binary fluid-surfactant system[J]. Journal of Computational Physics, 2014, 270: 416-431.
[20] Yang J, Kim J. An improved scalar auxiliary variable (SAV) approach for the phase-field surfactant model[J]. Applied Mathematical Modelling, 2021, 90: 11-29.
[21] Liu H, Zhang Y. Phase-field modeling droplet dynamics with soluble surfactants[J]. Journal of Computational Physics, 2010, 229(24): 9166-9187.
[22] Shen J. Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach[G] // Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap.,Vol 22: Multiscale modeling and analysis for materials simulation. [S.l.]: WorldSci. Publ., Hackensack, NJ, 2012: 147-195.
[23] Guo Z, Lin P, Lowengrub J, et al. Mass conservative and energy stable finite difference methods for the quasi-incompressible Navier-Stokes-Cahn-Hilliard system: primitive variable and projection-type schemes[J]. Computer Methods in AppliedMechanics and Engineering, 2017, 326: 144-174.
[24] Yang X. A novel fully-decoupled, second-order and energy stable numericalscheme of the conserved Allen-Cahn type flow-coupled binary surfactant model[J].Computer Methods in Applied Mechanics and Engineering, 2021, 373: Paper No. 113502, 26.
[25] Shen J, Xu J, Yang J. A new class of efficient and robust energy stable schemes for gradient flows[J]. SIAM Review, 2019, 61(3): 474-506.
[26] Eyre D J. Unconditionally gradient stable time marching the Cahn-Hilliard equation[G] // Mater. Res. Soc. Sympos. Proc., Vol 529: Computational and MathematicalModels of Microstructural Evolution (San Francisco, CA, 1998). San Francisco:MRS, Warrendale, PA, 1998: 39-46.
[27] Chen W, Wang C, Wang X, et al. Positivity-preserving, energy stable numericalschemes for the Cahn-Hilliard equation with logarithmic potential[J]. Journal ofComputational Physics: X, 2019, 3: 100031, 29.
[28] Dong L, Wang C, Wise S M, et al. A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters[J]. Journalof Computational Physics, 2021, 442: Paper No. 110451, 29.
[29] Wang C, Guo Y, Zhang Z. Unconditionally energy stable and bound-preservingschemes for phase-field surfactant model with moving contact lines[J]. Journal ofScientific Computing, 2022, 92(1): Paper No. 20, 29.
[30] Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phasefield equations[J]. Computer Physics Communications, 1998, 108(2-3): 147-158.
[31] Badia S, Guillén-González F, Gutiérrez-Santacreu J V. Finite element approximation of nematic liquid crystal flows using a saddle-point structure[J]. Journal ofComputational Physics, 2011, 230(4): 1686-1706.
[32] Zhao J, Wang Q, Yang X. Numerical approximations for a phase field dendriticcrystal growth model based on the invariant energy quadratization approach[J]. International Journal for Numerical Methods in Engineering, 2017, 110(3): 279-300.
[33] Chen C, Pan K, Yang X. Numerical approximations of a hydro-dynamically coupled phase-field model for binary mixture of passive/active nematic liquid crystals andviscous fluids[J]. Applied Numerical Mathematics, 2020, 158: 1-21.
[34] Yang X, Ju L. Linear and unconditionally energy stable schemes for the binaryfluid-surfactant phase field model[J]. Computer Methods in Applied Mechanicsand Engineering, 2017, 318: 1005-1029.
[35] Zhu G, Kou J, Sun S, et al. Numerical approximation of a phase-field surfactantmodel with fluid flow[J]. Journal of Scientific Computing, 2019, 80(1): 223-247.
[36] Yang X, Yu H. Efficient second order unconditionally stable schemes for a phasefield moving contact line model using an invariant energy quadratization approach[J]. SIAM Journal on Scientific Computing, 2018, 40(3): B889-B914.
[37] Shen J, Xu J, Yang J. The scalar auxiliary variable (SAV) approach for gradientflows[J]. Journal of Computational Physics, 2018, 353: 407-416.
[38] Qin Y, Xu Z, Zhang H, et al. Fully decoupled, linear and unconditionally energystable schemes for the binary fluid-surfactant model[J]. Communications in Computational Physics, 2020, 28(4): 1389-1414.
[39] Kang F, Zhang Z. A multiple scalar auxiliary variables approach to the energy stable scheme of the moving contact line problem[J]. Numerical Mathematics: Theory,Methods and Applications, 2020, 13(2): 539-568.
[40] Huang F, Shen J, Yang Z. A highly efficient and accurate new scalar auxiliary variable approach for gradient flows[J]. SIAM Journal on Scientific Computing, 2020,42(4): A2514-A2536.
[41] Yao W, Shen J, Guo Z, et al. A total fractional-order variation model for imagesuper-resolution and its SAV algorithm[J]. Journal of Scientific Computing, 2020,82(3): Paper No. 81, 18.
[42] Hong Q, Li J, Wang Q. Supplementary variable method for structure-preservingapproximations to partial differential equations with deduced equations[J]. AppliedMathematics Letters, 2020, 110: 106576, 9.
[43] Xu J, Li Y, Wu S, et al. On the stability and accuracy of partially and fully implicitschemes for phase field modeling[J]. Computer Methods in Applied Mechanics andEngineering, 2019, 345: 826-853.
[44] Du Q, Ju L, Li X, et al. Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes[J]. SIAM Review, 2021, 63(2): 317-359.
[45] Bueno-Orovio A, Pérez-García V M, Fenton F H. Spectral methods for partialdifferential equations in irregular domains: the spectral smoothed boundarymethod[J]. SIAM Journal on Scientific Computing, 2006, 28(3): 886-900.
[46] Teigen K E, Li X, Lowengrub J, et al. A diffuse-interface approach for modelingtransport, diffusion and adsorption/desorption of material quantities on a deformable interface[J]. Communications in Mathematical Sciences, 2009, 7(4): 1009-1037.
[47] Li X, Lowengrub J, Rätz A, et al. Solving PDEs in complex geometries: a diffusedomain approach[J]. Communications in Mathematical Sciences, 2009, 7(1): 81-107.
[48] Aland S, Lowengrub J, Voigt A. Two-phase flow in complex geometries: a diffusedomain approach[J]. CMES. Computer Modeling in Engineering & Sciences, 2010, 57(1): 77-107.
[49] Guo Z, Yu F, Lin P, et al. A diffuse domain method for two-phase flows with largedensity ratio in complex geometries[J]. Journal of Fluid Mechanics, 2021, 907: Paper No. A38, 28.
[50] Lervåg K Y, Lowengrub J. Analysis of the diffuse-domain method for solving PDEs in complex geometries[J]. Communications in Mathematical Sciences, 2015, 13(6): 1473-1500.
[51] Teigen K E, Song P, Lowengrub J, et al. A diffuse-interface method for two-phaseflows with soluble surfactants[J]. Journal of Computational Physics, 2011, 230(2):375-393.
[52] Aland S, Lowengrub J, Voigt A. A continuum model of colloid-stabilized interfaces[J]. Physics of Fluids, 2011, 23(6): 062103.
[53] Xu J-J, Shi W, Lai M-C. A level-set method for two-phase flows with soluble surfactant[J]. Journal of Computational Physics, 2018, 353: 336-355.
[54] Eggleton C D, Tsai T-M, Stebe K J. Tip streaming from a drop in the presence ofsurfactants[J]. Physical Review Letters, 2001, 87(4): 048302.
[55] Branger A B, Eckmann D M. Accelerated arteriolar gas embolism reabsorption byan exogenous surfactant[J]. Anesthesiology, 2002, 96(4): 971-979.
[56] Kommeren S, Coenen M J, Eggenhuisen T M, et al. Combining solvents and surfactants for inkjet printing PEDOT: PSS on P3HT/PCBM in organic solar cells[J]. Organic Electronics, 2018, 61: 282-288.
[57] Probstein R F. Physicochemical hydrodynamics: an introduction[M]. New York:John Wiley & Sons, 2005.
[58] Raffa P, Broekhuis A A, Picchioni F. Polymeric surfactants for enhanced oil recovery: A review[J]. Journal of Petroleum Science and Engineering, 2016, 145: 723-733.
[59] Baret J-C. Surfactants in droplet-based microfluidics[J]. Lab on a Chip, 2012,12(3): 422-433.
[60] Garcke H, Lam K F, Stinner B. Diffuse interface modelling of soluble surfactants in two-phase flow[J]. Communications in Mathematical Sciences, 2014, 12(8): 1475-1522.
[61] de Gennes P-G, Brochard-Wyart F, Quéré D, et al. Capillarity and wetting phenomena: drops, bubbles, pearls, waves: Vol 315[M]. New York: Springer, 2004.
[62] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of theRoyal Society of London, 1805, 95: 65-87.
[63] Huh C, Scriven L E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line[J]. Journal of Colloid and Interface Science, 1971, 35(1): 85-101.
[64] Qian T, Wang X-P, Sheng P. Molecular scale contact line hydrodynamics of immiscible flows[J]. Physical Review E, 2003, 68(1): 016306.
[65] Ren W, E W. Boundary conditions for the moving contact line problem[J]. Physicsof Fluids, 2007, 19(2): 022101.
[66] Yue P, Zhou C, Feng J J. Sharp-interface limit of the Cahn-Hilliard model for moving contact lines[J]. Journal of Fluid Mechanics, 2010, 645: 279-294.
[67] Sui Y, Ding H, Spelt P D M. Numerical simulations of flows with moving contactlines[J]. Annual Review of Fluid Mechanics, 2014, 46: 97-119.
[68] Xu J-J, Ren W. A level-set method for two-phase flows with moving contact lineand insoluble surfactant[J]. Journal of Computational Physics, 2014, 263: 71-90.
[69] Zhang Z, Xu S, Ren W. Derivation of a continuum model and the energy law formoving contact lines with insoluble surfactants[J]. Physics of Fluids, 2014, 26(6): 062103.
[70] Zhao Q, Ren W, Zhang Z. A thermodynamically consistent model and its conservative numerical approximation for moving contact lines with soluble surfactants[J].Computer Methods in Applied Mechanics and Engineering, 2021, 385: Paper No.114033, 28.
[71] Stone H A. A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(1): 111-112.
[72] Wong H, Rumschitzki D, Maldarelli C. On the surfactant mass balance at a deforming fluid interface[J]. Physics of Fluids, 1996, 8(11): 3203-3204.
[73] Dunbar O R A, Lam K F, Stinner B. Phase field modelling of surfactants in multiphase flow[J]. Interfaces and Free Boundaries, 2019, 21(4): 495-547.
[74] Muradoglu M, Tryggvason G. A front-tracking method for computation of interfacial flows with soluble surfactants[J]. Journal of Computational Physics, 2008, 227(4): 2238-2262.
[75] Cleret de Langavant C, Guittet A, Theillard M, et al. Level-set simulations of soluble surfactant driven flows[J]. Journal of Computational Physics, 2017, 348: 271-297.
[76] James A J, Lowengrub J. A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant[J]. Journal of Computational Physics, 2004,201(2): 685-722.
[77] Chen K-Y, Lai M-C. A conservative scheme for solving coupled surface-bulk convection-diffusion equations with an application to interfacial flows with soluble surfactant[J]. Journal of Computational Physics, 2014, 257(part A): 1-18.
[78] Liu H, Zhang J, Ba Y, et al. Modelling a surfactant-covered droplet on a solid surface in three-dimensional shear flow[J]. Journal of Fluid Mechanics, 2020, 897: A33, 31.
[79] af Klinteberg L, Lindbo D, Tornberg A-K. An explicit Eulerian method for multiphase flow with contact line dynamics and insoluble surfactant[J]. Computers &Fluids, 2014, 101: 50-63.
[80] Xu C, Chen C, Yang X, et al. Numerical approximations for the hydrodynamicscoupled binary surfactant phase field model: second-order, linear, unconditionally energy stable schemes[J]. Communications in Mathematical Sciences, 2019, 17(3):835-858.
[81] Zhang J, Chen C, Wang J, et al. Efficient, second order accurate, and unconditionally energy stable numerical scheme for a new hydrodynamics coupled binary phase-field surfactant system[J]. Computer Physics Communications, 2020, 251: 107122, 15.
[82] Liu C, Wang C, Wise S M, et al. A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system[J]. Mathematicsof Computation, 2021, 90(331): 2071-2106.
[83] Shen J, Xu J. Unconditionally positivity preserving and energy dissipative schemes for Poisson-Nernst-Planck equations[J]. Numerische Mathematik, 2021, 148(3):671-697.
[84] He D, Pan K, Yue X. A positivity preserving and free energy dissipative difference scheme for the Poisson-Nernst-Planck system[J]. Journal of Scientific Computing,2019, 81(1): 436-458.
[85] Li B, Yang J, Zhou Z. Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations[J]. SIAM Journal on Scientific Computing, 2020, 42(6): A3957-A3978.
[86] Gu Y, Shen J. Bound preserving and energy dissipative schemes for porous medium equation[J]. Journal of Computational Physics, 2020, 410: 109378, 21.
[87] Cheng Q, Shen J. A new Lagrange multiplier approach for constructing structure preserving schemes, I. Positivity preserving[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 391: Paper No. 114585, 25.
[88] Cui S, Ding S, Wu K. Is the classic convex decomposition optimal for bound-preserving schemes in multiple dimensions?[J]. Journal of Computational Physics,2023, 476: Paper No. 111882.
[89] van der Vegt J J W, Xia Y, Xu Y. Positivity preserving limiters for time-implicit higher order accurate discontinuous Galerkin discretizations[J]. SIAM Journal onScientific Computing, 2019, 41(3): A2037-A2063.
[90] Huang F, Shen J. Bound/positivity preserving and energy stable scalar auxiliary variable schemes for dissipative systems: applications to Keller-Segel and Poisson-Nernst-Planck equations[J]. SIAM Journal on Scientific Computing, 2021, 43(3):A1832-A1857.
[91] Richard D, Clanet C, Quéré D. Contact time of a bouncing drop[J]. Nature, 2002,417(6891): 811-811.
[92] Renardy Y, Popinet S, Duchemin L, et al. Pyramidal and toroidal water drops afterimpact on a solid surface[J]. Journal of Fluid Mechanics, 2003, 484: 69-83.
[93] Rioboo R, Marengo M, Tropea C. Time evolution of liquid drop impact onto solid, dry surfaces[J]. Experiments in Fluids, 2002, 33(1): 112-124.
[94] Gatne K P, Jog M A, Manglik R M. Surfactant-induced modification of low Webernumber droplet impact dynamics[J]. Langmuir, 2009, 25(14): 8122-8130.
[95] Pan K-L, Tseng Y-H, Chen J-C, et al. Controlling droplet bouncing and coalescence with surfactant[J]. Journal of Fluid Mechanics, 2016, 799: 603-636.
[96] Khatavkar V V, Anderson P D, Duineveld P C, et al. Diffuse-interface modellingof droplet impact[J]. Journal of Fluid Mechanics, 2007, 581: 97-127.
[97] Abels H, Garcke H, Grün G. Thermodynamically consistent, frame indifferentdiffuse interface models for incompressible two-phase flows with different densities[J]. Mathematical Models and Methods in Applied Sciences, 2012, 22(3): 1150013, 40.
[98] Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability[J]. Journal of Theoretical Biology, 1970, 26(3): 399-415.
[99] Keller E F, Segel L A. Model for chemotaxis[J]. Journal of Theoretical Biology,1971, 30(2): 225-234.
[100] Patlak C S. Random walk with persistence and external bias[J]. The Bulletin ofMathematical Biophysics, 1953, 15: 311-338.
[101] Arumugam G, Tyagi J. Keller-Segel chemotaxis models: a review[J]. Acta Applicandae Mathematicae, 2021, 171: Paper No. 6, 82.
[102] Hillen T, Painter K J. A user’s guide to PDE models for chemotaxis[J]. Journal of Mathematical Biology, 2009, 58(1-2): 183-217.
[103] Tuval I, Cisneros L, Dombrowski C, et al. Bacterial swimming and oxygen transport near contact lines[J]. Proceedings of the National Academy of Sciences, 2005,102(7): 2277-2282.
[104] Lorz A. A coupled Keller-Segel-Stokes model: global existence for small initialdata and blow-up delay[J]. Communications in Mathematical Sciences, 2012, 10(2): 555-574.
[105] Winkler M. How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?[J]. Transactions of the American Mathematical Society, 2017, 369(5): 3067-3125.
[106] Winkler M. A three-dimensional Keller-Segel-Navier-Stokes system with logisticsource: global weak solutions and asymptotic stabilization[J]. Journal of FunctionalAnalysis, 2019, 276(5): 1339-1401.
[107] Bellomo N, Outada N, Soler J, et al. Chemotaxis and cross-diffusion models in complex environments: models and analytic problems toward a multiscale vision[J].Mathematical Models and Methods in Applied Sciences, 2022, 32(4): 713-792.
[108] Bellomo N, Gibelli L, Outada N. On the interplay between behavioral dynamics and social interactions in human crowds[J]. Kinetic and Related Models, 2019, 12(2):397-409.
[109] Bellomo N, Painter K J, Tao Y, et al. Occurrence vs. absence of taxis-driven instabilities in a May-Nowak model for virus infection[J]. SIAM Journal on AppliedMathematics, 2019, 79(5): 1990-2010.
[110] Horstmann D. From 1970 until present: the Keller-Segel model in chemotaxisand its consequences. I[J]. Jahresbericht der Deutschen Mathematiker-Vereinigung,2003, 105(3): 103-165.
[111] Chakraborty S, Ivančić F, Solovchuk M, et al. Stability and dynamics of a chemotaxis system with deformed free-surface in a shallow chamber[J]. Physics of Fluids,2018, 30(7): 071904.
[112] Ke Y, Li J, Wang Y. Financial Mathematics and Fintech: Analysis of reactiondiffusion models with the taxis mechanism[M]. [S.l.]: Springer, Singapore, 2022.
[113] Braukhoff M, Tang B Q. Global solutions for chemotaxis-Navier-Stokes systemwith Robin boundary conditions[J]. Journal of Differential Equations, 2020, 269(12): 10630-10669.
[114] Chertock A, Fellner K, Kurganov A, et al. Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach[J].Journal of Fluid Mechanics, 2012, 694: 155-190.
[115] Deleuze Y, Chiang C-Y, Thiriet M, et al. Numerical study of plume patterns in achemotaxis-diffusion-convection coupling system[J]. Computers & Fluids, 2016,126: 58-70.
[116] Huang X, Feng X, Xiao X, et al. Fully decoupled, linear and positivity-preservingscheme for the chemotaxis-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 383: Paper No. 113909, 19.
[117] Duarte-Rodríguez A, Rodríguez-Bellido M A, Rueda-Gómez D A, et al. Numerical analysis for a chemotaxis–Navier-Stokes system[J]. ESAIM. Mathematical Modellingand Numerical Analysis, 2021, 55(suppl.): S417-S445.
[118] Ivančić F, Sheu T W H, Solovchuk M. The free surface effect on a chemotaxis-diffusion-convection coupling system[J]. Computer Methods in Applied Mechanicsand Engineering, 2019, 356: 387-406.
[119] Li W, Ying L. Hessian transport gradient flows[J]. Research in the MathematicalSciences, 2019, 6(4): Paper No. 34, 20.
[120] Villani C. Graduate Studies in Mathematics, Vol 58: Topics in optimal transportation[M]. Providence: American Mathematical Society, Providence, RI, 2003.
[121] Wang S, Zhou S, Shi S, et al. Fully decoupled and energy stable BDF schemes for a class of Keller-Segel equations[J]. Journal of Computational Physics, 2022, 449:Paper No. 110799.
[122] Ganesan S. Simulations of impinging droplets with surfactant-dependent dynamic contact angle[J]. Journal of Computational Physics, 2015, 301: 178-200.
[123] Brandon S, Marmur A. Simulation of contact angle hysteresis on chemically heterogeneous surfaces[J]. Journal of Colloid and Interface Science, 1996, 183(2):351-355.
[124] Wang X-P, Qian T, Sheng P. Moving contact line on chemically patterned surfaces[J]. Journal of Fluid Mechanics, 2008, 605: 59-78.
[125] Chai S, Zhang Z, Zhang Z. A second order accuracy preserving method for moving contact lines with Stokes flow[J]. Journal of Computational Physics, 2021, 445:Paper No. 110607, 18.
[126] Shen J, Yang X. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[J]. Discrete and Continuous Dynamical Systems, 2010, 28(4): 1669-1691.
[127] Copetti M I M, Elliott C M. Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy[J]. Numerische Mathematik, 1992, 63(1): 39-65.
[128] Liu X-D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212.
[129] Gottlieb S, Shu C-W, Tadmor E. Strong stability-preserving high-order time discretization methods[J]. SIAM Review, 2001, 43(1): 89-112.
[130] Holmes M H. Texts in Applied Mathematics, Vol 20: Introduction to perturbation methods[M]. Second. [S.l.]: Springer, New York, 2013.
[131] Nessyahu H, Tadmor E. Nonoscillatory central differencing for hyperbolic conservation laws[J]. Journal of Computational Physics, 1990, 87(2): 408-463.
[132] Guermond J L, Shen J. On the error estimates for the rotational pressure-correction projection methods[J]. Mathematics of Computation, 2004, 73(248): 1719-1737.
[133] Hillesdon A J, Pedley T J, Kessler J O. The development of concentration gradients in a suspension of chemotactic bacteria[J]. Bulletin of Mathematical Biology, 1995,57(2): 299-344.

所在学位评定分委会
数学
国内图书分类号
O242.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543836
专题理学院_数学系
推荐引用方式
GB/T 7714
王陈希. 几类界面问题的相场建模及其数值方法[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749308-王陈希-数学系.pdf(18432KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王陈希]的文章
百度学术
百度学术中相似的文章
[王陈希]的文章
必应学术
必应学术中相似的文章
[王陈希]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。