中文版 | English
题名

格子Boltzmann 方法中反弹格式隐藏误差的 理论分析及数值模拟研究

其他题名
THEORETICAL ANALYSIS AND NUMERICAL INVESTIGATION OF THE HIDDEN ERRORS WITHIN BOUNCE BACK SCHEMES IN THE LATTICE BOLTZMANN METHOD
姓名
姓名拼音
DONG Zhiqiang
学号
11849518
学位类型
博士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
王连平
导师单位
力学与航空航天工程系
论文答辩日期
2023-04-19
论文提交日期
2023-06-25
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

过去三十多年,格子Boltzmann方法(LBM)已经发展成为计算流体力学领域中一种高效且实用的介观数值模拟方法。由于LBM具有边界条件容易实施、并行性较好、数值耗散相对较低和易于编程等优势,已经被成功应用到微流动、壁湍流、多相流动和多孔介质流动等涉及流固边界复杂流动问题的数值模拟中。反弹格式是目前LBM方法中最常用的边界条件处理方法,其通过重构边界点上的未知分布函数来实现宏观固体壁面上的无滑移边界条件。众所周知,应用于内部流体点上的格子Boltzmann方程,通过一阶Chapman-Enskog展开,可以恢复宏观Navier-Stokes方程。但是,在边界点上由反弹格式所重构的未知分布函数可能与Chapman-Enskog展开结构不完全一致,这一问题及其可能带来的各种负面效应并没有被广泛认知和深入研究。

因此,本文引入“隐藏误差”这一概念,来描述由反弹格式实施所引入的、与格子Boltzmann方程Chapman-Enskog展开不一致的误差。为了能定量描述这些隐藏误差,首先需要深入理解LBM方法中的介观分布函数与宏观Navier-Stokes方程的物理变量之间的本质关联。本文通过一种更直接的Chapman-Enskog展开方法,将介观分布函数表达成碰撞模型的松弛参数、宏观物理变量及其对应空间导数的函数,揭示了分布函数的内在结构。基于这种多尺度展开分析,推导了BGKTRTMRT三种不同碰撞模型下对应的介观分布函数内在结构。

本文具体研究了两种常用反弹格式:离壁反弹格式和壁面反弹格式。通过将由反弹格式重构的未知分布函数与理论推导的介观分布函数结构进行对比,从而建立了一个能够识别并描述隐藏误差的理论分析方法。基于隐藏误差只出现在边界节点,导致方法误差在流域内不连续,本文提出误差分析需要考虑二阶Chapman-Enskog展开的一致性,并由此定义隐藏误差,极大的改善了类似分析的完整性和解释LBM各种内在问题的能力。为了进一步验证该理论分析方法的适用性和可靠性,对BGKTRTMRT三种不同碰撞模型下反弹格式所引入的隐藏误差进行了深度分析,并得到了对应的隐藏误差具体表达式。进一步地,从理论上预测了在均匀泊肃叶流动和非均匀流动中隐藏误差所导致的非物理滑移速度。从理论分析结果可以看出,碰撞模型中的松弛参数对隐藏误差的大小起着决定性作用,通过优化松弛参数的设置,可以有效地抑制或消除隐藏误差导致的负面效应。这一优化的碰撞参数设置虽然是在单向泊肃叶流动问题中推导出来的,但是在一定的物理限定条件下,本文证明它也可以被推广应用到非均匀流动中;推广得到新的理论结果显示局部滑移速度依赖壁面处切向速度的法向二阶导数,网格分辨率和流动雷诺数。

针对隐藏误差对粘性流动数值模拟的影响,本文对一系列经典二维粘性流动问题进行了数值模拟。在泊肃叶流动的数值模拟中,通过数值模拟得到的滑移速度与理论预测结果完全吻合。在顶盖驱动方腔流动的数值模拟中,隐藏误差导致了压力场和涡量场的非物理振荡,这些非物理振荡的幅值和波及范围与碰撞模型中的碰撞参数设置密切相关。在方柱绕流的数值模拟中,隐藏误差导致了方柱后尾流区内尾涡脱落的物理频率模态无法准确捕捉。根据上述这些数值模拟结果可以发现,BGK模型只能通过细化网格来减小隐藏误差的影响,而TRT模型则可以通过设置自由碰撞参数来消除隐藏误差。

最后,通过比较两种反弹格式下得到的宏观统计量、Navier-Stokes方程的局部平衡检测和数值稳定性,讨论了隐藏误差对三维槽道湍流LBM数值模拟结果的影响。数值模拟结果证实了隐藏误差可以导致Navier-Stokes方程在边界节点上无法完全满足,这一问题严重影响壁湍流数值模拟的精度和数值稳定性,尤其在粗网格上使用离壁反弹格式时最为明显。在相同数值模拟条件下,采用壁面反弹格式能够获得一组相对稳定且符合物理的数值结果,这是因为壁面反弹格式所引入的隐藏误差相对较小。

综上所述,本文针对反弹格式所引入的隐藏误差问题及其多种负面效应,开展了全新的理论分析和巧妙的数值模拟研究,系统性的解释了LBM各类内在问题如非物理滑移速度、网格尺度上的压力场和涡量场噪声、Navier-Stokes方程局部不成立和整体数值精度及稳定性下降。本项工作清晰展示了隐藏误差的正确定义方法,提出降低和消除隐藏误差的理论路径,为LBM方法准确模拟复杂流动提供重要的理论分析方法,同时也为LBM方法中曾经遇到的一系列令人困惑的问题找到了根本原因。本文提出了将LBM方法中两个组成部分––格子Boltzmann方程和反弹格式––整合分析的理论思路,为今后进一步完善LBM方法提供指引。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-06
参考文献列表

[1] Dong H, Zhang Q S. Time analyticity for the heat equation and Navier-Stokes equations [J]. Journal of Functional Analysis, 2020, 279(4): 108563.
[2] Han G, Liu X, Huang J, et al. Modified Boltzmann equation and extended Navier–Stokes equations [J]. Physics of Fluids, 2020, 32(2): 022001.
[3] Dutta S, Panigrahi P, Muralidhar K. Experimental investigation of flow past a square cylinder at an angle of incidence [J]. Journal of engineering mechanics, 2008, 134(9): 788-803.
[4] Kumar Chauhan M, Dutta S, Kumar Gandhi B, et al. Experimental investigation of flow over a transversely oscillating square cylinder at intermediate Reynolds number [J]. Journal of Fluids Engineering, 2016, 138(5): 051105.
[5] Gautam P, Eldho T, Mazumder B, et al. Experimental study of flow and turbulence characteristics around simple and complex piers using PIV [J]. Experimental Thermal and Fluid Science, 2019, 100: 193-206.
[6] Jiang X, Lee C, Smith C, et al. Experimental study on low-speed streaks in a turbulent boundary layer at low Reynolds number [J]. Journal of Fluid Mechanics, 2020, 903: A6.
[7] Sharma A. Introduction to computational fluid dynamics: development, application and analysis [M]. Springer Nature, 2021: 19-33.
[8] 吴子牛. 计算流体力学基本原理 [M]. 科学出版社, 2001: 218-270.
[9] 姚朝晖, 周强. 计算流体力学入门 [M]. 清华大学出版社, 2010: 17-112.
[10] Mattiussi C. An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology [J]. Journal of Computational Physics, 1997, 133(2): 289-309.
[11] Zhang Y. A finite difference method for fractional partial differential equation [J]. Applied Mathematics and Computation, 2009, 215(2): 524-529.
[12] Morinishi Y, Lund T S, Vasilyev O V, et al. Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow [J]. Journal of Computational Physics, 1998, 143(1): 90-124.
[13] Morinishi Y, Vasilyev O V, Ogi T. Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations [J]. Journal of Computational Physics, 2004, 197(2): 686-710.
[14] Jasak H, Uroić T. Practical computational fluid dynamics with the finite volume method [M]. Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids. Springer. 2020: 103-161.
[15] Cui Y, Wang N, Liu H. Numerical study of droplet dynamics in a steady electric field using a hybrid lattice Boltzmann and finite volume method [J]. Physics of Fluids, 2019, 31(2): 022105.
[16] Jofre L, Lehmkuhl O, Ventosa J, et al. Conservation Properties of Unstructured Finite-Volume Mesh Schemes for the Navier-Stokes Equations [J]. Numerical Heat Transfer, Part B: Fundamentals, 2014, 65(1): 53-79.
[17] Lehmkuhl O, Houzeaux G, Owen H, et al. A low-dissipation finite element scheme for scale resolving simulations of turbulent flows [J]. Journal of Computational Physics, 2019, 390: 51-65.
[18] Bernardi C, Maday Y. Spectral methods [M]. Handbook of Numerical Analysis. Elsevier. 1997: 209-485.
[19] Hussaini M Y, Zang T A. Spectral methods in fluid dynamics [J]. Annual review of fluid mechanics, 1987, 19(1): 339-367.
[20] Alipour P, Toghraie D, Karimipour A, et al. Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: Study the equilibrium [J]. Physica A: Statistical Mechanics and its Applications, 2019, 515: 13-30.
[21] Alexander F J, Garcia A L. The direct simulation Monte Carlo method [J]. Computers in Physics, 1997, 11(6): 588-593.
[22] Myong R, Karchani A, Ejtehadi O. A review and perspective on a convergence analysis of the direct simulation Monte Carlo and solution verification [J]. Physics of Fluids, 2019, 31(6): 066101.
[23] Rothman D H, Keller J M. Immiscible cellular-automaton fluids [J]. Journal of Statistical Physics, 1988, 52(3): 1119-1127.
[24] Rothman D H. Cellular-automaton fluids: A model for flow in porous media [J]. Geophysics, 1988, 53(4): 509-518.
[25] Chen S, Doolen G D. Lattice Boltzmann method for fluid flows [J]. Annual review of fluid mechanics, 1998, 30(1): 329-364.
[26] He Y-L, Liu Q, Li Q, et al. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review [J]. International Journal of Heat and Mass Transfer, 2019, 129: 160-197.
[27] 何雅玲, 王勇, 李庆. 格子 Boltzmann 方法的理论及应用 [M]. 科学出版社, 2009: 31-55.
[28] Xu K. A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method [J]. Journal of Computational Physics, 2001, 171(1): 289-335.
[29] Xu K, Prendergast K H. Numerical Navier-Stokes solutions from gas kinetic theory [J]. Journal of Computational Physics, 1994, 114(1): 9-17.
[30] Guo Z, Xu K, Wang R. Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case [J]. Physical Review E, 2013, 88(3): 033305.
[31] Guo Z, Wang R, Xu K. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case [J]. Physical Review E, 2015, 91(3): 033313.
[32] Hardy J, Pomeau Y, De Pazzis O. Time evolution of a two‐dimensional model system. I. Invariant states and time correlation functions [J]. Journal of Mathematical Physics, 1973, 14(12): 1746-1759.
[33] Hardy J, De Pazzis O, Pomeau Y. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions [J]. Physical review A, 1976, 13(5): 1949.
[34] Frisch U, Hasslacher B, Pomeau Y. Lattice-Gas Automata for the Navier-Stokes Equation [J]. Physical Review Letters, 1986, 56(14): 1505-1508.
[35] D'humieres D, Lallemand P, Frisch U. Lattice gas models for 3D hydrodynamics [J]. EPL (Europhysics Letters), 1986, 2(4): 291.
[36] Menamara G, Zanetti G. Use of the Boltzmann equation to simulate lattice automata [J]. Physical Review Letters, 1988, 61(20): 2332-2335.
[37] Higuera F J, Jiménez J. Boltzmann approach to lattice gas simulations [J]. EPL (Europhysics Letters), 1989, 9(7): 663.
[38] Higuera F, Succi S, Benzi R. Lattice gas dynamics with enhanced collisions [J]. Europhysics letters, 1989, 9(4): 345.
[39] Chen S, Chen H, Martnez D, et al. Lattice Boltzmann model for simulation of magnetohydrodynamics [J]. Physical Review Letters, 1991, 67(27): 3776.
[40] Qian Y-H, D'humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation [J]. EPL (Europhysics Letters), 1992, 17(6): 479.
[41] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems [J]. Physical review, 1954, 94(3): 511.
[42] Fattahi E, Waluga C, Wohlmuth B, et al. Lattice Boltzmann methods in porous media simulations: From laminar to turbulent flow [J]. Computers & Fluids, 2016, 140: 247-259.
[43] Guo Z, Zhao T. Lattice Boltzmann model for incompressible flows through porous media [J]. Physical review E, 2002, 66(3): 036304.
[44] Chai Z, Huang C, Shi B, et al. A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media [J]. International Journal of Heat and Mass Transfer, 2016, 98: 687-696.
[45] Wu C-M, Zhou Y-S, Lin C-A. Direct numerical simulations of turbulent channel flows with mesh-refinement lattice Boltzmann methods on GPU cluster [J]. Computers & Fluids, 2020, 210: 104647.
[46] Jahanshaloo L, Pouryazdanpanah E, Che Sidik N A. A review on the application of the lattice Boltzmann method for turbulent flow simulation [J]. Numerical Heat Transfer, Part A: Applications, 2013, 64(11): 938-953.
[47] Yu H, Girimaji S S, Luo L-S. Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence [J]. Physical Review E, 2005, 71(1): 016708.
[48] Wang L-P, Peng C, Guo Z, et al. Lattice Boltzmann simulation of particle-laden turbulent channel flow [J]. Computers & Fluids, 2016, 124: 226-236.
[49] Jebakumar A S, Premnath K N, Magi V, et al. Fully-resolved direct numerical simulations of particle motion in a turbulent channel flow with the lattice-Boltzmann method [J]. Computers & Fluids, 2019, 179: 238-247.
[50] Peng C, Wang L-P. Direct numerical simulations of turbulent pipe flow laden with finite-size neutrally buoyant particles at low flow Reynolds number [J]. Acta Mechanica, 2019, 230(2): 517-539.
[51] Peng C, Ayala O M, Wang L-P. A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow [J]. Journal of Fluid Mechanics, 2019, 875: 1096-1144.
[52] Li X, Niu X-D, Li Y, et al. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation [J]. Physics of Fluids, 2018, 30(4): 040905.
[53] Chen M, Niu X, Yu P, et al. Numerical investigation of magnetic-field induced self-assembly of nonmagnetic particles in magnetic fluids [J]. Journal of Fluids and Structures, 2020, 97: 103008.
[54] Mccracken M E, Abraham J. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow [J]. Physical Review E, 2005, 71(3): 036701.
[55] Inamuro T, Ogata T, Tajima S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences [J]. Journal of Computational physics, 2004, 198(2): 628-644.
[56] Liang H, Shi B, Guo Z, et al. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows [J]. Physical Review E, 2014, 89(5): 053320.
[57] Guo Z. Well-balanced lattice Boltzmann model for two-phase systems [J]. Physics of Fluids, 2021, 33(3): 031709.
[58] Peskin C S. The immersed boundary method [J]. Acta numerica, 2002, 11: 479-517.
[59] Uhlmann M. An immersed boundary method with direct forcing for the simulation of particulate flows [J]. Journal of computational physics, 2005, 209(2): 448-476.
[60] Niu X, Shu C, Chew Y, et al. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows [J]. Physics Letters A, 2006, 354(3): 173-182.
[61] Hu Y, Yuan H, Shu S, et al. An improved momentum exchanged-based immersed boundary–lattice Boltzmann method by using an iterative technique [J]. Computers & Mathematics with Applications, 2014, 68(3): 140-155.
[62] Wu J, Shu C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications [J]. Journal of Computational Physics, 2009, 228(6): 1963-1979.
[63] Ladd A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation [J]. Journal of fluid mechanics, 1994, 271: 285-309.
[64] Filippova O, Hänel D. Grid refinement for lattice-BGK models [J]. Journal of computational Physics, 1998, 147(1): 219-228.
[65] Mei R, Luo L-S, Shyy W. An accurate curved boundary treatment in the lattice Boltzmann method [J]. Journal of computational physics, 1999, 155(2): 307-330.
[66] Bouzidi M H, Firdaouss M, Lallemand P. Momentum transfer of a Boltzmann-lattice fluid with boundaries [J]. Physics of fluids, 2001, 13(11): 3452-3459.
[67] Guo Z, Zheng C, Shi B. An extrapolation method for boundary conditions in lattice Boltzmann method [J]. Physics of fluids, 2002, 14(6): 2007-2010.
[68] Yu D, Mei R, Luo L-S, et al. Viscous flow computations with the method of lattice Boltzmann equation [J]. Progress in Aerospace Sciences, 2003, 39(5): 329-367.
[69] Chun B, Ladd A. Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps [J]. Physical review E, 2007, 75(6): 066705.
[70] Tao S, He Q, Chen B, et al. One-point second-order curved boundary condition for lattice Boltzmann simulation of suspended particles [J]. Computers & Mathematics with Applications, 2018, 76(7): 1593-1607.
[71] Zhao W, Yong W-A. Single-node second-order boundary schemes for the lattice Boltzmann method [J]. Journal of Computational Physics, 2017, 329: 1-15.
[72] Marson F, Thorimbert Y, Chopard B, et al. Enhanced single-node lattice Boltzmann boundary condition for fluid flows [J]. Physical Review E, 2021, 103(5): 053308.
[73] Caiazzo A. Analysis of lattice Boltzmann nodes initialisation in moving boundary problems [J]. Progress in Computational Fluid Dynamics, an International Journal, 2008, 8(1-4): 3-10.
[74] Tao S, Hu J, Guo Z. An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows [J]. Computers & Fluids, 2016, 133: 1-14.
[75] Peng C, Teng Y, Hwang B, et al. Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow [J]. Computers & Mathematics with Applications, 2016, 72(2): 349-374.
[76] Peng C, Ayala O M, Wang L-P. A comparative study of immersed boundary method and interpolated bounce-back scheme for no-slip boundary treatment in the lattice Boltzmann method: Part I, laminar flows [J]. Computers & Fluids, 2019, 192: 104233.
[77] Peng Y, Luo L-S. A comparative study of immersed-boundary and interpolated bounce-back methods in LBE [J]. Progress in Computational Fluid Dynamics, 2008, 8(1): 156.
[78] Chen L, Yu Y, Lu J, et al. A comparative study of lattice Boltzmann methods using bounce‐back schemes and immersed boundary ones for flow acoustic problems [J]. International Journal for Numerical Methods in Fluids, 2014, 74(6): 439-467.
[79] Chen S, Martínez D, Mei R. On boundary conditions in lattice Boltzmann methods [J]. Physics of Fluids, 1996, 8(9): 2527-2536.
[80] He X, Zou Q, Luo L-S, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model [J]. Journal of Statistical Physics, 1997, 87(1): 115-136.
[81] Ziegler D P. Boundary conditions for lattice Boltzmann simulations [J]. Journal of Statistical Physics, 1993, 71(5): 1171-1177.
[82] Ginzbourg I, Adler P M. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model [J]. J Phys II France, 1994, 4(2): 191-214.
[83] Ginzburg I, Verhaeghe F, D’humieres D. Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions [J]. Communications in computational physics, 2008, 3(2): 427-478.
[84] Silva G, Talon L, Ginzburg I. Low-and high-order accurate boundary conditions: From Stokes to Darcy porous flow modeled with standard and improved Brinkman lattice Boltzmann schemes [J]. Journal of Computational Physics, 2017, 335: 50-83.
[85] Dubois F, Lallemand P, Tekitek M M. Taylor expansion method for analyzing bounce-back boundary conditions for lattice Boltzmann method [J]. ESAIM: Proceedings and Surveys, 2015, 52: 25-46.
[86] Tang G, Tao W, He Y. Lattice Boltzmann method for simulating gas flow in microchannels [J]. International journal of modern physics C, 2004, 15(02): 335-347.
[87] Succi S. Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis [J]. Physical review letters, 2002, 89(6): 064502.
[88] Guo Z, Shi B, Zhao T, et al. Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows [J]. Physical Review E, 2007, 76(5): 056704.
[89] Chai Z, Guo Z, Zheng L, et al. Lattice Boltzmann simulation of surface roughness effect on gaseous flow in a microchannel [J]. Journal of Applied Physics, 2008, 104(1): 014902.
[90] Chai Z, Shi B, Guo Z, et al. Gas flow through square arrays of circular cylinders with Klinkenberg effect: a lattice Boltzmann study [J]. Communications in Computational Physics, 2010, 8(5): 1052.
[91] Guo Z, Zheng C, Shi B. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow [J]. Physical Review E, 2008, 77(3): 036707.
[92] Ohwada T, Xu K. The kinetic scheme for the full-Burnett equations [J]. Journal of Computational Physics, 2004, 201(1): 315-332.
[93] Latt J, Chopard B, Malaspinas O, et al. Straight velocity boundaries in the lattice Boltzmann method [J]. Physical Review E, 2008, 77(5): 056703.
[94] Shan X. The mathematical structure of the lattices of the lattice Boltzmann method [J]. Journal of Computational Science, 2016, 17: 475-481.
[95] Leriche E, Gavrilakis S. Direct numerical simulation of the flow in a lid-driven cubical cavity [J]. Physics of Fluids, 2000, 12(6): 1363-1376.
[96] Luo L-S, Liao W, Chen X, et al. Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations [J]. Physical Review E, 2011, 83(5): 056710.
[97] Guo Z, Zheng C, Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method [J]. Physical Review E, 2002, 65(4): 046308.
[98] D'humières D. Generalized lattice-Boltzmann equations [J]. Rarefied gas dynamics, 1992, 159: 450-458.
[99] Lallemand P, Luo L-S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability [J]. Physical Review E, 2000, 61(6): 6546-6562.
[100] Ginzbourg I, Adler P. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model [J]. Journal de Physique II, 1994, 4(2): 191-214.
[101] Chapman S, Cowling T G. The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases [M]. Cambridge university press, 1990: 46-66.
[102] Zhao W, Yong W-A. Maxwell iteration for the lattice Boltzmann method with diffusive scaling [J]. Physical Review E, 2017, 95(3): 033311.
[103] Inamuro T, Yoshino M, Ogino F. Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number [J]. Physics of Fluids, 1997, 9(11): 3535-3542.
[104] Junk M, Yong W A. Rigorous Navier–Stokes limit of the lattice Boltzmann equation [J]. Asymptotic Analysis, 2003, 35(2): 165-185.
[105] Yang Z, Yong W-A. Asymptotic analysis of the lattice Boltzmann method for generalized Newtonian fluid flows [J]. Multiscale Modeling & Simulation, 2014, 12(3): 1028-1045.
[106] Chai Z, Shi B. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements [J]. Physical Review E, 2020, 102(2): 023306.
[107] Chang H-W, Garg A, Lin C-A. Analytic solutions of the variable force effect in lattice Boltzmann methods for Poiseuille flows [J]. Physics of Fluids, 2021, 33(8): 083610.
[108] Bazarin R, Philippi P, Randles A, et al. Moments-based method for boundary conditions in the lattice Boltzmann framework: A comparative analysis for the lid driven cavity flow [J]. Computers & Fluids, 2021, 230: 105142.
[109] Bo A, Mellibovsky F, Bergada J, et al. Towards a better understanding of wall-driven square cavity flows using the lattice Boltzmann method [J]. Applied Mathematical Modelling, 2020, 82: 469-486.
[110] Breuer M, Bernsdorf J, Zeiser T, et al. Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume [J]. International Journal of Heat and Fluid Flow, 2000, 21(2): 186-196.
[111] Perumal D A, Kumar G V S, Dass A K. Numerical Simulation of Viscous Flow over a Square Cylinder Using Lattice Boltzmann Method [J]. ISRN Mathematical Physics, 2012, 2012: 630801.
[112] Manzoor R, Ying Z C. Effect of Reynolds Number on Flow past a Square Cylinder in Presence of Upstream and Downstream Flat Plate at Small Gap Spacing [J]. International Journal of Mechanical and Mechatronics Engineering, 2016, 9(12): 2200-2212.
[113] Chen T, Liu T, Dong Z-Q, et al. Near-wall flow structures and related surface quantities in wall-bounded turbulence [J]. Physics of Fluids, 2021, 33(6): 065116.
[114] Shi X, Lin C-A. Simulations of wall bounded turbulent flows using general pressure equation [J]. Flow, Turbulence and Combustion, 2020, 105(1): 67-82.
[115] Agarwal A, Gupta S, Prakash A. A comparative study of bounce-back and immersed boundary method in LBM for turbulent flow simulation [J]. Materials Today: Proceedings, 2020, 28: 2387-2392.
[116] Song S, Wang S, Le-Clech P, et al. LBM-DEM simulation of particle deposition and resuspension of pre-deposited dynamic membrane [J]. Powder Technology, 2022, 407: 117637.
[117] Suga K, Kuwata Y, Takashima K, et al. A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows [J]. Computers & Mathematics with Applications, 2015, 69(6): 518-529.
[118] Shetty D A, Fisher T C, Chunekar A R, et al. High-order incompressible large-eddy simulation of fully inhomogeneous turbulent flows [J]. Journal of Computational Physics, 2010, 229(23): 8802-8822.
[119] Ghia U, Ghia K N, Shin C. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method [J]. Journal of computational physics, 1982, 48(3): 387-411.
[120] Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow [J]. Computers & Fluids, 1998, 27(4): 421-433.
[121] Wang P, Zhu L, Guo Z, et al. A Comparative Study of LBE and DUGKS Methods for Nearly Incompressible Flows [J]. Communications in Computational Physics, 2015, 17(3): 657-681.
[122] Ladd A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results [J]. Journal of fluid mechanics, 1994, 271: 311-339.
[123] Wen B, Zhang C, Fang H. Hydrodynamic force evaluation by momentum exchange method in lattice Boltzmann simulations [J]. Entropy, 2015, 17(12): 8240-8266.
[124] Kareem W A, Izawa S, Xiong A-K, et al. Lattice Boltzmann simulations of homogeneous isotropic turbulence [J]. Computers & Mathematics with Applications, 2009, 58(5): 1055-1061.
[125] Xu H, Tao W, Zhang Y. Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence [J]. Physics Letters A, 2009, 373(15): 1368-1373.
[126] Lammers P. Direkte numerische Simulationen wandgebundener Strömungen kleiner Reynoldszahlen mit dem lattice Boltzmann Verfahren [D]; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2004: 74-90.
[127] Kang S K, Hassan Y A. The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows [J]. Journal of Computational Physics, 2013, 232(1): 100-117.
[128] Gehrke M, Janßen C F, Rung T. Scrutinizing lattice Boltzmann methods for direct numerical simulations of turbulent channel flows [J]. Computers & fluids, 2017, 156: 247-263.
[129] Nathen P, Gaudlitz D, Krause M J, et al. On the stability and accuracy of the BGK, MRT and RLB Boltzmann schemes for the simulation of turbulent flows [J]. Commun Comput Phys, 2018, 23(3): 1-31.
[130] Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number [J]. Journal of Fluid Mechanics, 1987, 177: 133-166.
[131] Pope S B, Pope S B. Turbulent flows [M]. Cambridge university press, 2000.
[132] Lammers P, Beronov K N, Volkert R, et al. Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow [J]. Computers & Fluids, 2006, 35(10): 1137-1153.
[133] Premnath K N, Pattison M J, Banerjee S. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows [J]. Physical Review E, 2009, 79(2): 026703.
[134] Bespalko D, Pollard A, Uddin M. Analysis of the pressure fluctuations from an LBM simulation of turbulent channel flow [J]. Computers & Fluids, 2012, 54: 143-146.

所在学位评定分委会
力学
国内图书分类号
O351
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543838
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
董志强. 格子Boltzmann 方法中反弹格式隐藏误差的 理论分析及数值模拟研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849518-董志强-力学与航空航天(10115KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[董志强]的文章
百度学术
百度学术中相似的文章
[董志强]的文章
必应学术
必应学术中相似的文章
[董志强]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。