[1] Fix G J. Phase field methods for free boundary problems[J]. Free Boundary Problems: Theory and Applications, 1982, 2: 580-600.
[2] Rowlinson J S. Translation of J. D. van der Waals' "The thermodynamik theory ofcapillarity under the hypothesis of a continuous variation of density" [J]. Journalof Statistical Physics, 1979, 20: 197-200.
[3] ter Haar D. Collected Papers of L. D. Landau[M]. UK: Elsevier, Pergamon, Oxford,2013.
[4] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial freeenergy[J]. The Journal of Chemical Physics, 1958, 28(2): 258-267.
[5] Cahn J W. On spinodal decomposition[J]. Acta Metallurgica, 1961, 9(9): 795-801.
[6] Cahn J W, Allen S M. A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics[J]. Journal de Physique Colloques, 1977, 38(C7): 51-54.
[7] Duong T C, Hackenberg R E, Attari V, et al. Investigation of the discontinuous precipitation of U-Nb alloys via thermodynamic analysis and phase-field modeling[J].Computational Materials Science, 2020, 175: 109573.
[8] Perumal R, Selzer M, Nestler B. Concurrent grain growth and coarsening of two-phase microstructures; large scale phase-field study[J]. Computational Materials Science, 2019, 159: 160-176.
[9] Qian T, Wang X-P, Sheng P. A variational approach to moving contact line hydrodynamics[J]. Journal of Fluid Mechanics, 2006, 564: 333-360.
[10] Gao M, Wang X-P. An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity[J]. Journal of ComputationalPhysics, 2014, 272: 704-718.
[11] Zhang Q, Qian T-Z, Wang X-P. Phase field simulation of a droplet impacting a solid surface[J]. Physics of Fluids, 2016, 28(2): 022103.
[12] Yu H, Yang X. Numerical approximations for a phase-field moving contact line model with variable densities and viscosities[J]. Journal of Computational Physics,2017, 334: 665-686.
[13] Xu X, Di Y, Yu H. Sharp-interface limits of a phase-field model with a generalizedNavier slip boundary condition for moving contact lines[J]. Journal of Fluid Mechanics, 2018, 849: 805-833.
[14] Zhu G, Kou J, Yao B, et al. Thermodynamically consistent modelling of two-phaseflows with moving contact line and soluble surfactants[J]. Journal of Fluid Mechanics,2019, 879: 327-359.
[15] Zhu G, Kou J, Yao J, et al. A phase-field moving contact line model with soluble surfactants[J]. Journal of Computational Physics, 2020, 405: 109170, 29.
[16] Laradji M, Guo H, Grant M, et al. The effect of surfactants on the dynamics ofphase separation[J]. Journal of Physics. Condensed Matter, 1992, 4(32): 6715.
[17] van der Sman R, van der Graaf S. Diffuse interface model of surfactant adsorption onto flat and droplet interfaces[J]. Rheologica Acta, 2006, 46(1): 3-11.
[18] Engblom S, Do-Quang M, Amberg G, et al. On diffuse interface modeling andsimulation of surfactants in two-phase fluid flow[J]. Communications in Computational Physics, 2013, 14(4): 879-915.
[19] Gu S, Zhang H, Zhang Z. An energy-stable finite-difference scheme for the binary fluid-surfactant system[J]. Journal of Computational Physics, 2014, 270: 416-431.
[20] Yang J, Kim J. An improved scalar auxiliary variable (SAV) approach for the phase-field surfactant model[J]. Applied Mathematical Modelling, 2021, 90: 11-29.
[21] Liu H, Zhang Y. Phase-field modeling droplet dynamics with soluble surfactants[J]. Journal of Computational Physics, 2010, 229(24): 9166-9187.
[22] Shen J. Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach[G] // Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap.,Vol 22: Multiscale modeling and analysis for materials simulation. [S.l.]: WorldSci. Publ., Hackensack, NJ, 2012: 147-195.
[23] Guo Z, Lin P, Lowengrub J, et al. Mass conservative and energy stable finite difference methods for the quasi-incompressible Navier-Stokes-Cahn-Hilliard system: primitive variable and projection-type schemes[J]. Computer Methods in AppliedMechanics and Engineering, 2017, 326: 144-174.
[24] Yang X. A novel fully-decoupled, second-order and energy stable numericalscheme of the conserved Allen-Cahn type flow-coupled binary surfactant model[J].Computer Methods in Applied Mechanics and Engineering, 2021, 373: Paper No. 113502, 26.
[25] Shen J, Xu J, Yang J. A new class of efficient and robust energy stable schemes for gradient flows[J]. SIAM Review, 2019, 61(3): 474-506.
[26] Eyre D J. Unconditionally gradient stable time marching the Cahn-Hilliard equation[G] // Mater. Res. Soc. Sympos. Proc., Vol 529: Computational and MathematicalModels of Microstructural Evolution (San Francisco, CA, 1998). San Francisco:MRS, Warrendale, PA, 1998: 39-46.
[27] Chen W, Wang C, Wang X, et al. Positivity-preserving, energy stable numericalschemes for the Cahn-Hilliard equation with logarithmic potential[J]. Journal ofComputational Physics: X, 2019, 3: 100031, 29.
[28] Dong L, Wang C, Wise S M, et al. A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters[J]. Journalof Computational Physics, 2021, 442: Paper No. 110451, 29.
[29] Wang C, Guo Y, Zhang Z. Unconditionally energy stable and bound-preservingschemes for phase-field surfactant model with moving contact lines[J]. Journal ofScientific Computing, 2022, 92(1): Paper No. 20, 29.
[30] Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phasefield equations[J]. Computer Physics Communications, 1998, 108(2-3): 147-158.
[31] Badia S, Guillén-González F, Gutiérrez-Santacreu J V. Finite element approximation of nematic liquid crystal flows using a saddle-point structure[J]. Journal ofComputational Physics, 2011, 230(4): 1686-1706.
[32] Zhao J, Wang Q, Yang X. Numerical approximations for a phase field dendriticcrystal growth model based on the invariant energy quadratization approach[J]. International Journal for Numerical Methods in Engineering, 2017, 110(3): 279-300.
[33] Chen C, Pan K, Yang X. Numerical approximations of a hydro-dynamically coupled phase-field model for binary mixture of passive/active nematic liquid crystals andviscous fluids[J]. Applied Numerical Mathematics, 2020, 158: 1-21.
[34] Yang X, Ju L. Linear and unconditionally energy stable schemes for the binaryfluid-surfactant phase field model[J]. Computer Methods in Applied Mechanicsand Engineering, 2017, 318: 1005-1029.
[35] Zhu G, Kou J, Sun S, et al. Numerical approximation of a phase-field surfactantmodel with fluid flow[J]. Journal of Scientific Computing, 2019, 80(1): 223-247.
[36] Yang X, Yu H. Efficient second order unconditionally stable schemes for a phasefield moving contact line model using an invariant energy quadratization approach[J]. SIAM Journal on Scientific Computing, 2018, 40(3): B889-B914.
[37] Shen J, Xu J, Yang J. The scalar auxiliary variable (SAV) approach for gradientflows[J]. Journal of Computational Physics, 2018, 353: 407-416.
[38] Qin Y, Xu Z, Zhang H, et al. Fully decoupled, linear and unconditionally energystable schemes for the binary fluid-surfactant model[J]. Communications in Computational Physics, 2020, 28(4): 1389-1414.
[39] Kang F, Zhang Z. A multiple scalar auxiliary variables approach to the energy stable scheme of the moving contact line problem[J]. Numerical Mathematics: Theory,Methods and Applications, 2020, 13(2): 539-568.
[40] Huang F, Shen J, Yang Z. A highly efficient and accurate new scalar auxiliary variable approach for gradient flows[J]. SIAM Journal on Scientific Computing, 2020,42(4): A2514-A2536.
[41] Yao W, Shen J, Guo Z, et al. A total fractional-order variation model for imagesuper-resolution and its SAV algorithm[J]. Journal of Scientific Computing, 2020,82(3): Paper No. 81, 18.
[42] Hong Q, Li J, Wang Q. Supplementary variable method for structure-preservingapproximations to partial differential equations with deduced equations[J]. AppliedMathematics Letters, 2020, 110: 106576, 9.
[43] Xu J, Li Y, Wu S, et al. On the stability and accuracy of partially and fully implicitschemes for phase field modeling[J]. Computer Methods in Applied Mechanics andEngineering, 2019, 345: 826-853.
[44] Du Q, Ju L, Li X, et al. Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes[J]. SIAM Review, 2021, 63(2): 317-359.
[45] Bueno-Orovio A, Pérez-García V M, Fenton F H. Spectral methods for partialdifferential equations in irregular domains: the spectral smoothed boundarymethod[J]. SIAM Journal on Scientific Computing, 2006, 28(3): 886-900.
[46] Teigen K E, Li X, Lowengrub J, et al. A diffuse-interface approach for modelingtransport, diffusion and adsorption/desorption of material quantities on a deformable interface[J]. Communications in Mathematical Sciences, 2009, 7(4): 1009-1037.
[47] Li X, Lowengrub J, Rätz A, et al. Solving PDEs in complex geometries: a diffusedomain approach[J]. Communications in Mathematical Sciences, 2009, 7(1): 81-107.
[48] Aland S, Lowengrub J, Voigt A. Two-phase flow in complex geometries: a diffusedomain approach[J]. CMES. Computer Modeling in Engineering & Sciences, 2010, 57(1): 77-107.
[49] Guo Z, Yu F, Lin P, et al. A diffuse domain method for two-phase flows with largedensity ratio in complex geometries[J]. Journal of Fluid Mechanics, 2021, 907: Paper No. A38, 28.
[50] Lervåg K Y, Lowengrub J. Analysis of the diffuse-domain method for solving PDEs in complex geometries[J]. Communications in Mathematical Sciences, 2015, 13(6): 1473-1500.
[51] Teigen K E, Song P, Lowengrub J, et al. A diffuse-interface method for two-phaseflows with soluble surfactants[J]. Journal of Computational Physics, 2011, 230(2):375-393.
[52] Aland S, Lowengrub J, Voigt A. A continuum model of colloid-stabilized interfaces[J]. Physics of Fluids, 2011, 23(6): 062103.
[53] Xu J-J, Shi W, Lai M-C. A level-set method for two-phase flows with soluble surfactant[J]. Journal of Computational Physics, 2018, 353: 336-355.
[54] Eggleton C D, Tsai T-M, Stebe K J. Tip streaming from a drop in the presence ofsurfactants[J]. Physical Review Letters, 2001, 87(4): 048302.
[55] Branger A B, Eckmann D M. Accelerated arteriolar gas embolism reabsorption byan exogenous surfactant[J]. Anesthesiology, 2002, 96(4): 971-979.
[56] Kommeren S, Coenen M J, Eggenhuisen T M, et al. Combining solvents and surfactants for inkjet printing PEDOT: PSS on P3HT/PCBM in organic solar cells[J]. Organic Electronics, 2018, 61: 282-288.
[57] Probstein R F. Physicochemical hydrodynamics: an introduction[M]. New York:John Wiley & Sons, 2005.
[58] Raffa P, Broekhuis A A, Picchioni F. Polymeric surfactants for enhanced oil recovery: A review[J]. Journal of Petroleum Science and Engineering, 2016, 145: 723-733.
[59] Baret J-C. Surfactants in droplet-based microfluidics[J]. Lab on a Chip, 2012,12(3): 422-433.
[60] Garcke H, Lam K F, Stinner B. Diffuse interface modelling of soluble surfactants in two-phase flow[J]. Communications in Mathematical Sciences, 2014, 12(8): 1475-1522.
[61] de Gennes P-G, Brochard-Wyart F, Quéré D, et al. Capillarity and wetting phenomena: drops, bubbles, pearls, waves: Vol 315[M]. New York: Springer, 2004.
[62] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of theRoyal Society of London, 1805, 95: 65-87.
[63] Huh C, Scriven L E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line[J]. Journal of Colloid and Interface Science, 1971, 35(1): 85-101.
[64] Qian T, Wang X-P, Sheng P. Molecular scale contact line hydrodynamics of immiscible flows[J]. Physical Review E, 2003, 68(1): 016306.
[65] Ren W, E W. Boundary conditions for the moving contact line problem[J]. Physicsof Fluids, 2007, 19(2): 022101.
[66] Yue P, Zhou C, Feng J J. Sharp-interface limit of the Cahn-Hilliard model for moving contact lines[J]. Journal of Fluid Mechanics, 2010, 645: 279-294.
[67] Sui Y, Ding H, Spelt P D M. Numerical simulations of flows with moving contactlines[J]. Annual Review of Fluid Mechanics, 2014, 46: 97-119.
[68] Xu J-J, Ren W. A level-set method for two-phase flows with moving contact lineand insoluble surfactant[J]. Journal of Computational Physics, 2014, 263: 71-90.
[69] Zhang Z, Xu S, Ren W. Derivation of a continuum model and the energy law formoving contact lines with insoluble surfactants[J]. Physics of Fluids, 2014, 26(6): 062103.
[70] Zhao Q, Ren W, Zhang Z. A thermodynamically consistent model and its conservative numerical approximation for moving contact lines with soluble surfactants[J].Computer Methods in Applied Mechanics and Engineering, 2021, 385: Paper No.114033, 28.
[71] Stone H A. A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(1): 111-112.
[72] Wong H, Rumschitzki D, Maldarelli C. On the surfactant mass balance at a deforming fluid interface[J]. Physics of Fluids, 1996, 8(11): 3203-3204.
[73] Dunbar O R A, Lam K F, Stinner B. Phase field modelling of surfactants in multiphase flow[J]. Interfaces and Free Boundaries, 2019, 21(4): 495-547.
[74] Muradoglu M, Tryggvason G. A front-tracking method for computation of interfacial flows with soluble surfactants[J]. Journal of Computational Physics, 2008, 227(4): 2238-2262.
[75] Cleret de Langavant C, Guittet A, Theillard M, et al. Level-set simulations of soluble surfactant driven flows[J]. Journal of Computational Physics, 2017, 348: 271-297.
[76] James A J, Lowengrub J. A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant[J]. Journal of Computational Physics, 2004,201(2): 685-722.
[77] Chen K-Y, Lai M-C. A conservative scheme for solving coupled surface-bulk convection-diffusion equations with an application to interfacial flows with soluble surfactant[J]. Journal of Computational Physics, 2014, 257(part A): 1-18.
[78] Liu H, Zhang J, Ba Y, et al. Modelling a surfactant-covered droplet on a solid surface in three-dimensional shear flow[J]. Journal of Fluid Mechanics, 2020, 897: A33, 31.
[79] af Klinteberg L, Lindbo D, Tornberg A-K. An explicit Eulerian method for multiphase flow with contact line dynamics and insoluble surfactant[J]. Computers &Fluids, 2014, 101: 50-63.
[80] Xu C, Chen C, Yang X, et al. Numerical approximations for the hydrodynamicscoupled binary surfactant phase field model: second-order, linear, unconditionally energy stable schemes[J]. Communications in Mathematical Sciences, 2019, 17(3):835-858.
[81] Zhang J, Chen C, Wang J, et al. Efficient, second order accurate, and unconditionally energy stable numerical scheme for a new hydrodynamics coupled binary phase-field surfactant system[J]. Computer Physics Communications, 2020, 251: 107122, 15.
[82] Liu C, Wang C, Wise S M, et al. A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system[J]. Mathematicsof Computation, 2021, 90(331): 2071-2106.
[83] Shen J, Xu J. Unconditionally positivity preserving and energy dissipative schemes for Poisson-Nernst-Planck equations[J]. Numerische Mathematik, 2021, 148(3):671-697.
[84] He D, Pan K, Yue X. A positivity preserving and free energy dissipative difference scheme for the Poisson-Nernst-Planck system[J]. Journal of Scientific Computing,2019, 81(1): 436-458.
[85] Li B, Yang J, Zhou Z. Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations[J]. SIAM Journal on Scientific Computing, 2020, 42(6): A3957-A3978.
[86] Gu Y, Shen J. Bound preserving and energy dissipative schemes for porous medium equation[J]. Journal of Computational Physics, 2020, 410: 109378, 21.
[87] Cheng Q, Shen J. A new Lagrange multiplier approach for constructing structure preserving schemes, I. Positivity preserving[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 391: Paper No. 114585, 25.
[88] Cui S, Ding S, Wu K. Is the classic convex decomposition optimal for bound-preserving schemes in multiple dimensions?[J]. Journal of Computational Physics,2023, 476: Paper No. 111882.
[89] van der Vegt J J W, Xia Y, Xu Y. Positivity preserving limiters for time-implicit higher order accurate discontinuous Galerkin discretizations[J]. SIAM Journal onScientific Computing, 2019, 41(3): A2037-A2063.
[90] Huang F, Shen J. Bound/positivity preserving and energy stable scalar auxiliary variable schemes for dissipative systems: applications to Keller-Segel and Poisson-Nernst-Planck equations[J]. SIAM Journal on Scientific Computing, 2021, 43(3):A1832-A1857.
[91] Richard D, Clanet C, Quéré D. Contact time of a bouncing drop[J]. Nature, 2002,417(6891): 811-811.
[92] Renardy Y, Popinet S, Duchemin L, et al. Pyramidal and toroidal water drops afterimpact on a solid surface[J]. Journal of Fluid Mechanics, 2003, 484: 69-83.
[93] Rioboo R, Marengo M, Tropea C. Time evolution of liquid drop impact onto solid, dry surfaces[J]. Experiments in Fluids, 2002, 33(1): 112-124.
[94] Gatne K P, Jog M A, Manglik R M. Surfactant-induced modification of low Webernumber droplet impact dynamics[J]. Langmuir, 2009, 25(14): 8122-8130.
[95] Pan K-L, Tseng Y-H, Chen J-C, et al. Controlling droplet bouncing and coalescence with surfactant[J]. Journal of Fluid Mechanics, 2016, 799: 603-636.
[96] Khatavkar V V, Anderson P D, Duineveld P C, et al. Diffuse-interface modellingof droplet impact[J]. Journal of Fluid Mechanics, 2007, 581: 97-127.
[97] Abels H, Garcke H, Grün G. Thermodynamically consistent, frame indifferentdiffuse interface models for incompressible two-phase flows with different densities[J]. Mathematical Models and Methods in Applied Sciences, 2012, 22(3): 1150013, 40.
[98] Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability[J]. Journal of Theoretical Biology, 1970, 26(3): 399-415.
[99] Keller E F, Segel L A. Model for chemotaxis[J]. Journal of Theoretical Biology,1971, 30(2): 225-234.
[100] Patlak C S. Random walk with persistence and external bias[J]. The Bulletin ofMathematical Biophysics, 1953, 15: 311-338.
[101] Arumugam G, Tyagi J. Keller-Segel chemotaxis models: a review[J]. Acta Applicandae Mathematicae, 2021, 171: Paper No. 6, 82.
[102] Hillen T, Painter K J. A user’s guide to PDE models for chemotaxis[J]. Journal of Mathematical Biology, 2009, 58(1-2): 183-217.
[103] Tuval I, Cisneros L, Dombrowski C, et al. Bacterial swimming and oxygen transport near contact lines[J]. Proceedings of the National Academy of Sciences, 2005,102(7): 2277-2282.
[104] Lorz A. A coupled Keller-Segel-Stokes model: global existence for small initialdata and blow-up delay[J]. Communications in Mathematical Sciences, 2012, 10(2): 555-574.
[105] Winkler M. How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?[J]. Transactions of the American Mathematical Society, 2017, 369(5): 3067-3125.
[106] Winkler M. A three-dimensional Keller-Segel-Navier-Stokes system with logisticsource: global weak solutions and asymptotic stabilization[J]. Journal of FunctionalAnalysis, 2019, 276(5): 1339-1401.
[107] Bellomo N, Outada N, Soler J, et al. Chemotaxis and cross-diffusion models in complex environments: models and analytic problems toward a multiscale vision[J].Mathematical Models and Methods in Applied Sciences, 2022, 32(4): 713-792.
[108] Bellomo N, Gibelli L, Outada N. On the interplay between behavioral dynamics and social interactions in human crowds[J]. Kinetic and Related Models, 2019, 12(2):397-409.
[109] Bellomo N, Painter K J, Tao Y, et al. Occurrence vs. absence of taxis-driven instabilities in a May-Nowak model for virus infection[J]. SIAM Journal on AppliedMathematics, 2019, 79(5): 1990-2010.
[110] Horstmann D. From 1970 until present: the Keller-Segel model in chemotaxisand its consequences. I[J]. Jahresbericht der Deutschen Mathematiker-Vereinigung,2003, 105(3): 103-165.
[111] Chakraborty S, Ivančić F, Solovchuk M, et al. Stability and dynamics of a chemotaxis system with deformed free-surface in a shallow chamber[J]. Physics of Fluids,2018, 30(7): 071904.
[112] Ke Y, Li J, Wang Y. Financial Mathematics and Fintech: Analysis of reactiondiffusion models with the taxis mechanism[M]. [S.l.]: Springer, Singapore, 2022.
[113] Braukhoff M, Tang B Q. Global solutions for chemotaxis-Navier-Stokes systemwith Robin boundary conditions[J]. Journal of Differential Equations, 2020, 269(12): 10630-10669.
[114] Chertock A, Fellner K, Kurganov A, et al. Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach[J].Journal of Fluid Mechanics, 2012, 694: 155-190.
[115] Deleuze Y, Chiang C-Y, Thiriet M, et al. Numerical study of plume patterns in achemotaxis-diffusion-convection coupling system[J]. Computers & Fluids, 2016,126: 58-70.
[116] Huang X, Feng X, Xiao X, et al. Fully decoupled, linear and positivity-preservingscheme for the chemotaxis-Stokes equations[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 383: Paper No. 113909, 19.
[117] Duarte-Rodríguez A, Rodríguez-Bellido M A, Rueda-Gómez D A, et al. Numerical analysis for a chemotaxis–Navier-Stokes system[J]. ESAIM. Mathematical Modellingand Numerical Analysis, 2021, 55(suppl.): S417-S445.
[118] Ivančić F, Sheu T W H, Solovchuk M. The free surface effect on a chemotaxis-diffusion-convection coupling system[J]. Computer Methods in Applied Mechanicsand Engineering, 2019, 356: 387-406.
[119] Li W, Ying L. Hessian transport gradient flows[J]. Research in the MathematicalSciences, 2019, 6(4): Paper No. 34, 20.
[120] Villani C. Graduate Studies in Mathematics, Vol 58: Topics in optimal transportation[M]. Providence: American Mathematical Society, Providence, RI, 2003.
[121] Wang S, Zhou S, Shi S, et al. Fully decoupled and energy stable BDF schemes for a class of Keller-Segel equations[J]. Journal of Computational Physics, 2022, 449:Paper No. 110799.
[122] Ganesan S. Simulations of impinging droplets with surfactant-dependent dynamic contact angle[J]. Journal of Computational Physics, 2015, 301: 178-200.
[123] Brandon S, Marmur A. Simulation of contact angle hysteresis on chemically heterogeneous surfaces[J]. Journal of Colloid and Interface Science, 1996, 183(2):351-355.
[124] Wang X-P, Qian T, Sheng P. Moving contact line on chemically patterned surfaces[J]. Journal of Fluid Mechanics, 2008, 605: 59-78.
[125] Chai S, Zhang Z, Zhang Z. A second order accuracy preserving method for moving contact lines with Stokes flow[J]. Journal of Computational Physics, 2021, 445:Paper No. 110607, 18.
[126] Shen J, Yang X. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[J]. Discrete and Continuous Dynamical Systems, 2010, 28(4): 1669-1691.
[127] Copetti M I M, Elliott C M. Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy[J]. Numerische Mathematik, 1992, 63(1): 39-65.
[128] Liu X-D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212.
[129] Gottlieb S, Shu C-W, Tadmor E. Strong stability-preserving high-order time discretization methods[J]. SIAM Review, 2001, 43(1): 89-112.
[130] Holmes M H. Texts in Applied Mathematics, Vol 20: Introduction to perturbation methods[M]. Second. [S.l.]: Springer, New York, 2013.
[131] Nessyahu H, Tadmor E. Nonoscillatory central differencing for hyperbolic conservation laws[J]. Journal of Computational Physics, 1990, 87(2): 408-463.
[132] Guermond J L, Shen J. On the error estimates for the rotational pressure-correction projection methods[J]. Mathematics of Computation, 2004, 73(248): 1719-1737.
[133] Hillesdon A J, Pedley T J, Kessler J O. The development of concentration gradients in a suspension of chemotactic bacteria[J]. Bulletin of Mathematical Biology, 1995,57(2): 299-344.
修改评论