[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[2] YAO Y, DONG Q, BROZENA A, et al. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery [J]. Science, 2022, 376(6589): eabn3103.
[3] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys [J]. Nature Reviews Materials, 2019, 4(8): 515-34.
[4] CHANG X, ZENG M, LIU K, et al. Phase Engineering of High-Entropy Alloys [J]. Adv Mater, 2020, 32(14): e1907226.
[5] LI H, LAI J, LI Z, et al. Multi‐Sites Electrocatalysis in High‐Entropy Alloys [J]. Advanced Functional Materials, 2021, 31(47).
[6] XIN Y, LI S, QIAN Y, et al. High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities [J]. ACS Catalysis, 2020, 10(19): 11280-306.
[7] PAN Q, ZHANG L, FENG R, et al. Gradient cell–structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374(6570): 984-9.
[8] SHI P, LI R, LI Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373(6557): 912-8.
[9] CHEN X, WANG Q, CHENG Z, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592(7856): 712-6.
[10] DING Q, ZHANG Y, CHEN X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574(7777): 223-7.
[11] REN J, ZHANG Y, ZHAO D, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing [J]. Nature, 2022, 608(7921): 62-8.
[12] BROGE N L N, BONDESGAARD M, SONDERGAARD-PEDERSEN F, et al. Autocatalytic Formation of High-Entropy Alloy Nanoparticles [J]. Angew Chem Int Ed Engl, 2020.
[13] GLASSCOTT M W, PENDERGAST A D, GOINES S, et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis [J]. Nat Commun, 2019, 10(1): 2650.
[14] YANG T, ZHAO Y L, TONG Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362(6417): 933-7.
[15] CHEN W, LUO S, SUN M, et al. High-Entropy Intermetallic PtRhBiSnSb Nanoplates for Highly Efficient Alcohol Oxidation Electrocatalysis [J]. Advanced Materials, 2022, n/a(n/a): 2206276.
[16] JIA Z, YANG T, SUN L, et al. A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution [J]. Advanced Materials, 2020, 32(21): 2000385.
[17] WANG T, CHEN H, YANG Z, et al. High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis [J]. J Am Chem Soc, 2020, 142(10): 4550-4.
[18] LI T, YAO Y, HUANG Z, et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion [J]. Nature Catalysis, 2021, 4(1): 62-70.
[19] DONG Q, HONG M, GAO J, et al. Rapid Synthesis of High-Entropy Oxide Microparticles [J]. Small, 2022, 18(11): e2104761.
[20] WANG T, CHEN H, YANG Z, et al. High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis [J]. Journal of the American Chemical Society, 2020, 142(10): 4550-4.
[21] CUI M, YANG C, LI B, et al. High‐Entropy Metal Sulfide Nanoparticles Promise High‐Performance Oxygen Evolution Reaction [J]. Advanced Energy Materials, 2020, 11(3).
[22] NEMANI S K, ZHANG B, WYATT B C, et al. High-Entropy 2D Carbide MXenes: TiVNbMoC(3) and TiVCrMoC(3) [J]. ACS Nano, 2021, 15(8): 12815-25.
[23] DU Z, WU C, CHEN Y, et al. High-Entropy Atomic Layers of Transition-Metal Carbides (MXenes) [J]. Adv Mater, 2021, 33(39): e2101473.
[24] LI H, ZHU H, ZHANG S, et al. Nano High‐Entropy Materials: Synthesis Strategies and Catalytic Applications [J]. Small Structures, 2020, 1(2).
[25] YU X, WANG B, WANG C, et al. 2D High-Entropy Hydrotalcites [J]. Small, 2021, 17(45): 2103412.
[26] YAO Y, HUANG Z, LI T, et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters [J]. Proc Natl Acad Sci U S A, 2020, 117(12): 6316-22.
[27] CUI M, YANG C, HWANG S, et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition [J]. Science Advances, 8(4): eabm4322.
[28] YAO Y, HUANG Z, XIE P, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359(6383): 1489-94.
[29] GAO S, HAO S, HUANG Z, et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis [J]. Nature Communications, 2020, 11(1): 2016.
[30] WU S, LIU Y, REN Y, et al. Microwave synthesis of single-phase nanoparticles made of multi-principal element alloys [J]. Nano Research, 2021, 15(6): 4886-92.
[31] QIAO H, SARAY M T, WANG X, et al. Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating [J]. ACS Nano, 2021.
[32] HE T, WANG W, SHI F, et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis [J]. Nature, 2021, 598(7879): 76-81.
[33] XIA Y, XIONG Y, LIM B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? [J]. Angew Chem Int Ed Engl, 2009, 48(1): 60-103.
[34] HUANG X, ZHAO Z, CAO L, et al. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction [J]. Science, 2015, 348(6240): 1230-4.
[35] LUO M, ZHAO Z, ZHANG Y, et al. PdMo bimetallene for oxygen reduction catalysis [J]. Nature, 2019, 574(7776): 81-5.
[36] ZHAN C, BU L, SUN H, et al. Medium/High-Entropy Amalgamated Core/Shell Nanoplate Achieves Efficient Formic Acid Catalysis for Direct Formic Acid Fuel Cell [J]. Angewandte Chemie International Edition, 2022, n/a(n/a).
[37] TAO L, SUN M, ZHOU Y, et al. A General Synthetic Method for High-Entropy Alloy Subnanometer Ribbons [J]. Journal of the American Chemical Society, 2022, 144(23): 10582-90.
[38] ZHAN C, XU Y, BU L, et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis [J]. Nature Communications, 2021, 12(1): 6261.
[39] LöFFLER T, MEYER H, SAVAN A, et al. Discovery of a Multinary Noble Metal-Free Oxygen Reduction Catalyst [J]. Advanced Energy Materials, 2018, 8(34).
[40] NELLAIAPPAN S, KATIYAR N K, KUMAR R, et al. High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization [J]. ACS Catalysis, 2020, 10(6): 3658-63.
[41] ZHAO H, ZHU Y, YE H, et al. Atomic-Scale Structure Dynamics of Nanocrystals Revealed by In-Situ and Environmental Transmission Electron Microscopy [J]. Adv Mater, 2022: e2206911.
[42] JIANG Y, DUCHAMP M, ANG S J, et al. Dynamics of the fcc-to-bcc phase transition in single-crystalline PdCu alloy nanoparticles [J]. Nat Commun, 2023, 14(1): 104.
[43] YANG Y, LOUISIA S, YU S, et al. Operando studies reveal active Cu nanograins for CO(2) electroreduction [J]. Nature, 2023, 614(7947): 262-9.
[44] OPHUS C. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond [J]. Microsc Microanal, 2019, 25(3): 563-82.
[45] HUANG Z, YAO Y, PANG Z, et al. Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports [J]. Nat Commun, 2020, 11(1): 6373.
[46] SONG B, YANG Y, YANG T T, et al. Revealing High-Temperature Reduction Dynamics of High-Entropy Alloy Nanoparticles via In Situ Transmission Electron Microscopy [J]. Nano Lett, 2021, 21(4): 1742-8.
[47] SONG B, YANG Y, RABBANI M, et al. In Situ Oxidation Studies of High-Entropy Alloy Nanoparticles [J]. ACS Nano, 2020, 14(11): 15131-43.
[48] MORI K, HASHIMOTO N, KAMIUCHI N, et al. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO(2) hydrogenation [J]. Nat Commun, 2021, 12(1): 3884.
[49] LUO M, GUO S. Strain-controlled electrocatalysis on multimetallic nanomaterials [J]. Nature Reviews Materials, 2017, 2(11).
[50] STRASSER P, KOH S, ANNIYEV T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts [J]. Nat Chem, 2010, 2(6): 454-60.
[51] YANG X, WANG Y, TONG X, et al. Strain Engineering in Electrocatalysts: Fundamentals, Progress, and Perspectives [J]. Advanced Energy Materials, 2021, 12(5).
[52] MIAO Y, ZHAO Y, ZHANG S, et al. Strain Engineering: A Boosting Strategy for Photocatalysis [J]. Adv Mater, 2022, 34(29): e2200868.
[53] LIANG J, MA F, HWANG S, et al. Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis [J]. Joule, 2019, 3(4): 956-91.
[54] GAN L, YU R, LUO J, et al. Lattice Strain Distributions in Individual Dealloyed Pt-Fe Catalyst Nanoparticles [J]. J Phys Chem Lett, 2012, 3(7): 934-8.
[55] CHI M, WANG C, LEI Y, et al. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing [J]. Nature Communications, 2015, 6: 8925.
[56] BU L, ZHANG N, GUO S, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis [J]. Science, 2016, 354(6318): 1410-4.
[57] JIN H, XU Z, HU Z Y, et al. Mesoporous Pt@Pt-skin Pt(3)Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction [J]. Nat Commun, 2023, 14(1): 1518.
[58] WU J, QI L, YOU H, et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities [J]. J Am Chem Soc, 2012, 134(29): 11880-3.
[59] XIE P, YAO Y, HUANG Z, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts [J]. Nat Commun, 2019, 10(1): 4011.
[60] YAO Y, LIU Z, XIE P, et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts [J]. Science Advances, 6(11): eaaz0510.
[61] NAKAYA Y, HAYASHIDA E, ASAKURA H, et al. High-Entropy Intermetallics Serve Ultrastable Single-Atom Pt for Propane Dehydrogenation [J]. Journal of the American Chemical Society, 2022, 144(35): 15944-53.
[62] XING F, MA J, SHIMIZU K-I, et al. High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2 [J]. Nature Communications, 2022, 13(1): 5065.
[63] CRESPO-QUESADA M, CARDENAS-LIZANA F, DESSIMOZ A L, et al. Modern Trends in Catalyst and Process Design for Alkyne Hydrogenations [J]. Acs Catal, 2012, 2(8): 1773−86.
[64] HUANG F, DENG Y, CHEN Y, et al. Atomically Dispersed Pd on Nanodiamond/Graphene Hybrid for Selective Hydrogenation of Acetylene [J]. Journal of the American Chemical Society, 2018, 140(41): 13142–6.
[65] TESCHNER D, BORSODI J, WOOTSCH A, et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation [J]. Science, 2008, 320(5872): 86−9.
[66] LIU Y W, WANG B X, FU Q, et al. Polyoxometalate-Based Metal-Organic Framework as Molecular Sieve for Highly Selective Semi-Hydrogenation of Acetylene on Isolated Single Pd Atom Sites [J]. Angew Chem Int Edit, 2021, 60(41): 22522–8.
[67] JIANG L, LIU K, HUNG S-F, et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts [J]. Nature Nanotechnology, 2020, 15(10): 848−53.
[68] WANG X, CHU M, WANG M, et al. Unveiling the Local Structure and Electronic Properties of PdBi Surface Alloy for Selective Hydrogenation of Propyne [J]. ACS Nano, 2022, 16(10): 16869–79.
[69] FENG Q, ZHAO S, WANG Y, et al. Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes [J]. Journal of the American Chemical Society, 2017, 139(21): 7294−301.
[70] ARMBRUSTER M, KOVNIR K, BEHRENS M, et al. Pd-Ga Intermetallic Compounds as Highly Selective Semihydrogenation Catalysts [J]. Journal of the American Chemical Society, 2010, 132(42): 14745−7.
[71] LIU Y, LIU X, FENG Q, et al. Intermetallic NixMy (M = Ga and Sn) Nanocrystals: A Non-precious Metal Catalyst for Semi-Hydrogenation of Alkynes [J]. Advanced Materials, 2016, 28(23): 4747−54.
[72] CUI M J, YANG C P, HWANG S, et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition [J]. Sci Adv, 2022, 8(4): eabm4322.
[73] HAO J, ZHUANG Z, CAO K, et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts [J]. Nature Communications, 2022, 13(1): 2662.
[74] YANG J, HUANG Y, QI H, et al. Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration [J]. Nature Communications, 2022, 13(1): 4244.
[75] DENG L, MIURA H, SHISHIDO T, et al. Elucidating strong metal-support interactions in Pt–Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes [J]. Journal of Catalysis, 2018, 365: 277-91.
[76] DOMINGUEZDOMINGUEZ S, BERENGUERMURCIA A, CAZORLAAMOROS D, et al. Semihydrogenation of phenylacetylene catalyzed by metallic nanoparticles containing noble metals [J]. Journal of Catalysis, 2006, 243(1): 74-81.
[77] WANG Z, YANG L, ZHANG R, et al. Selective hydrogenation of phenylacetylene over bimetallic Pd–Cu/Al2O3 and Pd–Zn/Al2O3 catalysts [J]. Catalysis Today, 2016, 264: 37-43.
[78] CAO Y, SUI Z, ZHU Y, et al. Selective Hydrogenation of Acetylene over Pd-In/Al2O3 Catalyst: Promotional Effect of Indium and Composition-Dependent Performance [J]. ACS Catalysis, 2017, 7(11): 7835-46.
[79] STRASSER P, KOH S, ANNIYEV T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts [J]. Nat Chem, 2010, 2(6): 454–60.
[80] LUO M, GUO S. Strain-controlled electrocatalysis on multimetallic nanomaterials [J]. Nature Reviews Materials, 2017, 2(11): 17059.
[81] ZHANG S, ZHANG X, JIANG G, et al. Tuning nanoparticle structure and surface strain for catalysis optimization [J]. Journal of the American Chemical Society, 2014, 136(21): 7734–9.
修改评论