中文版 | English
题名

Development of sustainable processes for recycling spent lithium-ion batteries

姓名
姓名拼音
HUA Yunhui
学号
11863001
学位类型
博士
学位专业
Chemical Engineering
导师
张作泰
导师单位
环境科学与工程学院
外机构导师
Baojun Zhao
外机构导师单位
昆士兰大学
论文答辩日期
2023-04-07
论文提交日期
2023-06-24
学位授予单位
昆士兰大学
学位授予地点
昆士兰
摘要

The increasing numbers of electric vehicles and electronic devices around the world are leading to a wider application of rechargeable batteries, and lithium-ion batteries (LIBs) are currently the most dominant kinds. Spent LIBs contain toxic organics, salts, and heavy metals that can cause severe pollution to the environment. On the other hand, the spent LIBs are rich in some critical and high value elements including lithium (Li), cobalt (Co), manganese (Mn) and nickel (Ni) that are worth to be recovered. Therefore, recycling spent LIBs has important significance from both environmental and economic aspects.

Current recycling processes are usually wasteful and can bring about severe environmental hazards. The thermal treatment or pyrometallurgy process for recycling is often energy-intensive and will release toxic off gas. The traditional hydrometallurgy process for metal recovery usually over consumes acids and redox agents, which results in large amount of waste water. Processes that save resources, reduce energy consumption and avoid secondary pollution are needed for environmental friendliness and sustainability. In this thesis, we focus on dealing with these current problems, and investigating efficient and environmentally friendly pathways for recycling of spent LIBs. The thesis aims to develop new processes that avoid the use of expensive and toxic additives, reduce chemical consumption and also reduce the generation of secondary wastes for recycling spent LIBs.

Ni-Co-Mn ternary (LiNixCoyMnzO2, short as NCM) batteries and lithium iron phosphate (LiFePO4, short as LFP) batteries are two major groups of LIBs, but they usually have different recycling processes because of their different chemical compositions. An electrochemical approach by analyzing electric potentials of the metal ions was developed to evaluate their redox abilities. Based on the results, a salt leaching method was proposed using water-soluble NH4Fe(SO4)2 as redox intermediate for synergistic recovery of valuable metals from NCM and LFP cathode. Li, Mn, Co and Ni can be leached out under mild condition while PO43- is completely retained in the solid residue. Thermodynamic analysis on leaching solutions is shown to be feasible for separating products for LFP and NCM battery systems, and the products obtained from the process all have high purities. Moreover, the process makes full use of the intrinsic redox ability of NCM and LFP, which reduces the consumption of redox additives to a large extent.

Deep eutectic solvent (DES) provides a green alternative route for metal extraction from spent battery cathode, and the organic acids with strong reducibility are expected for effective extraction of metals. A simple and universal approach was proposed by applying ionization energy (IE) calculation assisted with cyclic voltammetry test to select organic acid as efficient reductant in the DES for battery recycling. The reducibility of the organic acid was found to have a close relationship with the IE. The organic acids with lower IE are found to be preferred reductants. Based on this approach, the hydrous choline chloride-L-ascorbic acid DES was identified and verified to be efficient for metals leaching from LiNi1/3Co1/3Mn1/3O2 cathode under mild conditions. The DES designed from IE calculation is versatile for treating various kinds of spent battery cathodes and recyclable for multiple uses, decreasing the generation of secondary chemical waste and pollution.

The DES can be used not only for metal extraction, but also for other steps during recycling. Electrode material separation is an essential element for recycling spent LIBs, and the key is to decompose/remove the organic polymer binder that is usually polyvinylidene fluoride (PVDF). The Density Functional Theory calculation is used to predict suitable DES for degrading the PVDF binder as required for effective separation of the electrode active materials from current collector foils. The potassium carbonate-ethylene glycol DES was identified based on the calculation to be an efficient DES for the electrode material separation under a mild reaction condition. The molecular reaction mechanism study revealed that it was the carbonate ions that react with the PVDF polymer chains and cause the degradation of the polymer, leading to effective separation. The separated electrode materials all had high purities and their crystal structures remained unchanged. The strategy of using green DES provides a highly efficient and environmentally friendly pathway for the pretreatment of spent LIBs.

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2023-05
参考文献列表

(1) Sinopharm Chemical Reagent Co., Ltd. http://en.reagent.com.cn/ (accessed 2023 March 13th).(2) The Role of Critical Minerals in Clean Energy Transitions.pdf. 2021. https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed 2022 July 15th).(3) Energy Storage Industry White Paper 2021. 2021. http://en.cnesa.org/white-paper-access-multyear (accessed 2022 July 15th).(4) Global Electric Vehicle Outlook 2022. 2022. https://www.iea.org/reports/global-ev-outlook-2022 (accessed 2022 July 15th).(5) Irle, R. EV-Volumes - The Electric Vehicle World Sales Database. 2023. https://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/ (accessed 2023 May 21th).(6) Sojka, R.; Pan, Q.; Billmann, L. Comparative study of Li-ion battery recycling processes. 2020. https://accurec.de/wp-content/uploads/2021/04/Accurec-Comparative-study.pdf (accessed 2023 March 12th).(7) Lin, J.; Li, L.; Fan, E.; Liu, C.; Zhang, X.; Cao, H.; Sun, Z.; Chen, R. Conversion Mechanisms of Selective Extraction of Lithium from Spent Lithium-Ion Batteries by Sulfation Roasting. ACS Appl Mater Interfaces 2020, 12 (16), 18482-18489. DOI: 10.1021/acsami.0c00420.(8) Shi, Y.; Chen, G.; Liu, F.; Yue, X.; Chen, Z. Resolving the Compositional and Structural Defects of Degraded LiNixCoyMnzO2 Particles to Directly Regenerate High-Performance Lithium-Ion Battery Cathodes. ACS Energy Letters 2018, 3 (7), 1683-1692. DOI: 10.1021/acsenergylett.8b00833.(9) Zhou, M.; Li, B.; Li, J.; Xu, Z. Pyrometallurgical Technology in the Recycling of a Spent Lithium Ion Battery: Evolution and the Challenge. ACS ES&T Engineering 2021, 1 (10), 1369-1382. DOI: 10.1021/acsestengg.1c00067.(10) Bai, Y.; Essehli, R.; Jafta, C. J.; Livingston, K. M.; Belharouak, I. Recovery of Cathode Materials and Aluminum Foil Using a Green Solvent. ACS Sustainable Chemistry & Engineering 2021, 9 (17), 6048-6055. DOI: 10.1021/acssuschemeng.1c01293.(11) Chen, X. P.; Luo, C. B.; Zhang, J. X.; Kong, J. R.; Zhou, T. Sustainable Recovery of Metals from Spent Lithium-Ion Batteries: A Green Process. Acs Sustainable Chemistry & Engineering 2015, 3 (12), 3104-3113. DOI: 10.1021/acssuschemeng.5b01000.(12) Chen, Y.; Wang, Y.; Bai, Y.; Duan, Y.; Zhang, B.; Liu, C.; Sun, X.; Feng, M.; Mu, T. Significant Improvement in Dissolving Lithium-Ion Battery Cathodes Using Novel Deep Eutectic Solvents at Low Temperature. ACS Sustainable Chemistry & Engineering 2021, 9 (38), 12940-12948. DOI: 10.1021/acssuschemeng.1c04220.(13) Guan, J.; Li, Y.; Guo, Y.; Su, R.; Gao, G.; Song, H.; Yuan, H.; Liang, B.; Guo, Z. Mechanochemical Process Enhanced Cobalt and Lithium Recycling from Wasted Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2016, 5 (1), 1026-1032. DOI: 10.1021/acssuschemeng.6b02337.(14) He, L.-P.; Sun, S.-Y.; Mu, Y.-Y.; Song, X.-F.; Yu, J.-G. Recovery of Lithium, Nickel, Cobalt, and Manganese from Spent Lithium-Ion Batteries Using l-Tartaric Acid as a Leachant. ACS Sustainable Chemistry & Engineering 2016, 5 (1), 714-721. DOI: 10.1021/acssuschemeng.6b02056.(15) Li, H.; Xing, S.; Liu, Y.; Li, F.; Guo, H.; Kuang, G. Recovery of Lithium, Iron, and Phosphorus from Spent LiFePO4 Batteries Using Stoichiometric Sulfuric Acid Leaching System. ACS Sustainable Chemistry & Engineering 2017, 5 (9), 8017-8024. DOI: 10.1021/acssuschemeng.7b01594.(16) Li, L.; Fan, E. S.; Guan, Y. B. A.; Zhang, X. X.; Xue, Q.; Wei, L.; Wu, F.; Chen, R. J. Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. Acs Sustainable Chemistry & Engineering 2017, 5 (6), 5224-5233. DOI: 10.1021/acssuschemeng.7b00571.(17) Liu, B.; Huang, Q.; Su, Y.; Sun, L.; Wu, T.; Wang, G.; Zhang, Q.; Wu, F. Synthesis of Ni-Rich Cathode Material from Maleic Acid-Leachate of Spent Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2020, 8 (21), 7839-7850. DOI: 10.1021/acssuschemeng.0c00610.(18) Liu, F.; Peng, C.; Porvali, A.; Wang, Z.; Wilson, B. P.; Lundström, M. Synergistic Recovery of Valuable Metals from Spent Nickel–Metal Hydride Batteries and Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2019, 7 (19), 16103-16111. DOI: 10.1021/acssuschemeng.9b02863.(19) Liu, Y.; Lv, W.; Zheng, X.; Ruan, D.; Yang, Y.; Cao, H.; Sun, Z. Near-to-Stoichiometric Acidic Recovery of Spent Lithium-Ion Batteries through Induced Crystallization. ACS Sustainable Chemistry & Engineering 2021, 9 (8), 3183-3194. DOI: 10.1021/acssuschemeng.0c08163.(20) Lu, Q.; Chen, L.; Li, X.; Chao, Y.; Sun, J.; Ji, H.; Zhu, W. Sustainable and Convenient Recovery of Valuable Metals from Spent Li-Ion Batteries by a One-Pot Extraction Process. ACS Sustainable Chemistry & Engineering 2021, 9 (41), 13851-13861. DOI: 10.1021/acssuschemeng.1c04717.(21) Roldán-Ruiz, M. J.; Ferrer, M. L.; Gutiérrez, M. C.; Monte, F. d. Highly Efficient p-Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Cathode Recycling of Li-Ion Batteries. ACS Sustainable Chemistry & Engineering 2020, 8 (14), 5437-5445. DOI: 10.1021/acssuschemeng.0c00892.(22) Wang, K.; Hu, T.; Shi, P.; Min, Y.; Wu, J.; Xu, Q. Efficient Recovery of Value Metals from Spent Lithium-Ion Batteries by Combining Deep Eutectic Solvents and Coextraction. ACS Sustainable Chemistry & Engineering 2021. DOI: 10.1021/acssuschemeng.1c06381.(23) Wang, M.; Tan, Q.; Liu, L.; Li, J. A Facile, Environmentally Friendly, and Low-Temperature Approach for Decomposition of Polyvinylidene Fluoride from the Cathode Electrode of Spent Lithium-ion Batteries. ACS Sustainable Chemistry & Engineering 2019, 7 (15), 12799-12806. DOI: 10.1021/acssuschemeng.9b01546.(24) Wang, M.; Tan, Q.; Liu, L.; Li, J. Efficient Separation of Aluminum Foil and Cathode Materials from Spent Lithium-Ion Batteries Using a Low-Temperature Molten Salt. ACS Sustainable Chemistry & Engineering 2019, 7 (9), 8287-8294. DOI: 10.1021/acssuschemeng.8b06694.(25) Wang, W. Q.; Zhang, Y. C.; Liu, X. G.; Xu, S. M. A Simplified Process for Recovery of Li and Co from Spent LiCoO2 Cathode Using Al Foil As the in Situ Reductant. Acs Sustainable Chemistry & Engineering 2019, 7 (14), 12222-12230. DOI: 10.1021/acssuschemeng.9b01564.(26) Yang, Y. X.; Zheng, X. H.; Cao, H. B.; Zhao, C. L.; Lin, X.; Ning, P. G.; Zhang, Y.; Jin, W.; Sun, Z. A Closed-Loop Process for Selective Metal Recovery from Spent Lithium Iron Phosphate Batteries through Mechanochemical Activation. Acs Sustainable Chemistry & Engineering 2017, 5 (11), 9972-9980. DOI: 10.1021/acssuschemeng.7b01914.(27) Yao, Y. L.; Zhu, M. Y.; Zhao, Z.; Tong, B. H.; Fan, Y. Q.; Hua, Z. S. Hydrometallurgical Processes for Recycling Spent Lithium-Ion Batteries: A Critical Review. Acs Sustainable Chemistry & Engineering 2018, 6 (11), 13611-13627. DOI: 10.1021/acssuschemeng.8b03545.(28) Zhang, G.; He, Y.; Feng, Y.; Wang, H.; Zhu, X. Pyrolysis-Ultrasonic-Assisted Flotation Technology for Recovering Graphite and LiCoO2from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2018, 6 (8), 10896-10904. DOI: 10.1021/acssuschemeng.8b02186.(29) Zhang, J.; Hu, J.; Liu, Y.; Jing, Q.; Yang, C.; Chen, Y.; Wang, C. Sustainable and Facile Method for the Selective Recovery of Lithium from Cathode Scrap of Spent LiFePO4 Batteries. ACS Sustainable Chemistry & Engineering 2019, 7 (6), 5626-5631. DOI: 10.1021/acssuschemeng.9b00404.(30) Zhang, X.; Bian, Y.; Xu, S.; Fan, E.; Xue, Q.; Guan, Y.; Wu, F.; Li, L.; Chen, R. Innovative Application of Acid Leaching to Regenerate Li(Ni1/3Co1/3Mn1/3)O2 Cathodes from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2018, 6 (5), 5959-5968. DOI: 10.1021/acssuschemeng.7b04373.(31) Zhang, X. X.; Xue, Q.; Li, L.; Fan, E.; Wu, F.; Chen, R. J. Sustainable Recycling and Regeneration of Cathode Scraps from Industrial Production of Lithium-Ion Batteries. Acs Sustainable Chemistry & Engineering 2016, 4 (12), 7041-7049. DOI: 10.1021/acssuschemeng.6b01948.(32) Zhang, Y.; Wang, W.; Hu, J.; Zhang, T.; Xu, S. Stepwise Recovery of Valuable Metals from Spent Lithium Ion Batteries by Controllable Reduction and Selective Leaching and Precipitation. ACS Sustainable Chemistry & Engineering 2020, 8 (41), 15496-15506. DOI: 10.1021/acssuschemeng.0c04106.(33) Zheng, H.; Dong, T.; Sha, Y.; Jiang, D.; Zhang, H.; Zhang, S. Selective Extraction of Lithium from Spent Lithium Batteries by Functional Ionic Liquid. ACS Sustainable Chemistry & Engineering 2021, 9 (20), 7022-7029. DOI: 10.1021/acssuschemeng.1c00718.(34) Zheng, Z.; Chen, M.; Wang, Q.; Zhang, Y.; Ma, X.; Shen, C.; Xu, D.; Liu, J.; Liu, Y.; Gionet, P.; et al. High Performance Cathode Recovery from Different Electric Vehicle Recycling Streams. ACS Sustainable Chemistry & Engineering 2018, 6 (11), 13977-13982. DOI: 10.1021/acssuschemeng.8b02405.(35) Zhou, F.; Qu, X.; Wu, Y.; Zhao, J.; Gao, S.; Wang, D.; Yin, H. Vacuum Pyrolysis of Pine Sawdust to Recover Spent Lithium Ion Batteries: The Synergistic Effect of Carbothermic Reduction and Pyrolysis Gas Reduction. ACS Sustainable Chemistry & Engineering 2022. DOI: 10.1021/acssuschemeng.1c07424.(36) de Biasi, L.; Schwarz, B.; Brezesinski, T.; Hartmann, P.; Janek, J.; Ehrenberg, H. Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries. Adv Mater 2019, 31 (26), e1900985. DOI: 10.1002/adma.201900985 From NLM PubMed-not-MEDLINE.(37) Kraytsberg, A.; Ein-Eli, Y. Conveying Advanced Li-ion Battery Materials into Practice The Impact of Electrode Slurry Preparation Skills. Advanced Energy Materials 2016, 6 (21), 1600655. DOI: 10.1002/aenm.201600655.(38) Piątek, J.; Afyon, S.; Budnyak, T. M.; Budnyk, S.; Sipponen, M. H.; Slabon, A. Sustainable Li‐Ion Batteries: Chemistry and Recycling. Advanced Energy Materials 2020. DOI: 10.1002/aenm.202003456.(39) Wang, T.; Luo, H. M.; Bai, Y. C.; Li, J. L.; Belharouak, I.; Dai, S. Direct Recycling of Spent NCM Cathodes through Ionothermal Lithiation. Advanced Energy Materials 2020, 10 (30), 2001204. DOI: ARTN 200120410.1002/aenm.202001204.(40) Kang, J.; Sohn, J.; Chang, H.; Senanayake, G.; Shin, S. M. Preparation of cobalt oxide from concentrated cathode material of spent lithium ion batteries by hydrometallurgical method. Advanced Powder Technology 2010, 21 (2), 175-179. DOI: 10.1016/j.apt.2009.10.015.(41) Chang, X.; Fan, M.; Gu, C. F.; He, W. H.; Meng, Q.; Wan, L. J.; Guo, Y. G. Selective Extraction of Transition Metals from Spent LiNix Coy Mn1-x-y O2 Cathode via Regulation of Coordination Environment. Angew Chem Int Ed Engl 2022, 61 (24), e202202558. DOI: 10.1002/anie.202202558 From NLM PubMed-not-MEDLINE.(42) Yin, X.; Chen, K.; Cheng, H.; Chen, X.; Feng, S.; Song, Y.; Liang, L. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants (Basel) 2022, 11 (1). DOI: 10.3390/antiox11010153 From NLM PubMed-not-MEDLINE.(43) Zhu, W. H.; Zhu, Y.; Davis, Z.; Tatarchuk, B. J. Energy efficiency and capacity retention of Ni–MH batteries for storage applications. Applied Energy 2013, 106, 307-313. DOI: 10.1016/j.apenergy.2012.12.025.(44) Chenakin, S.; Kruse, N. XPS characterization of transition metal oxalates. Applied Surface Science 2020, 515. DOI: 10.1016/j.apsusc.2020.146041.(45) Nayl, A. A.; Elkhashab, R. A.; Badawy, S. M.; El-Khateeb, M. A. Acid leaching of mixed spent Li-ion batteries. Arabian Journal of Chemistry 2017, 10, S3632-S3639. DOI: 10.1016/j.arabjc.2014.04.001.(46) Canals Casals, L.; Amante García, B. Second-Life Batteries on a Gas Turbine Power Plant to Provide Area Regulation Services. Batteries 2017, 3 (4). DOI: 10.3390/batteries3010010.(47) Chitre, A.; Freake, D.; Lander, L.; Edge, J.; Titirici, M. M. Towards a More Sustainable Lithium‐Ion Battery Future: Recycling LIBs from Electric Vehicles. Batteries & Supercaps 2020, 3 (11), 1126-1136. DOI: 10.1002/batt.202000146.(48) Xin, B.; Zhang, D.; Zhang, X.; Xia, Y.; Wu, F.; Chen, S.; Li, L. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour Technol 2009, 100 (24), 6163-6169. DOI: 10.1016/j.biortech.2009.06.086.(49) Gan, P. G.; Sam, S. T.; Abdullah, M. F.; Omar, M. F.; Tan, L. S. An alkaline deep eutectic solvent based on potassium carbonate and glycerol as pretreatment. BioResources 2020, 15 (1), 1154-1170. DOI: 10.15376/biores.15.1.1154-1170.(50) Or, T.; Gourley, S. W. D.; Kaliyappan, K.; Yu, A.; Chen, Z. Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook. Carbon Energy 2020, 2 (1), 6-43. DOI: 10.1002/cey2.29.(51) Yang, L.; Xi, G.; Xi, Y. Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials. Ceramics International 2015, 41 (9), 11498-11503. DOI: 10.1016/j.ceramint.2015.05.115.(52) Li, J.; Ma, Z.-F. Past and Present of LiFePO4: From Fundamental Research to Industrial Applications. Chem 2019, 5 (1), 3-6. DOI: 10.1016/j.chempr.2018.12.012.(53) Chen, H.; Ling, M.; Hencz, L.; Ling, H. Y.; Li, G.; Lin, Z.; Liu, G.; Zhang, S. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chem Rev 2018, 118 (18), 8936-8982. DOI: 10.1021/acs.chemrev.8b00241.(54) Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem Rev 2020, 120 (14), 7020-7063. DOI: 10.1021/acs.chemrev.9b00535.(55) Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2021, 121 (3), 1232-1285. DOI: 10.1021/acs.chemrev.0c00385.(56) Li, J.; Fleetwood, J.; Hawley, W. B.; Kays, W. From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing. Chem Rev 2022, 122 (1), 903-956. DOI: 10.1021/acs.chemrev.1c00565.(57) Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep eutectic solvents (DESs) and their applications. Chem Rev 2014, 114 (21), 11060-11082. DOI: 10.1021/cr300162p.(58) Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 2012, 41 (21), 7108-7146. DOI: 10.1039/c2cs35178a.(59) Zhang, X.; Li, L.; Fan, E.; Xue, Q.; Bian, Y.; Wu, F.; Chen, R. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem Soc Rev 2018, 47 (19), 7239-7302. DOI: 10.1039/c8cs00297e.(60) Chen, D. D.; Rao, S.; Wang, D. X.; Cao, H. Y.; Xie, W. M.; Liu, Z. Q. Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid- L-ascorbic acid system. Chemical Engineering Journal 2020, 388, 124321. DOI: 10.1016/j.cej.2020.124321.(61) Gupta, S.; Pant, K. K.; Corder, G. An environmentally benign closed-loop process for the selective recovery of valuable metals from industrial end-of-life lithium-ion batteries. Chemical Engineering Journal 2022, 446, 137397. DOI: 10.1016/j.cej.2022.137397.(62) Hua, Y.; Sun, Y.; Yan, F.; Wang, S.; Xu, Z.; Zhao, B.; Zhang, Z. Ionization potential-based design of deep eutectic solvent for recycling of spent lithium ion batteries. Chemical Engineering Journal 2022, 436, 133200. DOI: 10.1016/j.cej.2021.133200.(63) Jiang, Y.; Chen, X.; Yan, S.; Li, S.; Zhou, T. Pursuing green and efficient process towards recycling of different metals from spent lithium-ion batteries through Ferro-chemistry. Chemical Engineering Journal 2021, 426, 131637. DOI: 10.1016/j.cej.2021.131637.(64) Jin, H.; Zhang, J.; Yang, C.; Ma, L.; Chen, Y.; Wang, C. Selective recovery of lithium from spent LiFePO4 battery via a self-catalytic air oxidation method. Chemical Engineering Journal 2023, 460. DOI: 10.1016/j.cej.2023.141805.(65) Kumar, J.; Neiber, R. R.; Park, J.; Ali Soomro, R.; Greene, G. W.; Ali Mazari, S.; Young Seo, H.; Hong Lee, J.; Shon, M.; Wook Chang, D.; et al. Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: Strategies for highly selective lithium recovery. Chemical Engineering Journal 2022, 431, 133993. DOI: 10.1016/j.cej.2021.133993.(66) Meshram, P.; Pandey, B. D.; Mankhand, T. R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chemical Engineering Journal 2015, 281, 418-427. DOI: 10.1016/j.cej.2015.06.071.(67) Schiavi, P. G.; Altimari, P.; Branchi, M.; Zanoni, R.; Simonetti, G.; Navarra, M. A.; Pagnanelli, F. Selective recovery of cobalt from mixed lithium ion battery wastes using deep eutectic solvent. Chemical Engineering Journal 2021, 417, 129249. DOI: 10.1016/j.cej.2021.129249.(68) Xing, L.; Bao, J.; Zhou, S.; Qiu, Y.; Sun, H.; Gu, S.; Yu, J. Ultra-fast leaching of critical metals from spent lithium-ion batteries cathode materials achieved by the synergy-coordination mechanism. Chemical Engineering Journal 2021, 420, 129593. DOI: 10.1016/j.cej.2021.129593.(69) Yang, L.; Feng, Y.; Wang, C.; Fang, D.; Yi, G.; Gao, Z.; Shao, P.; Liu, C.; Luo, X.; Luo, S. Closed-loop regeneration of battery-grade FePO4 from lithium extraction slag of spent Li-ion batteries via phosphoric acid mixture selective leaching. Chemical Engineering Journal 2022, 431, 133232. DOI: 10.1016/j.cej.2021.133232.(70) Ballard, R. E. Photoelectron spectroscopy of liquids relationships between ionization energy and reduction potential. Chemical Physics Letters 1976, 42 (1), 97-98. DOI: 10.1016/0009-2614(76)80559-3.(71) Li, J.; Shi, P.; Wang, Z.; Chen, Y.; Chang, C. C. A combined recovery process of metals in spent lithium-ion batteries. Chemosphere 2009, 77 (8), 1132-1136. DOI: 10.1016/j.chemosphere.2009.08.040.(72) Meshram, P.; Mishra, A.; Abhilash; Sahu, R. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review. Chemosphere 2020, 242, 125291. DOI: 10.1016/j.chemosphere.2019.125291.(73) Stöffler, B.; Luft, G. Oxidative degradation of p-toluenesulfonic acid using hydrogen peroxide. Chemosphere 1999, 38 (5), 1035-1047. DOI: 10.1016/s0045-6535(98)00357-9.(74) Garole, D. J.; Hossain, R.; Garole, V. J.; Sahajwalla, V.; Nerkar, J.; Dubal, D. P. Recycle, Recover and Repurpose Strategy of Spent Li-ion Batteries and Catalysts: Current Status and Future Opportunities. ChemSusChem 2020, 13 (12), 3079-3100. DOI: 10.1002/cssc.201903213.(75) Wang, H.; Li, M.; Garg, S.; Wu, Y.; Nazmi Idros, M.; Hocking, R.; Duan, H.; Gao, S.; Yago, A. J.; Zhuang, L.; et al. Cobalt Electrochemical Recovery from Lithium Cobalt Oxides in Deep Eutectic Choline Chloride+Urea Solvents. ChemSusChem 2021. DOI: 10.1002/cssc.202100954.(76) Foreman, M. R. S.; Slawin, A. M. Z. Progress towards a process for the recycling of nickel metal hydride electric cells using a deep eutectic solvent. Cogent Chemistry 2016, 2 (1). DOI: 10.1080/23312009.2016.1139289.(77) Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Communications Materials 2020, 1 (1). DOI: 10.1038/s43246-020-00095-x.(78) Di Marino, D.; Shalaby, M.; Kriescher, S.; Wessling, M. Corrosion of metal electrodes in deep eutectic solvents. Electrochemistry Communications 2018, 90, 101-105. DOI: 10.1016/j.elecom.2018.04.011.(79) Tran, B.; Oladeji, I. O.; Wang, Z.; Calderon, J.; Chai, G.; Atherton, D.; Zhai, L. Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode. Electrochimica Acta 2013, 88, 536-542. DOI: 10.1016/j.electacta.2012.10.139.(80) Zhang, Z.; Zeng, T.; Qu, C.; Lu, H.; Jia, M.; Lai, Y.; Li, J. Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder. Electrochimica Acta 2012, 80, 440-444. DOI: 10.1016/j.electacta.2012.07.054.(81) Julien, C. M.; Mauger, A. NCA, NCM811, and the Route to Ni-Richer Lithium-Ion Batteries. Energies 2020, 13 (23). DOI: 10.3390/en13236363.(82) Shahjalal, M.; Roy, P. K.; Shams, T.; Fly, A.; Chowdhury, J. I.; Ahmed, M. R.; Liu, K. A review on second-life of Li-ion batteries: prospects, challenges, and issues. Energy 2022, 241. DOI: 10.1016/j.energy.2021.122881.(83) Du, K. D.; Ang, E. H.; Wu, X. L.; Liu, Y. C. Progresses in Sustainable Recycling Technology of Spent Lithium-Ion Batteries. Energy & Environmental Materials 2022, 0, 1-25. DOI: 10.1002/eem2.12271.(84) Mrozik, W.; Rajaeifar, M. A.; Heidrich, O.; Christensen, P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science 2021, 14 (12), 6099-6121. DOI: 10.1039/d1ee00691f.(85) García, G.; Aparicio, S.; Ullah, R.; Atilhan, M. Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy & Fuels 2015, 29 (4), 2616-2644. DOI: 10.1021/ef5028873.(86) Costa, C. M.; Barbosa, J. C.; Gonçalves, R.; Castro, H.; Campo, F. J. D.; Lanceros-Méndez, S. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Materials 2021, 37, 433-465. DOI: 10.1016/j.ensm.2021.02.032.(87) Gao, W.; Zhang, X.; Zheng, X.; Lin, X.; Cao, H.; Zhang, Y.; Sun, Z. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process. Environ Sci Technol 2017, 51 (3), 1662-1669. DOI: 10.1021/acs.est.6b03320.(88) Wang, M.; Tan, Q.; Li, J. Unveiling the Role and Mechanism of Mechanochemical Activation on Lithium Cobalt Oxide Powders from Spent Lithium-Ion Batteries. Environ Sci Technol 2018, 52 (22), 13136-13143. DOI: 10.1021/acs.est.8b03469.(89) Xiao, J.; Li, J.; Xu, Z. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives. Environ Sci Technol 2020, 54 (1), 9-25. DOI: 10.1021/acs.est.9b03725.(90) Shentu, H.; Xiang, B.; Cheng, Y.-J.; Dong, T.; Gao, J.; Xia, Y. A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery. Environmental Technology & Innovation 2021, 23. DOI: 10.1016/j.eti.2021.101569.(91) Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1. DOI: 10.1016/j.etran.2019.100005.(92) Yu, W.; Guo, Y.; Shang, Z.; Zhang, Y.; Xu, S. A review on comprehensive recycling of spent power lithium-ion battery in China. eTransportation 2022, 11, 100155. DOI: 10.1016/j.etran.2022.100155.(93) Chen, J. P.; Li, Q. W.; Song, J. S.; Song, D. W.; Zhang, L. Q.; Shi, X. X. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries. Green Chemistry 2016, 18 (8), 2500-2506. DOI: 10.1039/c5gc02650d.(94) Chen, L.; Chao, Y.; Li, X.; Zhou, G.; Lu, Q.; Hua, M.; Li, H.; Ni, X.; Wu, P.; Zhu, W. Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries. Green Chemistry 2021, 23 (5), 2177-2184. DOI: 10.1039/d0gc03820b.(95) Jin, H.; Zhang, J.; Wang, D.; Jing, Q.; Chen, Y.; Wang, C. Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation–water leaching at room temperature. Green Chemistry 2022, 24 (1), 152-162. DOI: 10.1039/d1gc03333f.(96) Pateli, I. M.; Abbott, A. P.; Jenkin, G. R. T.; Hartley, J. M. Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents. Green Chemistry 2020, 22 (23), 8360-8368. DOI: 10.1039/d0gc03491f.(97) Peeters, N.; Binnemans, K.; Riano, S. Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents. Green Chemistry 2020, 22 (13), 4210-4221. DOI: 10.1039/d0gc00940g.(98) Söldner, A.; Zach, J.; König, B. Deep eutectic solvents as extraction media for metal salts and oxides exemplarily shown for phosphates from incinerated sewage sludge ash. Green Chemistry 2019, 21 (2), 321-328. DOI: 10.1039/c8gc02702a.(99) Thompson, D. L.; Pateli, I. M.; Lei, C.; Jarvis, A.; Abbott, A. P.; Hartley, J. M. Separation of nickel from cobalt and manganese in lithium ion batteries using deep eutectic solvents. Green Chemistry 2022, 24 (12), 4877-4886. DOI: 10.1039/d2gc00606e.(100) Wang, S. B.; Zhang, Z. T.; Lu, Z. G.; Xu, Z. H. A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries. Green Chemistry 2020, 22 (14), 4473-4482. DOI: 10.1039/d0gc00701c.(101) Xiao, X.; Hoogendoorn, B. W.; Ma, Y.; Ashoka Sahadevan, S.; Gardner, J. M.; Forsberg, K.; Olsson, R. T. Ultrasound-assisted extraction of metals from Lithium-ion batteries using natural organic acids. Green Chemistry 2021, 23 (21), 8519-8532. DOI: 10.1039/d1gc02693c.(102) Yang, Y. X.; Meng, X. Q.; Cao, H. B.; Lin, X.; Liu, C. M.; Sun, Y.; Zhang, Y.; Sun, Z. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process. Green Chemistry 2018, 20 (13), 3121-3133. DOI: 10.1039/c7gc03376a.(103) Zhao, J.; Qu, J.; Qu, X.; Gao, S.; Wang, D.; Yin, H. Cathode electrolysis for the comprehensive recycling of spent lithium-ion batteries. Green Chemistry 2022, 24 (16), 6179-6188. DOI: 10.1039/d2gc02118h.(104) Zou, H. Y.; Gratz, E.; Apelian, D.; Wang, Y. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chemistry 2013, 15 (5), 1183-1191. DOI: 10.1039/c3gc40182k.(105) Chen, L.; Tang, X. C.; Zhang, Y.; Li, L. X.; Zeng, Z. W.; Zhang, Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 2011, 108 (1-2), 80-86. DOI: 10.1016/j.hydromet.2011.02.010.(106) Huang, T.; Liu, L.; Zhang, S. Recovery of cobalt, lithium, and manganese from the cathode active materials of spent lithium-ion batteries in a bio-electro-hydrometallurgical process. Hydrometallurgy 2019, 188, 101-111. DOI: 10.1016/j.hydromet.2019.06.011.(107) Jian, Y.; Zongliang, Z.; Gang, Z.; Liangxing, J.; Fangyang, L.; Ming, J.; Yanqing, L. Process study of chloride roasting and water leaching for the extraction of valuable metals from spent lithium-ion batteries. Hydrometallurgy 2021, 203. DOI: 10.1016/j.hydromet.2021.105638.(108) Kang, J.; Senanayake, G.; Sohn, J.; Shin, S. M. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 2010, 100 (3-4), 168-171. DOI: 10.1016/j.hydromet.2009.10.010.(109) Lee, C. K.; Rhee, K.-I. Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy 2003, 68 (1-3), 5-10. DOI: 10.1016/S0304-386X(02)00167-6.(110) Li, L.; Chen, R. J.; Sun, F.; Wu, F.; Liu, J. R. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy 2011, 108 (3-4), 220-225. DOI: 10.1016/j.hydromet.2011.04.013.(111) Nayaka, G. P.; Manjanna, J.; Pai, K. V.; Vadavi, R.; Keny, S. J.; Tripathi, V. S. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids. Hydrometallurgy 2015, 151, 73-77. DOI: 10.1016/j.hydromet.2014.11.006.(112) Pinna, E. G.; Ruiz, M. C.; Ojeda, M. W.; Rodriguez, M. H. Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy 2017, 167, 66-71. DOI: 10.1016/j.hydromet.2016.10.024.(113) Takacova, Z.; Havlik, T.; Kukurugya, F.; Orac, D. Cobalt and lithium recovery from active mass of spent Li-ion batteries: Theoretical and experimental approach. Hydrometallurgy 2016, 163, 9-17. DOI: 10.1016/j.hydromet.2016.03.007.(114) Wang, R.-C.; Lin, Y.-C.; Wu, S.-H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 2009, 99 (3-4), 194-201. DOI: 10.1016/j.hydromet.2009.08.005.(115) Yang, Y.; Huang, G. Y.; Xie, M.; Xu, S. M.; He, Y. H. Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps. Hydrometallurgy 2016, 165, 358-369. DOI: 10.1016/j.hydromet.2015.11.015.(116) Yang, Y.; Huang, G. Y.; Xu, S. M.; He, Y. H.; Liu, X. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 2016, 165, 390-396. DOI: 10.1016/j.hydromet.2015.09.025.(117) Zhang, P.; Yokoyama, T.; Itabashi, O.; Suzuki, T. M.; Inoue, K. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 1998, 47 (2-3), 259-271. DOI: 10.1016/S0304-386X(97)00050-9.(118) Hossain, E.; Murtaugh, D.; Mody, J.; Faruque, H. M. R.; Haque Sunny, M. S.; Mohammad, N. A Comprehensive Review on Second-Life Batteries: Current State, Manufacturing Considerations, Applications, Impacts, Barriers & Potential Solutions, Business Strategies, and Policies. IEEE Access 2019, 7, 73215-73252. DOI: 10.1109/access.2019.2917859.(119) Zhao, Y. M.; Yue, F. S.; Li, S. C.; Zhang, Y.; Tian, Z. R.; Xu, Q.; Xin, S.; Guo, Y. G. Advances of polymer binders for silicon‐based anodes in high energy density lithium‐ion batteries. InfoMat 2021, 3 (5), 460-501. DOI: 10.1002/inf2.12185.(120) Debnath, U. K.; Ahmad, I.; Habibi, D. Gridable vehicles and second life batteries for generation side asset management in the Smart Grid. International Journal of Electrical Power & Energy Systems 2016, 82, 114-123. DOI: 10.1016/j.ijepes.2016.03.006.(121) Nelsen, S. F. Ionization Potential, Oxidation Potential Comparisons for Compounds Containing Amino Nitrogen. Israel Journal of Chemistry 1979, 18 (1-2), 45-55. DOI: 10.1002/ijch.197900005.(122) Burke, K. Perspective on density functional theory. J Chem Phys 2012, 136 (15), 150901. DOI: 10.1063/1.4704546.(123) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010, 132 (15), 154104. DOI: 10.1063/1.3382344.(124) De Proft, F.; Van Alsenoy, C.; Peeters, A.; Langenaeker, W.; Geerlings, P. Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density. J Comput Chem 2002, 23 (12), 1198-1209. DOI: 10.1002/jcc.10067.(125) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011, 32 (7), 1456-1465. DOI: 10.1002/jcc.21759.(126) Liang, G.; DeYonker, N. J.; Zhao, X.; Webster, C. E. Prediction of the reduction potential in transition-metal containing complexes: How expensive? For what accuracy? J Comput Chem 2017, 38 (28), 2430-2438. DOI: 10.1002/jcc.24894.(127) Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 2012, 33 (5), 580-592. DOI: 10.1002/jcc.22885.(128) Patil, D.; Chikkamath, S.; Keny, S.; Tripathi, V.; Manjanna, J. Rapid dissolution and recovery of Li and Co from spent LiCoO2 using mild organic acids under microwave irradiation. J Environ Manage 2020, 256, 109935. DOI: 10.1016/j.jenvman.2019.109935.(129) Zhou, S.; Zhang, Y.; Meng, Q.; Dong, P.; Fei, Z.; Li, Q. Recycling of LiCoO2 cathode material from spent lithium ion batteries by ultrasonic enhanced leaching and one-step regeneration. J Environ Manage 2021, 277, 111426. DOI: 10.1016/j.jenvman.2020.111426.(130) Zhu, B.; Zhang, Y.; Zou, Y.; Yang, Z.; Zhang, B.; Zhao, Y.; Zhang, M.; Meng, Q.; Dong, P. Leaching kinetics and interface reaction of LiNi0.6Co0.2Mn0.2O2 materials from spent LIBs using GKB as reductant. J Environ Manage 2021, 300, 113710. DOI: 10.1016/j.jenvman.2021.113710 From NLM Medline.(131) Chen, X.; Ma, H.; Luo, C.; Zhou, T. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J Hazard Mater 2017, 326, 77-86. DOI: 10.1016/j.jhazmat.2016.12.021.(132) Choi, J. W.; Kim, J.; Kim, S. K.; Yun, Y. S. Simple, green organic acid-based hydrometallurgy for waste-to-energy storage devices: Recovery of NiMnCoC2O4 as an electrode material for pseudocapacitor from spent LiNiMnCoO2 batteries. J Hazard Mater 2021, 424 (Pt B), 127481. DOI: 10.1016/j.jhazmat.2021.127481.(133) Fan, X.; Tan, C.; Li, Y.; Chen, Z.; Li, Y.; Huang, Y.; Pan, Q.; Zheng, F.; Wang, H.; Li, Q. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. J Hazard Mater 2020, 124610. DOI: 10.1016/j.jhazmat.2020.124610.(134) He, K.; Zhang, Z. Y.; Zhang, F. S. A green process for phosphorus recovery from spent LiFePO4 batteries by transformation of delithiated LiFePO4 crystal into NaFeS2. J Hazard Mater 2020, 395, 122614. DOI: 10.1016/j.jhazmat.2020.122614 From NLM PubMed-not-MEDLINE.(135) Huang, H.; Liu, C.; Sun, Z. Transformation and migration mechanism of fluorine-containing pollutants in the pyrolysis process of spent lithium-ion battery. J Hazard Mater 2022, 435, 128974. DOI: 10.1016/j.jhazmat.2022.128974.(136) Li, J.; Wang, G.; Xu, Z. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. J Hazard Mater 2016, 302, 97-104. DOI: 10.1016/j.jhazmat.2015.09.050.(137) Li, L.; Ge, J.; Wu, F.; Chen, R.; Chen, S.; Wu, B. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J Hazard Mater 2010, 176 (1-3), 288-293. DOI: 10.1016/j.jhazmat.2009.11.026.(138) Nshizirungu, T.; Rana, M.; Jo, Y. T.; Park, J. H. Recycling of NCM cathode material from spent lithium-ion batteries via polyvinyl chloride and chlorinated polyvinyl chloride in subcritical water: A comparative study. J Hazard Mater 2021, 414, 125575. DOI: 10.1016/j.jhazmat.2021.125575.(139) Raj, T.; Chandrasekhar, K.; Kumar, A. N.; Sharma, P.; Pandey, A.; Jang, M.; Jeon, B. H.; Varjani, S.; Kim, S. H. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. J Hazard Mater 2022, 429, 128312. DOI: 10.1016/j.jhazmat.2022.128312.(140) Sun, L.; Qiu, K. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. J Hazard Mater 2011, 194, 378-384. DOI: 10.1016/j.jhazmat.2011.07.114.(141) Wang, M.; Tan, Q.; Liu, L.; Li, J. A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries. J Hazard Mater 2019, 380, 120846. DOI: 10.1016/j.jhazmat.2019.120846.(142) Xiao, J.; Gao, R.; Niu, B.; Xu, Z. Study of reaction characteristics and controlling mechanism of chlorinating conversion of cathode materials from spent lithium-ion batteries. J Hazard Mater 2021, 407, 124704. DOI: 10.1016/j.jhazmat.2020.124704.(143) Zeng, G.; Deng, X.; Luo, S.; Luo, X.; Zou, J. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J Hazard Mater 2012, 199-200, 164-169. DOI: 10.1016/j.jhazmat.2011.10.063.(144) Zeng, X.; Li, J. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries. J Hazard Mater 2014, 271, 50-56. DOI: 10.1016/j.jhazmat.2014.02.001.(145) Zeng, X.; Li, J.; Shen, B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J Hazard Mater 2015, 295, 112-118. DOI: 10.1016/j.jhazmat.2015.02.064.(146) Bezerra-Neto, J. R.; Bezerra, L. L.; Sousa, N. G.; Dos Santos, L. P. M.; Marinho, E. S.; Monteiro, N. K. V.; Correia, A. N.; de Lima-Neto, P. Molecular approach about the effect of water on the electrochemical behaviour of Ag(+) ions in urea-choline chloride-water mixture. J Mol Model 2020, 26 (12), 339. DOI: 10.1007/s00894-020-04587-y From NLM PubMed-not-MEDLINE.(147) Mendez-Hernandez, D. D.; Tarakeshwar, P.; Gust, D.; Moore, T. A.; Moore, A. L.; Mujica, V. Simple and accurate correlation of experimental redox potentials and DFT-calculated HOMO/LUMO energies of polycyclic aromatic hydrocarbons. J Mol Model 2013, 19 (7), 2845-2848. DOI: 10.1007/s00894-012-1694-7.(148) Meshram, P.; Abhilash; Pandey, B. D.; Mankhand, T. R.; Deveci, H. Comparision of Different Reductants in Leaching of Spent Lithium Ion Batteries. Jom 2016, 68 (10), 2613-2623. DOI: 10.1007/s11837-016-2032-9.(149) Xu, Z.; Shao, H.; Zhao, Q.; Liang, Z. Use of Microwave-Assisted Deep Eutectic Solvents to Recycle Lithium Manganese Oxide from Li-Ion Batteries. Jom 2021. DOI: 10.1007/s11837-021-04641-x.(150) Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3 (11), 2622-2646. DOI: 10.1016/j.joule.2019.09.014.(151) Xu, P.; Dai, Q.; Gao, H.; Liu, H.; Zhang, M.; Li, M.; Chen, Y.; An, K.; Meng, Y. S.; Liu, P.; et al. Efficient Direct Recycling of Lithium-Ion Battery Cathodes by Targeted Healing. Joule 2020, 4 (12), 2609-2626. DOI: 10.1016/j.joule.2020.10.008.(152) Yuan, J.-P.; Chen, F. Degradation of ascorbic acid in aqueous solution. Journal of Agricultural and Food Chemistry 1998, 46 (12), 5078-5082. DOI: 10.1021/jf9805404.(153) Fan, X.; Song, C.; Lu, X.; Shi, Y.; Yang, S.; Zheng, F.; Huang, Y.; Liu, K.; Wang, H.; Li, Q. Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2. Journal of Alloys and Compounds 2021, 863. DOI: 10.1016/j.jallcom.2021.158775.(154) Mao, Y.; Shen, X.; Wu, Z.; Zhu, L.; Liao, G. Preparation of Co3O4 hollow microspheres by recycling spent lithium-ion batteries and their application in electrochemical supercapacitors. Journal of Alloys and Compounds 2020, 816. DOI: 10.1016/j.jallcom.2019.152604.(155) Fouad, O. A.; Farghaly, F. I.; Bahgat, M. A novel approach for synthesis of nanocrystalline γ-LiAlO2 from spent lithium-ion batteries. Journal of Analytical and Applied Pyrolysis 2007, 78 (1), 65-69. DOI: 10.1016/j.jaap.2006.04.002.(156) Abbott, A. P.; Capper, G.; Davies, D. L.; McKenzie, K. J.; Obi, S. U. Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. Journal of Chemical and Engineering Data 2006, 51 (4), 1280-1282. DOI: 10.1021/je060038c.(157) Carriedo, G. A. The use of cyclic voltammetry in the study of the chemistry of metal-carbonyls: An introductory experiment. Journal of Chemical Education 1988, 65 (11). DOI: 10.1021/ed065p1020.(158) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education 2017, 95 (2), 197-206. DOI: 10.1021/acs.jchemed.7b00361.(159) Kissinger, P. T.; Heineman, W. R. Cyclic voltammetry. Journal of Chemical Education 1983, 60 (9). DOI: 10.1021/ed060p702.(160) Munir, H.; Srivastava, R. R.; Kim, H.; Ilyas, S.; Khosa, M. K.; Yameen, B. Leaching of exhausted LNCM cathode batteries in ascorbic acid lixiviant: a green recycling approach, reaction kinetics and process mechanism. Journal of Chemical Technology & Biotechnology 2020, 95 (8), 2286-2294. DOI: 10.1002/jctb.6418.(161) Ghaedi, H.; Ayoub, M.; Sufian, S.; Shariff, A. M.; Lal, B.; Wilfred, C. D. Density and refractive index measurements of transition-temperature mixture (deep eutectic analogues) based on potassium carbonate with dual hydrogen bond donors for CO2 capture. The Journal of Chemical Thermodynamics 2018, 118, 147-158. DOI: 10.1016/j.jct.2017.11.008.(162) Albler, F. J.; Bica, K.; Foreman, M. R. S.; Holgersson, S.; Tyumentsev, M. S. A comparison of two methods of recovering cobalt from a deep eutectic solvent: Implications for battery recycling. Journal of Cleaner Production 2017, 167, 806-814. DOI: 10.1016/j.jclepro.2017.08.135.(163) Bejigo, K. S.; Natarajan, S.; Bhunia, K.; Elumalai, V.; Kim, S.-J. Recycling of value-added products from spent lithium-ion batteries for oxygen reduction and methanol oxidation reactions. Journal of Cleaner Production 2023, 384. DOI: 10.1016/j.jclepro.2022.135520.(164) Fang, Z.; Duan, Q.; Peng, Q.; Wei, Z.; Cao, H.; Sun, J.; Wang, Q. Comparative study of chemical discharge strategy to pretreat spent lithium-ion batteries for safe, efficient, and environmentally friendly recycling. Journal of Cleaner Production 2022, 359. DOI: 10.1016/j.jclepro.2022.132116.(165) Gao, W.; Song, J.; Cao, H.; Lin, X.; Zhang, X.; Zheng, X.; Zhang, Y.; Sun, Z. Selective recovery of valuable metals from spent lithium-ion batteries – Process development and kinetics evaluation. Journal of Cleaner Production 2018, 178, 833-845. DOI: 10.1016/j.jclepro.2018.01.040.(166) Jin, S.; Mu, D.; Lu, Z.; Li, R.; Liu, Z.; Wang, Y.; Tian, S.; Dai, C. A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. Journal of Cleaner Production 2022, 340. DOI: 10.1016/j.jclepro.2022.130535.(167) Kim, S.; Bang, J.; Yoo, J.; Shin, Y.; Bae, J.; Jeong, J.; Kim, K.; Dong, P.; Kwon, K. A comprehensive review on the pretreatment process in lithium-ion battery recycling. Journal of Cleaner Production 2021, 294. DOI: 10.1016/j.jclepro.2021.126329.(168) Meng, Q.; Zhang, Y. J.; Dong, P. Use of electrochemical cathode-reduction method for leaching of cobalt from spent lithium-ion batteries. Journal of Cleaner Production 2018, 180, 64-70. DOI: 10.1016/j.jclepro.2018.01.101.(169) Qi, Y.; Meng, F.; Yi, X.; Shu, J.; Chen, M.; Sun, Z.; Sun, S.; Xiu, F.-R. A novel and efficient ammonia leaching method for recycling waste lithium ion batteries. Journal of Cleaner Production 2020, 251. DOI: 10.1016/j.jclepro.2019.119665.(170) Song, J.; Yan, W.; Cao, H.; Song, Q.; Ding, H.; Lv, Z.; Zhang, Y.; Sun, Z. Material flow analysis on critical raw materials of lithium-ion batteries in China. Journal of Cleaner Production 2019, 215, 570-581. DOI: 10.1016/j.jclepro.2019.01.081.(171) Tang, Y.; Qu, X.; Zhang, B.; Zhao, Y.; Xie, H.; Zhao, J.; Ning, Z.; Xing, P.; Yin, H. Recycling of spent lithium nickel cobalt manganese oxides via a low-temperature ammonium sulfation roasting approach. Journal of Cleaner Production 2021, 279. DOI: 10.1016/j.jclepro.2020.123633.(172) Wang, F. F.; Zhang, T.; He, Y. Q.; Zhao, Y. M.; Wang, S.; Zhang, G. W.; Zhang, Y.; Feng, Y. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment. Journal of Cleaner Production 2018, 185, 646-652. DOI: 10.1016/j.jclepro.2018.03.069.(173) Wang, W. Q.; Zhang, Y. C.; Zhang, L.; Xu, S. M. Cleaner recycling of cathode material by in-situ thermite reduction. Journal of Cleaner Production 2020, 249. DOI: ARTN 11934010.1016/j.jclepro.2019.119340.(174) Widijatmoko, S. D.; Fu, G.; Wang, Z.; Hall, P. Recovering lithium cobalt oxide, aluminium, and copper from spent lithium-ion battery via attrition scrubbing. Journal of Cleaner Production 2020, 260, 120869. DOI: 10.1016/j.jclepro.2020.120869.(175) Xin, Y.; Guo, X.; Chen, S.; Wang, J.; Wu, F.; Xin, B. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. Journal of Cleaner Production 2016, 116, 249-258. DOI: 10.1016/j.jclepro.2016.01.001.(176) Yao, L. P.; Zeng, Q.; Qi, T.; Li, J. An environmentally friendly discharge technology to pretreat spent lithium-ion batteries. Journal of Cleaner Production 2020, 245. DOI: 10.1016/j.jclepro.2019.118820.(177) Zhang, G.; He, Y.; Wang, H.; Feng, Y.; Xie, W.; Zhu, X. Application of mechanical crushing combined with pyrolysis-enhanced flotation technology to recover graphite and LiCoO2 from spent lithium-ion batteries. Journal of Cleaner Production 2019, 231, 1418-1427. DOI: 10.1016/j.jclepro.2019.04.279.(178) Zhong, X. H.; Liu, W.; Han, J. W.; Jiao, F.; Qin, W. Q.; Liu, T. Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects. Journal of Cleaner Production 2020, 263, 121439. DOI: ARTN 12143910.1016/j.jclepro.2020.121439.(179) Wang, Y.; An, N.; Wen, L.; Wang, L.; Jiang, X.; Hou, F.; Yin, Y.; Liang, J. Recent progress on the recycling technology of Li-ion batteries. Journal of Energy Chemistry 2021, 55, 391-419. DOI: 10.1016/j.jechem.2020.05.008.(180) Tong, S.; Fung, T.; Klein, M. P.; Weisbach, D. A.; Park, J. W. Demonstration of reusing electric vehicle battery for solar energy storage and demand side management. Journal of Energy Storage 2017, 11, 200-210. DOI: 10.1016/j.est.2017.03.003.(181) Nayaka, G. P.; Zhang, Y. J.; Dong, P.; Wang, D.; Zhou, Z. R.; Duan, J. G.; Li, X.; Lin, Y.; Meng, Q.; Pai, K. V.; et al. An environmental friendly attempt to recycle the spent Li-ion battery cathode through organic acid leaching. Journal of Environmental Chemical Engineering 2019, 7 (1). DOI: ARTN 10285410.1016/j.jece.2018.102854.(182) Song, D.; Wang, T.; Liu, Z.; Zhao, S.; Quan, J.; Li, G.; Zhu, H.; Huang, J.; He, W. Characteristic comparison of leaching valuable metals from spent power Li-ion batteries for vehicles using the inorganic and organic acid system. Journal of Environmental Chemical Engineering 2022, 10 (1). DOI: 10.1016/j.jece.2021.107102.(183) Meng, Q.; Zhang, Y. J.; Dong, P.; Liang, F. A novel process for leaching of metals from LiNi1/3Co1/3Mn1/3O2 material of spent lithium ion batteries: Process optimization and kinetics aspects. Journal of Industrial And Engineering Chemistry 2018, 61, 133-141. DOI: 10.1016/j.jiec.2017.12.010.(184) Zhang, Y.; Meng, Q.; Dong, P.; Duan, J.; Lin, Y. Use of grape seed as reductant for leaching of cobalt from spent lithium-ion batteries. Journal of Industrial and Engineering Chemistry 2018, 66, 86-93. DOI: 10.1016/j.jiec.2018.05.004.(185) Jiang, X.; Wei, Y.; Yu, X.; Dong, P.; Zhang, Y.; Zhang, Y.; Liu, J. CeVO4-coated LiNi0.6Co0.2Mn0.2O2 as positive material: towards the excellent electrochemical performance at normal and high temperature. Journal of Materials Science: Materials in Electronics 2018, 29 (18), 15869-15877. DOI: 10.1007/s10854-018-9673-0.(186) Wei, C.; Dai, F.; Lin, L.; An, Z.; He, Y.; Chen, X.; Chen, L.; Zhao, Y. Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation. Journal of Membrane Science 2018, 555, 220-228. DOI: 10.1016/j.memsci.2018.03.058.(187) Lousada, C. M.; Yang, M.; Nilsson, K.; Jonsson, M. Catalytic decomposition of hydrogen peroxide on transition metal and lanthanide oxides. Journal of Molecular Catalysis A: Chemical 2013, 379, 178-184. DOI: 10.1016/j.molcata.2013.08.017.(188) Toma, M.; Kuvek, T.; Vrček, V. Ionization Energy and Reduction Potential in Ferrocene Derivatives: Comparison of Hybrid and Pure DFT Functionals. The Journal of Physical Chemistry A 2020, 124 (39), 8029-8039. DOI: 10.1021/acs.jpca.0c06663.(189) Jing, Q.; Zhang, J.; Liu, Y.; Yang, C.; Ma, B.; Chen, Y.; Wang, C. E-pH Diagrams for the Li-Fe-P-H2O System from 298 to 473 K: Thermodynamic Analysis and Application to the Wet Chemical Processes of the LiFePO4 Cathode Material. The Journal of Physical Chemistry C 2019, 123 (23), 14207-14215. DOI: 10.1021/acs.jpcc.9b02074.(190) Bottino, A.; Capannelli, G.; Munari, S.; Turturro, A. Solubility parameters of poly(vinylidene fluoride. Journal of Polymer Science Part B-Polymer Physics 1988, 26 (4), 785-794. DOI: 10.1002/polb.1988.090260405.(191) Birkl, C. R.; Roberts, M. R.; McTurk, E.; Bruce, P. G.; Howey, D. A. Degradation diagnostics for lithium ion cells. Journal of Power Sources 2017, 341, 373-386. DOI: 10.1016/j.jpowsour.2016.12.011.(192) Contestabile, M.; Panero, S.; Scrosati, B. A laboratory-scale lithium-ion battery recycling process. Journal of Power Sources 2001, 92 (1-2), 65-69. DOI: 10.1016/S0378-7753(00)00523-1.(193) Freitas, M. B. J. G.; Celante, V. G.; Pietre, M. K. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. Journal of Power Sources 2010, 195 (10), 3309-3315. DOI: 10.1016/j.jpowsour.2009.11.131.(194) Garcia, E. M.; Santos, J. S.; Pereira, E. C.; Freitas, M. B. J. G. Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique. Journal of Power Sources 2008, 185 (1), 549-553. DOI: 10.1016/j.jpowsour.2008.07.011.(195) Georgi-Maschler, T.; Friedrich, B.; Weyhe, R.; Heegn, H.; Rutz, M. Development of a recycling process for Li-ion batteries. Journal of Power Sources 2012, 207, 173-182. DOI: 10.1016/j.jpowsour.2012.01.152.(196) Gratz, E.; Sa, Q. N.; Apelian, D.; Wang, Y. A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources 2014, 262, 255-262. DOI: 10.1016/j.jpowsour.2014.03.126.(197) Huang, Y. F.; Han, G. H.; Liu, J. T.; Chai, W. C.; Wang, W. J.; Yang, S. Z.; Su, S. P. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process. Journal of Power Sources 2016, 325, 555-564. DOI: 10.1016/j.jpowsour.2016.06.072.(198) Joulié, M.; Laucournet, R.; Billy, E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. Journal of Power Sources 2014, 247, 551-555. DOI: 10.1016/j.jpowsour.2013.08.128.(199) Kim, G. T.; Jeong, S. S.; Joost, M.; Rocca, E.; Winter, M.; Passerini, S.; Balducci, A. Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. Journal of Power Sources 2011, 196 (4), 2187-2194. DOI: 10.1016/j.jpowsour.2010.09.080.(200) Lee, C. K.; Rhee, K. I. Preparation of LiCoO2 from spent lithium-ion batteries. Journal of Power Sources 2002, 109 (1), 17-21. DOI: Pii S0378-7753(02)00037-XDoi 10.1016/S0378-7753(02)00037-X.(201) Li, L.; Bian, Y. F.; Zhang, X. X.; Xue, Q.; Fan, E. S.; Wu, F.; Chen, R. J. Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study. Journal of Power Sources 2018, 377, 70-79. DOI: 10.1016/j.jpowsour.2017.12.006.(202) Li, L.; Dunn, J. B.; Zhang, X. X.; Gaines, L.; Chen, R. J.; Wu, F.; Amine, K. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. Journal of Power Sources 2013, 233, 180-189. DOI: 10.1016/j.jpowsour.2012.12.089.(203) Li, L.; Lu, J.; Ren, Y.; Zhang, X. X.; Chen, R. J.; Wu, F.; Amine, K. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. Journal of Power Sources 2012, 218, 21-27. DOI: 10.1016/j.jpowsour.2012.06.068.(204) Li, L.; Qu, W. J.; Zhang, X. X.; Lu, J.; Chen, R. J.; Wu, F.; Amine, K. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources 2015, 282, 544-551. DOI: 10.1016/j.jpowsour.2015.02.073.(205) Song, D.; Wang, X.; Zhou, E.; Hou, P.; Guo, F.; Zhang, L. Recovery and heat treatment of the Li(Ni1/3Co1/3Mn1/3)O2 cathode scrap material for lithium ion battery. Journal of Power Sources 2013, 232, 348-352. DOI: 10.1016/j.jpowsour.2012.10.072.(206) Xu, Y.; Song, D.; Li, L.; An, C.; Wang, Y.; Jiao, L.; Yuan, H. A simple solvent method for the recovery of LixCoO2 and its applications in alkaline rechargeable batteries. Journal of Power Sources 2014, 252, 286-291. DOI: 10.1016/j.jpowsour.2013.11.052.(207) Zhang, T.; He, Y.; Ge, L.; Fu, R.; Zhang, X.; Huang, Y. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries. Journal of Power Sources 2013, 240, 766-771. DOI: 10.1016/j.jpowsour.2013.05.009.(208) Scrosati, B. History of lithium batteries. Journal of Solid State Electrochemistry 2011, 15 (7-8), 1623-1630. DOI: 10.1007/s10008-011-1386-8.(209) Xiao, S. W.; Ren, G. X.; Xie, M. Q.; Pan, B.; Fan, Y. Q.; Wang, F. G.; Xia, X. Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO-SiO2-Al2O3 Slag System. Journal of Sustainable Metallurgy 2017, 3 (4), 703-710. DOI: 10.1007/s40831-017-0131-7.(210) Bučko, M.; Roy, S.; Valverde-Armas, P.; Onjia, A.; Bastos, A. C.; Bajat, J. B. Voltammetric Response of Water in Deep Eutectic Solvent Based on Choline Chloride and Urea. Journal of The Electrochemical Society 2018, 165 (16), H1059-H1065. DOI: 10.1149/2.0921816jes.(211) Ling, J. K. U.; Chan, Y. S.; Nandong, J.; Chin, S. F.; Ho, B. K. Formulation of choline chloride/ascorbic acid natural deep eutectic solvent: Characterization, solubilization capacity and antioxidant property. Lwt 2020, 133. DOI: 10.1016/j.lwt.2020.110096.(212) Xu, B.; Qian, D.; Wang, Z.; Meng, Y. S. Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports 2012, 73 (5-6), 51-65. DOI: 10.1016/j.mser.2012.05.003.(213) Brückner, L.; Frank, J.; Elwert, T. Industrial Recycling of Lithium-Ion Batteries—A Critical Review of Metallurgical Process Routes. Metals 2020, 10 (8). DOI: 10.3390/met10081107.(214) Chen, W.-S.; Ho, H.-J. Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods. Metals 2018, 8 (5). DOI: 10.3390/met8050321.(215) Diaz, F.; Wang, Y.; Moorthy, T.; Friedrich, B. Degradation Mechanism of Nickel-Cobalt-Aluminum (NCA) Cathode Material from Spent Lithium-Ion Batteries in Microwave-Assisted Pyrolysis. Metals 2018, 8 (8). DOI: 10.3390/met8080565.(216) Asadi Dalini, E.; Karimi, G.; Zandevakili, S.; Goodarzi, M. A Review on Environmental, Economic and Hydrometallurgical Processes of Recycling Spent Lithium-ion Batteries. Mineral Processing and Extractive Metallurgy Review 2020, 42 (7), 451-472. DOI: 10.1080/08827508.2020.1781628.(217) Li, J.; Xiong, S.; Liu, Y.; Ju, Z.; Qian, Y. Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: Designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Energy 2013, 2 (6), 1249-1260. DOI: 10.1016/j.nanoen.2013.06.003.(218) Ji, G.; Wang, J.; Liang, Z.; Jia, K.; Ma, J.; Zhuang, Z.; Zhou, G.; Cheng, H. M. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat Commun 2023, 14 (1), 584. DOI: 10.1038/s41467-023-36197-6 From NLM PubMed-not-MEDLINE.(219) Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575 (7781), 75-86. DOI: 10.1038/s41586-019-1682-5.(220) Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367. DOI: 10.1038/35104644.(221) Tran, M. K.; Rodrigues, M. T. F.; Kato, K.; Babu, G.; Ajayan, P. M. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nature Energy 2019, 4 (4), 339-345. DOI: 10.1038/s41560-019-0368-4.(222) Ciez, R. E.; Whitacre, J. F. Examining different recycling processes for lithium-ion batteries. Nature Sustainability 2019, 2 (2), 148-156. DOI: 10.1038/s41893-019-0222-5.(223) Li, X. H.; Zhang, L.; Zhang, X. L.; Ni, B. L.; Li, C. Y.; Sun, W. M. Designing a new class of excess electron compounds with unique electronic structures and extremely large non-linear optical responses. New Journal of Chemistry 2020, 44 (16), 6411-6419. DOI: 10.1039/d0nj00896f.(224) Oh, H.-J.; Jo, C.-H.; Yoon, C. S.; Yashiro, H.; Kim, S.-J.; Passerini, S.; Sun, Y.-K.; Myung, S.-T. Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries. NPG Asia Materials 2016, 8 (5), e270-e270. DOI: 10.1038/am.2016.59.(225) Dandrade, B.; Datta, S.; Forrest, S.; Djurovich, P.; Polikarpov, E.; Thompson, M. Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Organic Electronics 2005, 6 (1), 11-20. DOI: 10.1016/j.orgel.2005.01.002.(226) Tsuneda, T.; Taketsugu, T. Theoretical investigations on hydrogen peroxide decomposition in aquo. Phys Chem Chem Phys 2018, 20 (38), 24992-24999. DOI: 10.1039/c8cp04299c From NLM PubMed-not-MEDLINE.(227) Zhang, J.; Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys Chem Chem Phys 2021, 23 (36), 20323-20328. DOI: 10.1039/d1cp02805g.(228) Wang, J.; Chen, M.; Chen, H.; Luo, T.; Xu, Z. Leaching Study of Spent Li-ion Batteries. Procedia Environmental Sciences 2012, 16, 443-450. DOI: 10.1016/j.proenv.2012.10.061.(229) Lisbona, D.; Snee, T. A review of hazards associated with primary lithium and lithium-ion batteries. Process Safety And Environmental Protection 2011, 89 (6), 434-442. DOI: 10.1016/j.psep.2011.06.022.(230) Hannan, M. A.; Hoque, M. M.; Mohamed, A.; Ayob, A. Review of energy storage systems for electric vehicle applications: Issues and challenges. Renewable & Sustainable Energy Reviews 2017, 69, 771-789. DOI: 10.1016/j.rser.2016.11.171.(231) Zubi, G.; Dufo-Lopez, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renewable & Sustainable Energy Reviews 2018, 89, 292-308. DOI: 10.1016/j.rser.2018.03.002.(232) Golmohammadzadeh, R.; Faraji, F.; Jong, B.; Pozo-Gonzalo, C.; Banerjee, P. C. Current challenges and future opportunities toward recycling of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews 2022, 159. DOI: 10.1016/j.rser.2022.112202.(233) Li, Y.; Song, J.; Yang, J. A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle. Renewable and Sustainable Energy Reviews 2014, 37, 627-633. DOI: 10.1016/j.rser.2014.05.059.(234) Liu, W.; Liu, H.; Liu, W.; Cui, Z. Life cycle assessment of power batteries used in electric bicycles in China. Renewable and Sustainable Energy Reviews 2021, 139. DOI: 10.1016/j.rser.2020.110596.(235) Wang, M.; Liu, K.; Dutta, S.; Alessi, D. S.; Rinklebe, J.; Ok, Y. S.; Tsang, D. C. W. Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects. Renewable and Sustainable Energy Reviews 2022, 163. DOI: 10.1016/j.rser.2022.112515.(236) Fu, Y.; Schuster, J.; Petranikova, M.; Ebin, B. Innovative recycling of organic binders from electric vehicle lithium-ion batteries by supercritical carbon dioxide extraction. Resources, Conservation and Recycling 2021, 172, 105666. DOI: 10.1016/j.resconrec.2021.105666.(237) Ji, Y.; Jafvert, C. T.; Zhao, F. Recovery of cathode materials from spent lithium-ion batteries using eutectic system of lithium compounds. Resources, Conservation and Recycling 2021, 170, 105551. DOI: 10.1016/j.resconrec.2021.105551.(238) Wang, W.; Wu, Y. An overview of recycling and treatment of spent LiFePO 4 batteries in China. Resources, Conservation and Recycling 2017, 127, 233-243. DOI: 10.1016/j.resconrec.2017.08.019.(239) Winslow, K. M.; Laux, S. J.; Townsend, T. G. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resources, Conservation and Recycling 2018, 129, 263-277. DOI: 10.1016/j.resconrec.2017.11.001.(240) Zheng, Y.; Song, W.; Mo, W. T.; Zhou, L.; Liu, J. W. Lithium fluoride recovery from cathode material of spent lithium-ion battery. RSC Adv 2018, 8 (16), 8990-8998. DOI: 10.1039/c8ra00061a From NLM PubMed-not-MEDLINE.(241) Hossain, U. H.; Muench, F.; Ensinger, W. A comparative study on degradation characteristics of fluoropolymers irradiated by high energy heavy ions. RSC Adv. 2014, 4 (91), 50171-50179. DOI: 10.1039/c4ra04635h.(242) Buken, O.; Mancini, K.; Sarkar, A. A sustainable approach to cathode delamination using a green solvent. RSC Advances 2021, 11 (44), 27356-27368. DOI: 10.1039/d1ra04922d.(243) Khan, Z.; Al-Thabaiti, S. A.; Malik, M. A. Biocompatible natural sugar-based surfactant assisted oxidation of citric acid by MnO4− in absence and presence of SDS. RSC Advances 2016, 6 (51), 45993-46001. DOI: 10.1039/c6ra04242b.(244) Song, X.; Hu, T.; Liang, C.; Long, H. L.; Zhou, L.; Song, W.; You, L.; Wu, Z. S.; Liu, J. W. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC Advances 2017, 7 (8), 4783-4790. DOI: 10.1039/c6ra27210j.(245) Yao, L.; Feng, Y.; Xi, G. X. A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries. Rsc Advances 2015, 5 (55), 44107-44114. DOI: 10.1039/c4ra16390g.(246) Yao, L.; Yao, H.; Xi, G.; Feng, Y. Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using d,l-malic acid. RSC Advances 2016, 6 (22), 17947-17954. DOI: 10.1039/c5ra25079j.(247) Zheng, R.; Zhao, L.; Wang, W.; Liu, Y.; Ma, Q.; Mu, D.; Li, R.; Dai, C. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method. RSC Advances 2016, 6 (49), 43613-43625. DOI: 10.1039/c6ra05477c.(248) Chen, Z.; Wang, J.; Chao, D.; Baikie, T.; Bai, L.; Chen, S.; Zhao, Y.; Sum, T. C.; Lin, J.; Shen, Z. Hierarchical Porous LiNi1/3Co1/3Mn1/3O2 Nano-/Micro Spherical Cathode Material: Minimized Cation Mixing and Improved Li(+) Mobility for Enhanced Electrochemical Performance. Sci Rep 2016, 6, 25771. DOI: 10.1038/srep25771.(249) He, Y.; Yuan, X.; Zhang, G.; Wang, H.; Zhang, T.; Xie, W.; Li, L. A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries. Sci Total Environ 2021, 766, 142382. DOI: 10.1016/j.scitotenv.2020.142382.(250) Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334 (6058), 928-935. DOI: 10.1126/science.1212741.(251) Palacin, M. R.; de Guibert, A. Why do batteries fail? Science 2016, 351 (6273), 1253292. DOI: 10.1126/science.1253292.(252) Chu, W.; Zhang, Y.; Chen, L.; Wu, K.; Huang, Y.; Jia, Y. Comprehensive recycling of Al foil and active materials from the spent lithium-ion battery. Separation and Purification Technology 2021, 269. DOI: 10.1016/j.seppur.2021.118704.(253) Sattar, R.; Ilyas, S.; Bhatti, H. N.; Ghaffar, A. Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries. Separation and Purification Technology 2019, 209, 725-733. DOI: 10.1016/j.seppur.2018.09.019.(254) Wang, Y.; Xu, Z.; Zhang, X.; Yang, E.; Tu, Y. A green process to recover valuable metals from the spent ternary lithium-ion batteries. Separation and Purification Technology 2022, 299. DOI: 10.1016/j.seppur.2022.121782.(255) Zhang, X. H.; Cao, H. B.; Xie, Y. B.; Ning, P. G.; An, H. J.; You, H. X.; Nawaz, F. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis. Separation And Purification Technology 2015, 150, 186-195. DOI: 10.1016/j.seppur.2015.07.003.(256) You, Y. H.; Gu, C. D.; Wang, X. L.; Tu, J. P. Electrodeposition of Ni–Co alloys from a deep eutectic solvent. Surface and Coatings Technology 2012, 206 (17), 3632-3638. DOI: 10.1016/j.surfcoat.2012.03.001.(257) Zhao, X.; Song, L.; Fu, J.; Tang, P.; Liu, F. Experimental and DFT investigation of surface degradation of polyvinylidene fluoride membrane in alkaline solution. Surface Science 2011, 605 (11-12), 1005-1015. DOI: 10.1016/j.susc.2011.02.022.(258) Zhang, G.; Du, Z.; He, Y.; Wang, H.; Xie, W.; Zhang, T. A Sustainable Process for the Recovery of Anode and Cathode Materials Derived from Spent Lithium-Ion Batteries. Sustainability 2019, 11 (8). DOI: 10.3390/su11082363.(259) Shaw-Stewart, J.; Alvarez-Reguera, A.; Greszta, A.; Marco, J.; Masood, M.; Sommerville, R.; Kendrick, E. Aqueous solution discharge of cylindrical lithium-ion cells. Sustainable Materials and Technologies 2019, 22. DOI: 10.1016/j.susmat.2019.e00110.(260) Widijatmoko, S. D.; Gu, F.; Wang, Z.; Hall, P. Selective liberation in dry milled spent lithium-ion batteries. Sustainable Materials and Technologies 2020, 23, e00134. DOI: 10.1016/j.susmat.2019.e00134.(261) Santana-Mayor, Á.; Rodríguez-Ramos, R.; Herrera-Herrera, A. V.; Socas-Rodríguez, B.; Rodríguez-Delgado, M. Á. Deep eutectic solvents. The new generation of green solvents in analytical chemistry. TrAC Trends in Analytical Chemistry 2021, 134, 116108. DOI: 10.1016/j.trac.2020.116108.(262) Liu, Y.-j.; Hu, Q.-y.; Li, X.-h.; Wang, Z.-x.; Guo, H.-j. Recycle and synthesis of LiCoO2 from incisors bound of Li-ion batteries. Transactions of Nonferrous Metals Society of China 2006, 16 (4), 956-959. DOI: 10.1016/s1003-6326(06)60359-2.(263) Ren, G.-x.; Xiao, S.-w.; Xie, M.-q.; Pan, B.; Chen, J.; Wang, F.-g.; Xia, X. Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO–SiO 2 –Al 2 O 3 slag system. Transactions of Nonferrous Metals Society of China 2017, 27 (2), 450-456. DOI: 10.1016/s1003-6326(17)60051-7.(264) Zhu, S. G.; He, W. Z.; Li, G. M.; Zhou, X.; Zhang, X. J.; Huang, J. W. Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation. Transactions of Nonferrous Metals Society of China 2012, 22 (9), 2274-2281. DOI: 10.1016/S1003-6326(11)61460-X.(265) Bertuol, D. A.; Machado, C. M.; Silva, M. L.; Calgaro, C. O.; Dotto, G. L.; Tanabe, E. H. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction. Waste Manag 2016, 51, 245-251. DOI: 10.1016/j.wasman.2016.03.009 From NLM Medline.(266) Chen, X.; Cao, L.; Kang, D.; Li, J.; Zhou, T.; Ma, H. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium. Waste Manag 2018, 80, 198-210. DOI: 10.1016/j.wasman.2018.09.013 From NLM Medline.(267) Chen, X.; Guo, C.; Ma, H.; Li, J.; Zhou, T.; Cao, L.; Kang, D. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries. Waste Manag 2018, 75, 459-468. DOI: 10.1016/j.wasman.2018.01.021.(268) Chen, X.; Li, S.; Wang, Y.; Jiang, Y.; Tan, X.; Han, W.; Wang, S. Recycling of LiFePO4 cathode materials from spent lithium-ion batteries through ultrasound-assisted Fenton reaction and lithium compensation. Waste Manag 2021, 136, 67-75. DOI: 10.1016/j.wasman.2021.09.026.(269) Golmohammadzadeh, R.; Rashchi, F.; Vahidi, E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects. Waste Manag 2017, 64, 244-254. DOI: 10.1016/j.wasman.2017.03.037.(270) He, L. P.; Sun, S. Y.; Song, X. F.; Yu, J. G. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Manag 2015, 46, 523-528. DOI: 10.1016/j.wasman.2015.08.035.(271) He, L. P.; Sun, S. Y.; Song, X. F.; Yu, J. G. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries. Waste Manag 2017, 64, 171-181. DOI: 10.1016/j.wasman.2017.02.011.(272) Jha, M. K.; Kumari, A.; Jha, A. K.; Kumar, V.; Hait, J.; Pandey, B. D. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manag 2013, 33 (9), 1890-1897. DOI: 10.1016/j.wasman.2013.05.008.(273) Kumar, J.; Shen, X.; Li, B.; Liu, H.; Zhao, J. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Manag 2020, 113, 32-40. DOI: 10.1016/j.wasman.2020.05.046.(274) Li, L.; Bian, Y.; Zhang, X.; Guan, Y.; Fan, E.; Wu, F.; Chen, R. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Manag 2018, 71, 362-371. DOI: 10.1016/j.wasman.2017.10.028.(275) Li, L.; Bian, Y.; Zhang, X.; Yao, Y.; Xue, Q.; Fan, E.; Wu, F.; Chen, R. A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Manag 2019, 85, 437-444. DOI: 10.1016/j.wasman.2019.01.012.(276) Li, L.; Ge, J.; Chen, R.; Wu, F.; Chen, S.; Zhang, X. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag 2010, 30 (12), 2615-2621. DOI: 10.1016/j.wasman.2010.08.008.(277) Lv, W.; Wang, Z.; Cao, H.; Zheng, X.; Jin, W.; Zhang, Y.; Sun, Z. A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride. Waste Manag 2018, 79, 545-553. DOI: 10.1016/j.wasman.2018.08.027.(278) Meng, Q.; Zhang, Y.; Dong, P. Use of glucose as reductant to recover Co from spent lithium ions batteries. Waste Manag 2017, 64, 214-218. DOI: 10.1016/j.wasman.2017.03.017.(279) Meshram, P.; Pandey, B. D.; Mankhand, T. R. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects. Waste Manag 2015, 45, 306-313. DOI: 10.1016/j.wasman.2015.05.027.(280) Mishra, D.; Kim, D. J.; Ralph, D. E.; Ahn, J. G.; Rhee, Y. H. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag 2008, 28 (2), 333-338. DOI: 10.1016/j.wasman.2007.01.010.(281) Nayaka, G. P.; Zhang, Y.; Dong, P.; Wang, D.; Pai, K. V.; Manjanna, J.; Santhosh, G.; Duan, J.; Zhou, Z.; Xiao, J. Effective and environmentally friendly recycling process designed for LiCoO2 cathode powders of spent Li-ion batteries using mixture of mild organic acids. Waste Manag 2018, 78, 51-57. DOI: 10.1016/j.wasman.2018.05.030 From NLM PubMed-not-MEDLINE.(282) Prabaharan, G.; Barik, S. P.; Kumar, N.; Kumar, L. Electrochemical process for electrode material of spent lithium ion batteries. Waste Manag 2017, 68, 527-533. DOI: 10.1016/j.wasman.2017.07.007.(283) Sun, L.; Qiu, K. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag 2012, 32 (8), 1575-1582. DOI: 10.1016/j.wasman.2012.03.027.(284) Tang, Y.; Xie, H.; Zhang, B.; Chen, X.; Zhao, Z.; Qu, J.; Xing, P.; Yin, H. Recovery and regeneration of LiCoO2-based spent lithium-ion batteries by a carbothermic reduction vacuum pyrolysis approach: Controlling the recovery of CoO or Co. Waste Manag 2019, 97, 140-148. DOI: 10.1016/j.wasman.2019.08.004.(285) Vieceli, N.; Nogueira, C. A.; Guimaraes, C.; Pereira, M. F. C.; Durao, F. O.; Margarido, F. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite. Waste Manag 2018, 71, 350-361. DOI: 10.1016/j.wasman.2017.09.032 From NLM Medline.(286) Wang, C.; Wang, S.; Yan, F.; Zhang, Z.; Shen, X.; Zhang, Z. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manag 2020, 114, 253-262. DOI: 10.1016/j.wasman.2020.07.008.(287) Wang, S.; Wang, C.; Lai, F.; Yan, F.; Zhang, Z. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts. Waste Manag 2020, 102, 122-130. DOI: 10.1016/j.wasman.2019.10.017.(288) Wu, C.; Li, B.; Yuan, C.; Ni, S.; Li, L. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching. Waste Manag 2019, 93, 153-161. DOI: 10.1016/j.wasman.2019.04.039.(289) Zhang, T.; He, Y.; Wang, F.; Ge, L.; Zhu, X.; Li, H. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques. Waste Manag 2014, 34 (6), 1051-1058. DOI: 10.1016/j.wasman.2014.01.002.(290) Zhang, Y.; Wang, W.; Fang, Q.; Xu, S. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching. Waste Manag 2020, 102, 847-855. DOI: 10.1016/j.wasman.2019.11.045.(291) Zheng, X.; Gao, W.; Zhang, X.; He, M.; Lin, X.; Cao, H.; Zhang, Y.; Sun, Z. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Manag 2017, 60, 680-688. DOI: 10.1016/j.wasman.2016.12.007.(292) Zhou, X.; Yang, W.; Liu, X.; Tang, J.; Su, F.; Li, Z.; Yang, J.; Ma, Y. One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system. Waste Manag 2022, 155, 53-64. DOI: 10.1016/j.wasman.2022.10.034.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543837
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
Hua YH. Development of sustainable processes for recycling spent lithium-ion batteries[D]. 昆士兰. 昆士兰大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11863001-华韫辉-环境科学与工程(17279KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[华韫辉]的文章
百度学术
百度学术中相似的文章
[华韫辉]的文章
必应学术
必应学术中相似的文章
[华韫辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。