[1] Dong H, Zhang Q S. Time analyticity for the heat equation and Navier-Stokes equations [J]. Journal of Functional Analysis, 2020, 279(4): 108563.
[2] Han G, Liu X, Huang J, et al. Modified Boltzmann equation and extended Navier–Stokes equations [J]. Physics of Fluids, 2020, 32(2): 022001.
[3] Dutta S, Panigrahi P, Muralidhar K. Experimental investigation of flow past a square cylinder at an angle of incidence [J]. Journal of engineering mechanics, 2008, 134(9): 788-803.
[4] Kumar Chauhan M, Dutta S, Kumar Gandhi B, et al. Experimental investigation of flow over a transversely oscillating square cylinder at intermediate Reynolds number [J]. Journal of Fluids Engineering, 2016, 138(5): 051105.
[5] Gautam P, Eldho T, Mazumder B, et al. Experimental study of flow and turbulence characteristics around simple and complex piers using PIV [J]. Experimental Thermal and Fluid Science, 2019, 100: 193-206.
[6] Jiang X, Lee C, Smith C, et al. Experimental study on low-speed streaks in a turbulent boundary layer at low Reynolds number [J]. Journal of Fluid Mechanics, 2020, 903: A6.
[7] Sharma A. Introduction to computational fluid dynamics: development, application and analysis [M]. Springer Nature, 2021: 19-33.
[8] 吴子牛. 计算流体力学基本原理 [M]. 科学出版社, 2001: 218-270.
[9] 姚朝晖, 周强. 计算流体力学入门 [M]. 清华大学出版社, 2010: 17-112.
[10] Mattiussi C. An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology [J]. Journal of Computational Physics, 1997, 133(2): 289-309.
[11] Zhang Y. A finite difference method for fractional partial differential equation [J]. Applied Mathematics and Computation, 2009, 215(2): 524-529.
[12] Morinishi Y, Lund T S, Vasilyev O V, et al. Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow [J]. Journal of Computational Physics, 1998, 143(1): 90-124.
[13] Morinishi Y, Vasilyev O V, Ogi T. Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations [J]. Journal of Computational Physics, 2004, 197(2): 686-710.
[14] Jasak H, Uroić T. Practical computational fluid dynamics with the finite volume method [M]. Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids. Springer. 2020: 103-161.
[15] Cui Y, Wang N, Liu H. Numerical study of droplet dynamics in a steady electric field using a hybrid lattice Boltzmann and finite volume method [J]. Physics of Fluids, 2019, 31(2): 022105.
[16] Jofre L, Lehmkuhl O, Ventosa J, et al. Conservation Properties of Unstructured Finite-Volume Mesh Schemes for the Navier-Stokes Equations [J]. Numerical Heat Transfer, Part B: Fundamentals, 2014, 65(1): 53-79.
[17] Lehmkuhl O, Houzeaux G, Owen H, et al. A low-dissipation finite element scheme for scale resolving simulations of turbulent flows [J]. Journal of Computational Physics, 2019, 390: 51-65.
[18] Bernardi C, Maday Y. Spectral methods [M]. Handbook of Numerical Analysis. Elsevier. 1997: 209-485.
[19] Hussaini M Y, Zang T A. Spectral methods in fluid dynamics [J]. Annual review of fluid mechanics, 1987, 19(1): 339-367.
[20] Alipour P, Toghraie D, Karimipour A, et al. Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: Study the equilibrium [J]. Physica A: Statistical Mechanics and its Applications, 2019, 515: 13-30.
[21] Alexander F J, Garcia A L. The direct simulation Monte Carlo method [J]. Computers in Physics, 1997, 11(6): 588-593.
[22] Myong R, Karchani A, Ejtehadi O. A review and perspective on a convergence analysis of the direct simulation Monte Carlo and solution verification [J]. Physics of Fluids, 2019, 31(6): 066101.
[23] Rothman D H, Keller J M. Immiscible cellular-automaton fluids [J]. Journal of Statistical Physics, 1988, 52(3): 1119-1127.
[24] Rothman D H. Cellular-automaton fluids: A model for flow in porous media [J]. Geophysics, 1988, 53(4): 509-518.
[25] Chen S, Doolen G D. Lattice Boltzmann method for fluid flows [J]. Annual review of fluid mechanics, 1998, 30(1): 329-364.
[26] He Y-L, Liu Q, Li Q, et al. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review [J]. International Journal of Heat and Mass Transfer, 2019, 129: 160-197.
[27] 何雅玲, 王勇, 李庆. 格子 Boltzmann 方法的理论及应用 [M]. 科学出版社, 2009: 31-55.
[28] Xu K. A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method [J]. Journal of Computational Physics, 2001, 171(1): 289-335.
[29] Xu K, Prendergast K H. Numerical Navier-Stokes solutions from gas kinetic theory [J]. Journal of Computational Physics, 1994, 114(1): 9-17.
[30] Guo Z, Xu K, Wang R. Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case [J]. Physical Review E, 2013, 88(3): 033305.
[31] Guo Z, Wang R, Xu K. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case [J]. Physical Review E, 2015, 91(3): 033313.
[32] Hardy J, Pomeau Y, De Pazzis O. Time evolution of a two‐dimensional model system. I. Invariant states and time correlation functions [J]. Journal of Mathematical Physics, 1973, 14(12): 1746-1759.
[33] Hardy J, De Pazzis O, Pomeau Y. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions [J]. Physical review A, 1976, 13(5): 1949.
[34] Frisch U, Hasslacher B, Pomeau Y. Lattice-Gas Automata for the Navier-Stokes Equation [J]. Physical Review Letters, 1986, 56(14): 1505-1508.
[35] D'humieres D, Lallemand P, Frisch U. Lattice gas models for 3D hydrodynamics [J]. EPL (Europhysics Letters), 1986, 2(4): 291.
[36] Menamara G, Zanetti G. Use of the Boltzmann equation to simulate lattice automata [J]. Physical Review Letters, 1988, 61(20): 2332-2335.
[37] Higuera F J, Jiménez J. Boltzmann approach to lattice gas simulations [J]. EPL (Europhysics Letters), 1989, 9(7): 663.
[38] Higuera F, Succi S, Benzi R. Lattice gas dynamics with enhanced collisions [J]. Europhysics letters, 1989, 9(4): 345.
[39] Chen S, Chen H, Martnez D, et al. Lattice Boltzmann model for simulation of magnetohydrodynamics [J]. Physical Review Letters, 1991, 67(27): 3776.
[40] Qian Y-H, D'humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation [J]. EPL (Europhysics Letters), 1992, 17(6): 479.
[41] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems [J]. Physical review, 1954, 94(3): 511.
[42] Fattahi E, Waluga C, Wohlmuth B, et al. Lattice Boltzmann methods in porous media simulations: From laminar to turbulent flow [J]. Computers & Fluids, 2016, 140: 247-259.
[43] Guo Z, Zhao T. Lattice Boltzmann model for incompressible flows through porous media [J]. Physical review E, 2002, 66(3): 036304.
[44] Chai Z, Huang C, Shi B, et al. A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media [J]. International Journal of Heat and Mass Transfer, 2016, 98: 687-696.
[45] Wu C-M, Zhou Y-S, Lin C-A. Direct numerical simulations of turbulent channel flows with mesh-refinement lattice Boltzmann methods on GPU cluster [J]. Computers & Fluids, 2020, 210: 104647.
[46] Jahanshaloo L, Pouryazdanpanah E, Che Sidik N A. A review on the application of the lattice Boltzmann method for turbulent flow simulation [J]. Numerical Heat Transfer, Part A: Applications, 2013, 64(11): 938-953.
[47] Yu H, Girimaji S S, Luo L-S. Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence [J]. Physical Review E, 2005, 71(1): 016708.
[48] Wang L-P, Peng C, Guo Z, et al. Lattice Boltzmann simulation of particle-laden turbulent channel flow [J]. Computers & Fluids, 2016, 124: 226-236.
[49] Jebakumar A S, Premnath K N, Magi V, et al. Fully-resolved direct numerical simulations of particle motion in a turbulent channel flow with the lattice-Boltzmann method [J]. Computers & Fluids, 2019, 179: 238-247.
[50] Peng C, Wang L-P. Direct numerical simulations of turbulent pipe flow laden with finite-size neutrally buoyant particles at low flow Reynolds number [J]. Acta Mechanica, 2019, 230(2): 517-539.
[51] Peng C, Ayala O M, Wang L-P. A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow [J]. Journal of Fluid Mechanics, 2019, 875: 1096-1144.
[52] Li X, Niu X-D, Li Y, et al. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation [J]. Physics of Fluids, 2018, 30(4): 040905.
[53] Chen M, Niu X, Yu P, et al. Numerical investigation of magnetic-field induced self-assembly of nonmagnetic particles in magnetic fluids [J]. Journal of Fluids and Structures, 2020, 97: 103008.
[54] Mccracken M E, Abraham J. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow [J]. Physical Review E, 2005, 71(3): 036701.
[55] Inamuro T, Ogata T, Tajima S, et al. A lattice Boltzmann method for incompressible two-phase flows with large density differences [J]. Journal of Computational physics, 2004, 198(2): 628-644.
[56] Liang H, Shi B, Guo Z, et al. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows [J]. Physical Review E, 2014, 89(5): 053320.
[57] Guo Z. Well-balanced lattice Boltzmann model for two-phase systems [J]. Physics of Fluids, 2021, 33(3): 031709.
[58] Peskin C S. The immersed boundary method [J]. Acta numerica, 2002, 11: 479-517.
[59] Uhlmann M. An immersed boundary method with direct forcing for the simulation of particulate flows [J]. Journal of computational physics, 2005, 209(2): 448-476.
[60] Niu X, Shu C, Chew Y, et al. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows [J]. Physics Letters A, 2006, 354(3): 173-182.
[61] Hu Y, Yuan H, Shu S, et al. An improved momentum exchanged-based immersed boundary–lattice Boltzmann method by using an iterative technique [J]. Computers & Mathematics with Applications, 2014, 68(3): 140-155.
[62] Wu J, Shu C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications [J]. Journal of Computational Physics, 2009, 228(6): 1963-1979.
[63] Ladd A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation [J]. Journal of fluid mechanics, 1994, 271: 285-309.
[64] Filippova O, Hänel D. Grid refinement for lattice-BGK models [J]. Journal of computational Physics, 1998, 147(1): 219-228.
[65] Mei R, Luo L-S, Shyy W. An accurate curved boundary treatment in the lattice Boltzmann method [J]. Journal of computational physics, 1999, 155(2): 307-330.
[66] Bouzidi M H, Firdaouss M, Lallemand P. Momentum transfer of a Boltzmann-lattice fluid with boundaries [J]. Physics of fluids, 2001, 13(11): 3452-3459.
[67] Guo Z, Zheng C, Shi B. An extrapolation method for boundary conditions in lattice Boltzmann method [J]. Physics of fluids, 2002, 14(6): 2007-2010.
[68] Yu D, Mei R, Luo L-S, et al. Viscous flow computations with the method of lattice Boltzmann equation [J]. Progress in Aerospace Sciences, 2003, 39(5): 329-367.
[69] Chun B, Ladd A. Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps [J]. Physical review E, 2007, 75(6): 066705.
[70] Tao S, He Q, Chen B, et al. One-point second-order curved boundary condition for lattice Boltzmann simulation of suspended particles [J]. Computers & Mathematics with Applications, 2018, 76(7): 1593-1607.
[71] Zhao W, Yong W-A. Single-node second-order boundary schemes for the lattice Boltzmann method [J]. Journal of Computational Physics, 2017, 329: 1-15.
[72] Marson F, Thorimbert Y, Chopard B, et al. Enhanced single-node lattice Boltzmann boundary condition for fluid flows [J]. Physical Review E, 2021, 103(5): 053308.
[73] Caiazzo A. Analysis of lattice Boltzmann nodes initialisation in moving boundary problems [J]. Progress in Computational Fluid Dynamics, an International Journal, 2008, 8(1-4): 3-10.
[74] Tao S, Hu J, Guo Z. An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows [J]. Computers & Fluids, 2016, 133: 1-14.
[75] Peng C, Teng Y, Hwang B, et al. Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow [J]. Computers & Mathematics with Applications, 2016, 72(2): 349-374.
[76] Peng C, Ayala O M, Wang L-P. A comparative study of immersed boundary method and interpolated bounce-back scheme for no-slip boundary treatment in the lattice Boltzmann method: Part I, laminar flows [J]. Computers & Fluids, 2019, 192: 104233.
[77] Peng Y, Luo L-S. A comparative study of immersed-boundary and interpolated bounce-back methods in LBE [J]. Progress in Computational Fluid Dynamics, 2008, 8(1): 156.
[78] Chen L, Yu Y, Lu J, et al. A comparative study of lattice Boltzmann methods using bounce‐back schemes and immersed boundary ones for flow acoustic problems [J]. International Journal for Numerical Methods in Fluids, 2014, 74(6): 439-467.
[79] Chen S, Martínez D, Mei R. On boundary conditions in lattice Boltzmann methods [J]. Physics of Fluids, 1996, 8(9): 2527-2536.
[80] He X, Zou Q, Luo L-S, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model [J]. Journal of Statistical Physics, 1997, 87(1): 115-136.
[81] Ziegler D P. Boundary conditions for lattice Boltzmann simulations [J]. Journal of Statistical Physics, 1993, 71(5): 1171-1177.
[82] Ginzbourg I, Adler P M. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model [J]. J Phys II France, 1994, 4(2): 191-214.
[83] Ginzburg I, Verhaeghe F, D’humieres D. Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions [J]. Communications in computational physics, 2008, 3(2): 427-478.
[84] Silva G, Talon L, Ginzburg I. Low-and high-order accurate boundary conditions: From Stokes to Darcy porous flow modeled with standard and improved Brinkman lattice Boltzmann schemes [J]. Journal of Computational Physics, 2017, 335: 50-83.
[85] Dubois F, Lallemand P, Tekitek M M. Taylor expansion method for analyzing bounce-back boundary conditions for lattice Boltzmann method [J]. ESAIM: Proceedings and Surveys, 2015, 52: 25-46.
[86] Tang G, Tao W, He Y. Lattice Boltzmann method for simulating gas flow in microchannels [J]. International journal of modern physics C, 2004, 15(02): 335-347.
[87] Succi S. Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis [J]. Physical review letters, 2002, 89(6): 064502.
[88] Guo Z, Shi B, Zhao T, et al. Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows [J]. Physical Review E, 2007, 76(5): 056704.
[89] Chai Z, Guo Z, Zheng L, et al. Lattice Boltzmann simulation of surface roughness effect on gaseous flow in a microchannel [J]. Journal of Applied Physics, 2008, 104(1): 014902.
[90] Chai Z, Shi B, Guo Z, et al. Gas flow through square arrays of circular cylinders with Klinkenberg effect: a lattice Boltzmann study [J]. Communications in Computational Physics, 2010, 8(5): 1052.
[91] Guo Z, Zheng C, Shi B. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow [J]. Physical Review E, 2008, 77(3): 036707.
[92] Ohwada T, Xu K. The kinetic scheme for the full-Burnett equations [J]. Journal of Computational Physics, 2004, 201(1): 315-332.
[93] Latt J, Chopard B, Malaspinas O, et al. Straight velocity boundaries in the lattice Boltzmann method [J]. Physical Review E, 2008, 77(5): 056703.
[94] Shan X. The mathematical structure of the lattices of the lattice Boltzmann method [J]. Journal of Computational Science, 2016, 17: 475-481.
[95] Leriche E, Gavrilakis S. Direct numerical simulation of the flow in a lid-driven cubical cavity [J]. Physics of Fluids, 2000, 12(6): 1363-1376.
[96] Luo L-S, Liao W, Chen X, et al. Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations [J]. Physical Review E, 2011, 83(5): 056710.
[97] Guo Z, Zheng C, Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method [J]. Physical Review E, 2002, 65(4): 046308.
[98] D'humières D. Generalized lattice-Boltzmann equations [J]. Rarefied gas dynamics, 1992, 159: 450-458.
[99] Lallemand P, Luo L-S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability [J]. Physical Review E, 2000, 61(6): 6546-6562.
[100] Ginzbourg I, Adler P. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model [J]. Journal de Physique II, 1994, 4(2): 191-214.
[101] Chapman S, Cowling T G. The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases [M]. Cambridge university press, 1990: 46-66.
[102] Zhao W, Yong W-A. Maxwell iteration for the lattice Boltzmann method with diffusive scaling [J]. Physical Review E, 2017, 95(3): 033311.
[103] Inamuro T, Yoshino M, Ogino F. Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number [J]. Physics of Fluids, 1997, 9(11): 3535-3542.
[104] Junk M, Yong W A. Rigorous Navier–Stokes limit of the lattice Boltzmann equation [J]. Asymptotic Analysis, 2003, 35(2): 165-185.
[105] Yang Z, Yong W-A. Asymptotic analysis of the lattice Boltzmann method for generalized Newtonian fluid flows [J]. Multiscale Modeling & Simulation, 2014, 12(3): 1028-1045.
[106] Chai Z, Shi B. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements [J]. Physical Review E, 2020, 102(2): 023306.
[107] Chang H-W, Garg A, Lin C-A. Analytic solutions of the variable force effect in lattice Boltzmann methods for Poiseuille flows [J]. Physics of Fluids, 2021, 33(8): 083610.
[108] Bazarin R, Philippi P, Randles A, et al. Moments-based method for boundary conditions in the lattice Boltzmann framework: A comparative analysis for the lid driven cavity flow [J]. Computers & Fluids, 2021, 230: 105142.
[109] Bo A, Mellibovsky F, Bergada J, et al. Towards a better understanding of wall-driven square cavity flows using the lattice Boltzmann method [J]. Applied Mathematical Modelling, 2020, 82: 469-486.
[110] Breuer M, Bernsdorf J, Zeiser T, et al. Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume [J]. International Journal of Heat and Fluid Flow, 2000, 21(2): 186-196.
[111] Perumal D A, Kumar G V S, Dass A K. Numerical Simulation of Viscous Flow over a Square Cylinder Using Lattice Boltzmann Method [J]. ISRN Mathematical Physics, 2012, 2012: 630801.
[112] Manzoor R, Ying Z C. Effect of Reynolds Number on Flow past a Square Cylinder in Presence of Upstream and Downstream Flat Plate at Small Gap Spacing [J]. International Journal of Mechanical and Mechatronics Engineering, 2016, 9(12): 2200-2212.
[113] Chen T, Liu T, Dong Z-Q, et al. Near-wall flow structures and related surface quantities in wall-bounded turbulence [J]. Physics of Fluids, 2021, 33(6): 065116.
[114] Shi X, Lin C-A. Simulations of wall bounded turbulent flows using general pressure equation [J]. Flow, Turbulence and Combustion, 2020, 105(1): 67-82.
[115] Agarwal A, Gupta S, Prakash A. A comparative study of bounce-back and immersed boundary method in LBM for turbulent flow simulation [J]. Materials Today: Proceedings, 2020, 28: 2387-2392.
[116] Song S, Wang S, Le-Clech P, et al. LBM-DEM simulation of particle deposition and resuspension of pre-deposited dynamic membrane [J]. Powder Technology, 2022, 407: 117637.
[117] Suga K, Kuwata Y, Takashima K, et al. A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows [J]. Computers & Mathematics with Applications, 2015, 69(6): 518-529.
[118] Shetty D A, Fisher T C, Chunekar A R, et al. High-order incompressible large-eddy simulation of fully inhomogeneous turbulent flows [J]. Journal of Computational Physics, 2010, 229(23): 8802-8822.
[119] Ghia U, Ghia K N, Shin C. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method [J]. Journal of computational physics, 1982, 48(3): 387-411.
[120] Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow [J]. Computers & Fluids, 1998, 27(4): 421-433.
[121] Wang P, Zhu L, Guo Z, et al. A Comparative Study of LBE and DUGKS Methods for Nearly Incompressible Flows [J]. Communications in Computational Physics, 2015, 17(3): 657-681.
[122] Ladd A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results [J]. Journal of fluid mechanics, 1994, 271: 311-339.
[123] Wen B, Zhang C, Fang H. Hydrodynamic force evaluation by momentum exchange method in lattice Boltzmann simulations [J]. Entropy, 2015, 17(12): 8240-8266.
[124] Kareem W A, Izawa S, Xiong A-K, et al. Lattice Boltzmann simulations of homogeneous isotropic turbulence [J]. Computers & Mathematics with Applications, 2009, 58(5): 1055-1061.
[125] Xu H, Tao W, Zhang Y. Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence [J]. Physics Letters A, 2009, 373(15): 1368-1373.
[126] Lammers P. Direkte numerische Simulationen wandgebundener Strömungen kleiner Reynoldszahlen mit dem lattice Boltzmann Verfahren [D]; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2004: 74-90.
[127] Kang S K, Hassan Y A. The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows [J]. Journal of Computational Physics, 2013, 232(1): 100-117.
[128] Gehrke M, Janßen C F, Rung T. Scrutinizing lattice Boltzmann methods for direct numerical simulations of turbulent channel flows [J]. Computers & fluids, 2017, 156: 247-263.
[129] Nathen P, Gaudlitz D, Krause M J, et al. On the stability and accuracy of the BGK, MRT and RLB Boltzmann schemes for the simulation of turbulent flows [J]. Commun Comput Phys, 2018, 23(3): 1-31.
[130] Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number [J]. Journal of Fluid Mechanics, 1987, 177: 133-166.
[131] Pope S B, Pope S B. Turbulent flows [M]. Cambridge university press, 2000.
[132] Lammers P, Beronov K N, Volkert R, et al. Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow [J]. Computers & Fluids, 2006, 35(10): 1137-1153.
[133] Premnath K N, Pattison M J, Banerjee S. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows [J]. Physical Review E, 2009, 79(2): 026703.
[134] Bespalko D, Pollard A, Uddin M. Analysis of the pressure fluctuations from an LBM simulation of turbulent channel flow [J]. Computers & Fluids, 2012, 54: 143-146.
修改评论