中文版 | English
题名

原子尺度高熵合金纳米晶的表面结构与演变研究

其他题名
SURFACE STRUCTURE EVOLUTION OF HIGH-ENTROPY ALLOY NANOCRYSTALS AT ATOMIC SCALE
姓名
姓名拼音
LIU Haojie
学号
12032076
学位类型
硕士
学位专业
070301 无机化学
学科门类/专业学位类别
07 理学
导师
杨烽
导师单位
化学系
论文答辩日期
2023-05-29
论文提交日期
2023-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

高熵合金纳米催化剂表现出优异的催化活性和显著的耐久性。可控合成具有特定原子排列和表面组成的高熵合金,以及揭示高熵合金纳米催化剂的活性位点仍面临着诸多困难。在原子层次上研究高熵合金表面结构和催化反应之间的构效关系,对高熵合金纳米催化剂的应用具有重要意义。本论文通过液相化学合成的方法,合成了组成可调的高熵合金纳米材料,结合原位透射电镜、原子级三维重构技术以及谱学分析等多种表征手段,系统研究了其相结构和表面几何/电子结构的演变,探究了其表面几何结构和电子结构与催化反应之间的构效关系。
合成了PdFeCoNiCu五元高熵合金,揭示了高熵合金在氢气氛围下的相结构演变过程:体心立方固溶体合金→金属间化合物→面心立方固溶体合金。系统研究了催化剂表面元素分布,几何与电子结构同炔烃半加氢反应的构效关系,发现了高熵合金表面结构会显著影响催化剂表面吸附能,从而达到调节不同种类炔烃半加氢选择性的目的。
通过溶液法合成了组成可调的Pdx-HEAs(x=2–27%)高熵合金纳米晶,研究了由组分诱导产生的表面应力与炔烃半加氢反应之间的构效关系。研究发现,催化剂表面应力导致不同元素之间发生强的电子相互作用,催化活性中心局域电子结构发生显著变化,炔烃半加氢反应的选择性与高熵合金中钯的比例存在着“火山”型趋势。
发展原位电镜方法研究了MnFeCoNiCu五元高熵合金在氧气诱导下的形貌与结构演变,定量分析了其在演变过程中颗粒粒径和壳层厚度随时间或温度的变化关系,深入研究了不同元素在颗粒演变中的迁移过程。
本论文通过对高熵合金催化剂在不同环境下的相结构,尤其是次近表面原子结构的深入研究,明确了其与催化反应之间的构效关系。这些研究结果有望推动高熵合金在催化等领域的进一步应用。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[2] YAO Y, DONG Q, BROZENA A, et al. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery [J]. Science, 2022, 376(6589): eabn3103.
[3] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys [J]. Nature Reviews Materials, 2019, 4(8): 515-34.
[4] CHANG X, ZENG M, LIU K, et al. Phase Engineering of High-Entropy Alloys [J]. Adv Mater, 2020, 32(14): e1907226.
[5] LI H, LAI J, LI Z, et al. Multi‐Sites Electrocatalysis in High‐Entropy Alloys [J]. Advanced Functional Materials, 2021, 31(47).
[6] XIN Y, LI S, QIAN Y, et al. High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities [J]. ACS Catalysis, 2020, 10(19): 11280-306.
[7] PAN Q, ZHANG L, FENG R, et al. Gradient cell–structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374(6570): 984-9.
[8] SHI P, LI R, LI Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373(6557): 912-8.
[9] CHEN X, WANG Q, CHENG Z, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592(7856): 712-6.
[10] DING Q, ZHANG Y, CHEN X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574(7777): 223-7.
[11] REN J, ZHANG Y, ZHAO D, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing [J]. Nature, 2022, 608(7921): 62-8.
[12] BROGE N L N, BONDESGAARD M, SONDERGAARD-PEDERSEN F, et al. Autocatalytic Formation of High-Entropy Alloy Nanoparticles [J]. Angew Chem Int Ed Engl, 2020.
[13] GLASSCOTT M W, PENDERGAST A D, GOINES S, et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis [J]. Nat Commun, 2019, 10(1): 2650.
[14] YANG T, ZHAO Y L, TONG Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362(6417): 933-7.
[15] CHEN W, LUO S, SUN M, et al. High-Entropy Intermetallic PtRhBiSnSb Nanoplates for Highly Efficient Alcohol Oxidation Electrocatalysis [J]. Advanced Materials, 2022, n/a(n/a): 2206276.
[16] JIA Z, YANG T, SUN L, et al. A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution [J]. Advanced Materials, 2020, 32(21): 2000385.
[17] WANG T, CHEN H, YANG Z, et al. High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis [J]. J Am Chem Soc, 2020, 142(10): 4550-4.
[18] LI T, YAO Y, HUANG Z, et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion [J]. Nature Catalysis, 2021, 4(1): 62-70.
[19] DONG Q, HONG M, GAO J, et al. Rapid Synthesis of High-Entropy Oxide Microparticles [J]. Small, 2022, 18(11): e2104761.
[20] WANG T, CHEN H, YANG Z, et al. High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis [J]. Journal of the American Chemical Society, 2020, 142(10): 4550-4.
[21] CUI M, YANG C, LI B, et al. High‐Entropy Metal Sulfide Nanoparticles Promise High‐Performance Oxygen Evolution Reaction [J]. Advanced Energy Materials, 2020, 11(3).
[22] NEMANI S K, ZHANG B, WYATT B C, et al. High-Entropy 2D Carbide MXenes: TiVNbMoC(3) and TiVCrMoC(3) [J]. ACS Nano, 2021, 15(8): 12815-25.
[23] DU Z, WU C, CHEN Y, et al. High-Entropy Atomic Layers of Transition-Metal Carbides (MXenes) [J]. Adv Mater, 2021, 33(39): e2101473.
[24] LI H, ZHU H, ZHANG S, et al. Nano High‐Entropy Materials: Synthesis Strategies and Catalytic Applications [J]. Small Structures, 2020, 1(2).
[25] YU X, WANG B, WANG C, et al. 2D High-Entropy Hydrotalcites [J]. Small, 2021, 17(45): 2103412.
[26] YAO Y, HUANG Z, LI T, et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters [J]. Proc Natl Acad Sci U S A, 2020, 117(12): 6316-22.
[27] CUI M, YANG C, HWANG S, et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition [J]. Science Advances, 8(4): eabm4322.
[28] YAO Y, HUANG Z, XIE P, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359(6383): 1489-94.
[29] GAO S, HAO S, HUANG Z, et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis [J]. Nature Communications, 2020, 11(1): 2016.
[30] WU S, LIU Y, REN Y, et al. Microwave synthesis of single-phase nanoparticles made of multi-principal element alloys [J]. Nano Research, 2021, 15(6): 4886-92.
[31] QIAO H, SARAY M T, WANG X, et al. Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating [J]. ACS Nano, 2021.
[32] HE T, WANG W, SHI F, et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis [J]. Nature, 2021, 598(7879): 76-81.
[33] XIA Y, XIONG Y, LIM B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? [J]. Angew Chem Int Ed Engl, 2009, 48(1): 60-103.
[34] HUANG X, ZHAO Z, CAO L, et al. High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction [J]. Science, 2015, 348(6240): 1230-4.
[35] LUO M, ZHAO Z, ZHANG Y, et al. PdMo bimetallene for oxygen reduction catalysis [J]. Nature, 2019, 574(7776): 81-5.
[36] ZHAN C, BU L, SUN H, et al. Medium/High-Entropy Amalgamated Core/Shell Nanoplate Achieves Efficient Formic Acid Catalysis for Direct Formic Acid Fuel Cell [J]. Angewandte Chemie International Edition, 2022, n/a(n/a).
[37] TAO L, SUN M, ZHOU Y, et al. A General Synthetic Method for High-Entropy Alloy Subnanometer Ribbons [J]. Journal of the American Chemical Society, 2022, 144(23): 10582-90.
[38] ZHAN C, XU Y, BU L, et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis [J]. Nature Communications, 2021, 12(1): 6261.
[39] LöFFLER T, MEYER H, SAVAN A, et al. Discovery of a Multinary Noble Metal-Free Oxygen Reduction Catalyst [J]. Advanced Energy Materials, 2018, 8(34).
[40] NELLAIAPPAN S, KATIYAR N K, KUMAR R, et al. High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization [J]. ACS Catalysis, 2020, 10(6): 3658-63.
[41] ZHAO H, ZHU Y, YE H, et al. Atomic-Scale Structure Dynamics of Nanocrystals Revealed by In-Situ and Environmental Transmission Electron Microscopy [J]. Adv Mater, 2022: e2206911.
[42] JIANG Y, DUCHAMP M, ANG S J, et al. Dynamics of the fcc-to-bcc phase transition in single-crystalline PdCu alloy nanoparticles [J]. Nat Commun, 2023, 14(1): 104.
[43] YANG Y, LOUISIA S, YU S, et al. Operando studies reveal active Cu nanograins for CO(2) electroreduction [J]. Nature, 2023, 614(7947): 262-9.
[44] OPHUS C. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond [J]. Microsc Microanal, 2019, 25(3): 563-82.
[45] HUANG Z, YAO Y, PANG Z, et al. Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports [J]. Nat Commun, 2020, 11(1): 6373.
[46] SONG B, YANG Y, YANG T T, et al. Revealing High-Temperature Reduction Dynamics of High-Entropy Alloy Nanoparticles via In Situ Transmission Electron Microscopy [J]. Nano Lett, 2021, 21(4): 1742-8.
[47] SONG B, YANG Y, RABBANI M, et al. In Situ Oxidation Studies of High-Entropy Alloy Nanoparticles [J]. ACS Nano, 2020, 14(11): 15131-43.
[48] MORI K, HASHIMOTO N, KAMIUCHI N, et al. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO(2) hydrogenation [J]. Nat Commun, 2021, 12(1): 3884.
[49] LUO M, GUO S. Strain-controlled electrocatalysis on multimetallic nanomaterials [J]. Nature Reviews Materials, 2017, 2(11).
[50] STRASSER P, KOH S, ANNIYEV T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts [J]. Nat Chem, 2010, 2(6): 454-60.
[51] YANG X, WANG Y, TONG X, et al. Strain Engineering in Electrocatalysts: Fundamentals, Progress, and Perspectives [J]. Advanced Energy Materials, 2021, 12(5).
[52] MIAO Y, ZHAO Y, ZHANG S, et al. Strain Engineering: A Boosting Strategy for Photocatalysis [J]. Adv Mater, 2022, 34(29): e2200868.
[53] LIANG J, MA F, HWANG S, et al. Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis [J]. Joule, 2019, 3(4): 956-91.
[54] GAN L, YU R, LUO J, et al. Lattice Strain Distributions in Individual Dealloyed Pt-Fe Catalyst Nanoparticles [J]. J Phys Chem Lett, 2012, 3(7): 934-8.
[55] CHI M, WANG C, LEI Y, et al. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing [J]. Nature Communications, 2015, 6: 8925.
[56] BU L, ZHANG N, GUO S, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis [J]. Science, 2016, 354(6318): 1410-4.
[57] JIN H, XU Z, HU Z Y, et al. Mesoporous Pt@Pt-skin Pt(3)Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction [J]. Nat Commun, 2023, 14(1): 1518.
[58] WU J, QI L, YOU H, et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities [J]. J Am Chem Soc, 2012, 134(29): 11880-3.
[59] XIE P, YAO Y, HUANG Z, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts [J]. Nat Commun, 2019, 10(1): 4011.
[60] YAO Y, LIU Z, XIE P, et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts [J]. Science Advances, 6(11): eaaz0510.
[61] NAKAYA Y, HAYASHIDA E, ASAKURA H, et al. High-Entropy Intermetallics Serve Ultrastable Single-Atom Pt for Propane Dehydrogenation [J]. Journal of the American Chemical Society, 2022, 144(35): 15944-53.
[62] XING F, MA J, SHIMIZU K-I, et al. High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2 [J]. Nature Communications, 2022, 13(1): 5065.
[63] CRESPO-QUESADA M, CARDENAS-LIZANA F, DESSIMOZ A L, et al. Modern Trends in Catalyst and Process Design for Alkyne Hydrogenations [J]. Acs Catal, 2012, 2(8): 1773−86.
[64] HUANG F, DENG Y, CHEN Y, et al. Atomically Dispersed Pd on Nanodiamond/Graphene Hybrid for Selective Hydrogenation of Acetylene [J]. Journal of the American Chemical Society, 2018, 140(41): 13142–6.
[65] TESCHNER D, BORSODI J, WOOTSCH A, et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation [J]. Science, 2008, 320(5872): 86−9.
[66] LIU Y W, WANG B X, FU Q, et al. Polyoxometalate-Based Metal-Organic Framework as Molecular Sieve for Highly Selective Semi-Hydrogenation of Acetylene on Isolated Single Pd Atom Sites [J]. Angew Chem Int Edit, 2021, 60(41): 22522–8.
[67] JIANG L, LIU K, HUNG S-F, et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts [J]. Nature Nanotechnology, 2020, 15(10): 848−53.
[68] WANG X, CHU M, WANG M, et al. Unveiling the Local Structure and Electronic Properties of PdBi Surface Alloy for Selective Hydrogenation of Propyne [J]. ACS Nano, 2022, 16(10): 16869–79.
[69] FENG Q, ZHAO S, WANG Y, et al. Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes [J]. Journal of the American Chemical Society, 2017, 139(21): 7294−301.
[70] ARMBRUSTER M, KOVNIR K, BEHRENS M, et al. Pd-Ga Intermetallic Compounds as Highly Selective Semihydrogenation Catalysts [J]. Journal of the American Chemical Society, 2010, 132(42): 14745−7.
[71] LIU Y, LIU X, FENG Q, et al. Intermetallic NixMy (M = Ga and Sn) Nanocrystals: A Non-precious Metal Catalyst for Semi-Hydrogenation of Alkynes [J]. Advanced Materials, 2016, 28(23): 4747−54.
[72] CUI M J, YANG C P, HWANG S, et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition [J]. Sci Adv, 2022, 8(4): eabm4322.
[73] HAO J, ZHUANG Z, CAO K, et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts [J]. Nature Communications, 2022, 13(1): 2662.
[74] YANG J, HUANG Y, QI H, et al. Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration [J]. Nature Communications, 2022, 13(1): 4244.
[75] DENG L, MIURA H, SHISHIDO T, et al. Elucidating strong metal-support interactions in Pt–Sn/SiO2 catalyst and its consequences for dehydrogenation of lower alkanes [J]. Journal of Catalysis, 2018, 365: 277-91.
[76] DOMINGUEZDOMINGUEZ S, BERENGUERMURCIA A, CAZORLAAMOROS D, et al. Semihydrogenation of phenylacetylene catalyzed by metallic nanoparticles containing noble metals [J]. Journal of Catalysis, 2006, 243(1): 74-81.
[77] WANG Z, YANG L, ZHANG R, et al. Selective hydrogenation of phenylacetylene over bimetallic Pd–Cu/Al2O3 and Pd–Zn/Al2O3 catalysts [J]. Catalysis Today, 2016, 264: 37-43.
[78] CAO Y, SUI Z, ZHU Y, et al. Selective Hydrogenation of Acetylene over Pd-In/Al2O3 Catalyst: Promotional Effect of Indium and Composition-Dependent Performance [J]. ACS Catalysis, 2017, 7(11): 7835-46.
[79] STRASSER P, KOH S, ANNIYEV T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts [J]. Nat Chem, 2010, 2(6): 454–60.
[80] LUO M, GUO S. Strain-controlled electrocatalysis on multimetallic nanomaterials [J]. Nature Reviews Materials, 2017, 2(11): 17059.
[81] ZHANG S, ZHANG X, JIANG G, et al. Tuning nanoparticle structure and surface strain for catalysis optimization [J]. Journal of the American Chemical Society, 2014, 136(21): 7734–9.

所在学位评定分委会
化学
国内图书分类号
O61
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543843
专题理学院_化学系
推荐引用方式
GB/T 7714
刘浩杰. 原子尺度高熵合金纳米晶的表面结构与演变研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032076-刘浩杰-化学系.pdf(21458KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘浩杰]的文章
百度学术
百度学术中相似的文章
[刘浩杰]的文章
必应学术
必应学术中相似的文章
[刘浩杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。