中文版 | English
题名

二硫化钼物相调控优化重金属去除效率和去除机理研究

其他题名
Phase Engineering of Molybdenum Disulfide for the Optimization of Heavy Metal Removal and Mechanism Research
姓名
姓名拼音
HAN Qi
学号
11930735
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
王钟颍
导师单位
环境科学与工程学院
论文答辩日期
2023-05-14
论文提交日期
2023-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着现代工业的发展,水体和土壤中的重金属污染已经成为亟待解决的问题。吸附法作为重金属去除最常用的方法,其进步与发展离不开新型吸附材料的开发。近几年发展迅速的二维纳米功能材料二硫化钼(MoS2),在重金属去除方面的应用受到广泛的关注。其中,MoS2的相态是其最重要的物理性质之一,可能对MoS2的重金属去除性能产生十分重要的影响,但目前尚缺乏系统的研究。本文深入探究了MoS2的相态对重金属的去除性能的影响及其中机理,总结了MoS2与重金属离子作用的规律。在此基础上,探究了MoS2独特的二维纳米孔道性质及其对重金属去除的作用。具体研究内容及结果如下: (1) 通过水热合成的方法控制MoS2的相态组成,成功合成了1T与2H两种相态的MoS2纳米颗粒,通过批次实验和密度泛函理论计算,本研究深入探究了不同相态MoS2对两种不同类型的典型重金属离子Pb(II)和Ag(I)的去除效率和去除机理。研究结果显示,1T相MoS2对于两种类型重金属离子均显示出更高的去除容量和反应活性,这表明了MoS2的1T相在重金属去除中具有优越性。同时,本研究发现干湿状态引起的层间距变化对重金属去除效率具有重要影响,1T相MoS2在干燥后层间距的收缩导致其对Pb(II)和Ag(I)的去除容量分别下降了70%和25%。此外,研究中还具体分析了MoS2去除Pb(II)时表面吸附和沉淀的贡献占比,发现1T-MoS2在厌氧环境下对Pb(II)的去除主要为表面吸附作用,其贡献达90%以上。 (2) 为了探究不同介质中MoS2相态对去除重金属的影响,本研究对比了不同相态MoS2修复含Pb(II)土壤的效果。利用水热合成的1T相、2H相和天然矿物MoS2粉末修复Pb(II)污染土壤,结果表明,不论是土壤中Pb(II)的浸出变化还是植物对Pb(II)的吸收,1T相MoS2均有更好的修复效果,这符合两种相态MoS2与重金属Pb(II)的作用规律。同时,MoS2的加入还缓解了Pb(II)对植物根部的毒性。进一步研究发现,MoS2在土壤修复过程中具有优异的动力学速率,土壤中Pb(II)浸出量的下降速率明显优于Si基和C基材料,这为MoS2的实际应用提供了潜在可能性。 (3) 通过化学剥离的方法制备了单层MoS2纳米片,并探究了其去除重金属Cr(VI)的效率和机理。实验结果表明,单层MoS2纳米片具有高效的去除Cr(VI)能力,其机理主要包括还原、吸附和沉淀三部分。同时,本研究发现单层MoS2纳米片中1T相组分会更优先地与Cr(VI)反应,这再次证明了1T相在重金属去除中具有更高的反应活性。最后,通过重新堆叠单片层MoS2构造层状纳米孔道结构,并利用其层间距干燥收缩现象,最终实现对Cr(III)的捕获、去除和固定。这一探索对深入理解二维材料的结构、性质及环境应用具有十分重要的意义。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review [J]. J Environ Manage, 2011, 92(3): 407-18.
[2] Zhang M, Sun X, Xu J. Heavy metal pollution in the East China Sea: A review [J]. Mar Pollut Bull, 2020, 159: 111473.
[3] Wang X, Sato T, Xing B, et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish [J]. Sci Total Environ, 2005, 350(1-3): 28-37.
[4] Vareda J P, Valente A J M, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review [J]. J Environ Manage, 2019, 246: 101-18.
[5] Nasir A M, Goh P S, Abdullah M S, et al. Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges [J]. Chemosphere, 2019, 232: 96-112.
[6] Antunes I M, Neiva A M R, Albuquerque M T D, et al. Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal) [J]. Environ Geochem Health, 2018, 40: 521-42.
[7] Fernández M R, Martín G, Corzo J, et al. Design and testing of a new diatom-based index for heavy metal pollution [J]. Arch Environ Contam Tox, 2017, 74: 170-92.
[8] Aziz F, Ouazzani N, Mandi L. Assif el mal river: Source of human water consumption and a transfer vector of heavy metals [J]. Desalin Water Treat, 2014, 52: 2863-74.
[9] Hu X F, Jiang Y, Shu Y, et al. Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields [J]. J Geochem Explor, 2014, 147.
[10] Liu G, Tao L, Liu X, et al. Heavy metal speciation and pollution of agricultural soils along jishui river in non-ferrous metal mine area in jiangxi province, China [J]. J Geochem Explor, 2013, 132: 156-63.
[11] Liao J, Chen J, Ru X, et al. Heavy metals in river surface sediments affected with multiple pollution sources, South China: Distribution, enrichment and source apportionment [J]. J Geochem Explor, 2017, 176: 9-19.
[12] Chen Z, Zhao Y, Fan L, et al. Cadmium (cd) localization in tissues of cotton (gossypium hirsutum l.), and its phytoremediation potential for cd-contaminated soils [J]. Bull Environ Contam Tox, 2015, 95: 784-9.
[13] Zhao L, Ding Z, Sima J, et al. Development of phosphate rock integrated with iron amendment for simultaneous immobilization of Zn and Cr(VI) in an electroplating contaminated soil [J]. Chemosphere, 2017, 182: 15-21.
[14] Gorospe J. Growing greens and soiled soil: Trends in heavy metal contamination in vegetable gardens of San Francisco, F, 2012 [C].
[15] Tóth G, Hermann T, da Silva M R, et al. Heavy metals in agricultural soils of the european union with implications for food safety [J]. Environ Int, 2016, 88: 299-309.
[16] Liu C, Wang Q, Jia F, et al. Adsorption of heavy metals on molybdenum disulfide in water: A critical review [J]. J Mol Liq, 2019, 292: 111390.
[17] Hashim M A, Mukhopadhyay S, Sahu J N, et al. Remediation technologies for heavy metal contaminated groundwater [J]. J Environ Manage, 2011, 92 10: 2355-88.
[18] Skyllberg U, Bloom P R, Qian J, et al. Complexation of mercury(II) in soil organic matter: Exafs evidence for linear two-coordination with reduced sulfur groups [J]. Environ Sci Technol, 2006, 40 13: 4174-80.
[19] Calero M, Hernáinz F, Blázquez G, et al. Study of Cr(III) biosorption in a fixed-bed column [J]. J Hazard Mater, 2009, 171: 886-93.
[20] Shahat A, Awual M R, Khaleque M A, et al. Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media [J]. Chem Eng J, 2015, 273: 286-95.
[21] Ayangbenro A, Babalola O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents [J]. Int J Environ Res Public Health, 2017, 14: 94.
[22] Muliwa A M, Leswifi T Y, Onyango M S, et al. Magnetic adsorption separation (mas) process: An alternative method of extracting Cr(VI) from aqueous solution using polypyrrole coated Fe3O4 nanocomposites [J]. Sep Purif Technol, 2016, 158: 250-8.
[23] Bao S, Tang L, Li K, et al. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent [J]. J Colloid Interface Sci, 2016, 462: 235-42.
[24] Renu, Agarwal M, Singh K. Heavy metal removal from wastewater using various adsorbents: A review [J]. J Water Reuse Desalin, 2016, 7(4): 387-419.
[25] Choi H J, Yu S W, Kim K H. Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions [J]. J Taiwan Inst Chem Eng, 2016, 63: 482-9.
[26] He S, Li Y, Weng L, et al. Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters [J]. Sci Total Environ, 2018, 637-638: 69-78.
[27] Khandaker S, Toyohara Y, Kamida S, et al. Effective removal of cesium from wastewater solutions using an innovative low-cost adsorbent developed from sewage sludge molten slag [J]. J Environ Manage, 2018, 222: 304-15.
[28] Inyang M I, Gao B, Yao Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal [J]. Critical Reviews in Environ Sci Technol, 2016, 46(4): 406-33.
[29] Kołodyńska D, Wnetrzak R, Leahy J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal [J]. Chem Eng J, 2012, 197: 295-305.
[30] Ihsanullah I, Al-Khaldi F A, Abu-Sharkh B, et al. Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents [J]. J Mol Liq, 2015, 204: 255-63.
[31] Hydari S, Sharififard H, Nabavinia M, et al. A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium [J]. Chem Eng J, 2012, 193: 276-82.
[32] Pyrzyńska K. Removal of cadmium from wastewaters with low-cost adsorbents [J]. J Environ Chem Eng, 2019.
[33] Lim A P, Aris A Z. A review on economically adsorbents on heavy metals removal in water and wastewater [J]. Rev Environ Sci Bio, 2014, 13(2): 163-81.
[34] Ye H, Zhu Q, Du D. Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk [J]. Bioresour Technol, 2010, 101 14: 5175-9.
[35] Javadian H, Sorkhrodi F Z, Koutenaei B B. Experimental investigation on enhancing aqueous cadmium removal via nanostructure composite of modified hexagonal type mesoporous silica with polyaniline/polypyrrole nanoparticles [J]. J Ind Eng Chem, 2014, 20(5): 3678-88.
[36] Chen J J, Ahmad A L, Ooi B S. Poly(n-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: Equilibrium isotherms, kinetic and thermodynamic studies [J]. J Environ Chem Eng, 2013, 1: 339-48.
[37] Srivastava S, Agrawal S B, Mondal M K. A review on progress of heavy metal removal using adsorbents of microbial and plant origin [J]. Environ Sci Pollut Res, 2015, 22: 15386-415.
[38] Babu A G, Kim J, Oh B T. Enhancement of heavy metal phytoremediation by alnus firma with endophytic bacillus thuringiensis gdb-1 [J]. J Hazard Mater, 2013, 250-251: 477-83.
[39] Rathinam A M M, Maharshi B, Janardhanan S K, et al. Biosorption of cadmium metal ion from simulated wastewaters using hypnea valentiae biomass: A kinetic and thermodynamic study [J]. Bioresour Technol, 2010, 101 5: 1466-70.
[40] Visa M, Duta A. TiO2/fly ash novel substrate for simultaneous removal of heavy metals and surfactants [J]. Chem Eng J, 2013, 223: 860-8.
[41] Cao C, Qu J, Yan W, et al. Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: Adsorption property and mechanism [J]. Langmuir, 2012, 28(9): 4573-9.
[42] Gusain R, Kumar N, Fosso-Kankeu E, et al. Efficient removal of Pb(II) and Cd(II) from industrial mine water by a hierarchical MoS2/SH-MWCNT nanocomposite [J]. ACS Omega, 2019, 4(9): 13922-35.
[43] He P, Zhao X, Luo F, et al. Magnetically recyclable Fe3O4 doped flower-like MoS2: Efficient removal of elemental mercury [J]. Fuel, 2020, 282: 118728.
[44] Acar Y B, Alshawabkeh A N. Principles of electrokinetic remediation [J]. Environ Sci Technol, 1993, 27: 2638-47.
[45] Cai Z-p, Doren J, Fang Z-q, et al. Improvement in electrokinetic remediation of pb-contaminated soil near lead acid battery factory [J]. T Nonferr Metal Soc, 2015, 25: 3088-95.
[46] Khalid S, Shahid M, Niazi N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils [J]. J Geochem Explor, 2017, 182: 247-68.
[47] Rovira C, Whangbo M H. Factors governing the charge density wave patterns of layered transition-metal compounds of octahedral coordination with d2 and d3 electron counts [J]. Inorg Chem, 1993, 32: 4094-7.
[48] Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides [J]. Chem Soc Rev, 2015, 44(9): 2702-12.
[49] Chou S S, Sai N, Lu P, et al. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide [J]. Nat Commun, 2015, 6.
[50] Wypych F, Schöllhorn R. 1T-MoS2, a new metallic modification of molybdenum disulfide [J]. Chem Commun, 1992, (19): 1386-8.
[51] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nat Nanotechnol, 2012, 7(11): 699-712.
[52] Fang Y, Hu X, Zhao W, et al. Structural determination and nonlinear optical properties of new 1T‴-type MoS2 compound [J]. J Am Chem Soc, 2019, 141(2): 790-3.
[53] Coleman J N, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials [J]. Science, 2011, 331(6017): 568-71.
[54] Zeng Z, Yin Z, Huang X, et al. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication [J]. Angew Chem Int Ed, 2011, 50 47: 11093-7.
[55] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2 [J]. Nano Lett, 2011, 11 12: 5111-6.
[56] Liu L, Wu J, Wu L, et al. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers [J]. Nat Mater, 2018, 17: 1108-14.
[57] He H, Lu P, Wu L, et al. Structural properties and phase transition of na adsorption on monolayer MoS2 [J]. Nanoscale Res Lett, 2016, 11(1): 330.
[58] Zheng Y, Huang Y, Shu H B, et al. The effect of lithium adsorption on the formation of 1T-MoS2 phase based on first-principles calculation [J]. Phys Lett A, 2016, 380: 1767-71.
[59] Kan M, Wang J Y, Li X W, et al. Structures and phase transition of a MoS2 monolayer [J]. J Physi Chem C, 2014, 118(3): 1515-22.
[60] Voiry D, Salehi M, Silva R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction [J]. Nano Lett, 2013, 13 12: 6222-7.
[61] Ding Q, Meng F, English C R, et al. Efficient photoelectrochemical hydrogen generation using heterostructures of si and chemically exfoliated metallic MoS2 [J]. J Am Chem Soc, 2014, 136 24: 8504-7.
[62] Sun L, Yan X, Zheng J, et al. Layer-dependent chemically induced phase transition of two-dimensional MoS2 [J]. Nano Lett, 2018, 18 6: 3435-40.
[63] Kappera R, Voiry D, Yalcin S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors [J]. Nat Mater, 2014, 13 12: 1128-34.
[64] Wang L, Xu Z, Wang W, et al. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets [J]. J Am Chem Soc, 2014, 136 18: 6693-7.
[65] Tan S J R, Abdelwahab I, Ding Z, et al. Chemical stabilization of 1T' phase transition metal dichalcogenides with giant optical kerr nonlinearity [J]. J Am Chem Soc, 2017, 139 6: 2504-11.
[66] Zhang R, Tsai I L, Chapman J, et al. Superconductivity in potassium-doped metallic polymorphs of MoS2 [J]. Nano Lett, 2015, 16 1: 629-36.
[67] Gao P, Wang L, Zhang Y Y, et al. Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2 [J]. ACS Nano, 2015, 9 11: 11296-301.
[68] Lin Z, Liu Y, Halim U, et al. Solution-processable 2d semiconductors for high-performance large-area electronics [J]. Nature, 2018, 562: 254-8.
[69] Katagiri Y, Nakamura T, Ishii A, et al. Gate-tunable atomically thin lateral MoS2 schottky junction patterned by electron beam [J]. Nano Lett, 2016, 16 6: 3788-94.
[70] Kang Y, Najmaei S, Liu Z, et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer [J]. Adv Mater, 2014, 26.
[71] Cai L, He J, Liu Q, et al. Vacancy-induced ferromagnetism of MoS2 nanosheets [J]. J Am Chem Soc, 2015, 137 7: 2622-7.
[72] Zhu L, Zhang T, Sun Z, et al. Thermal conductivity of biaxial-strained MoS2: Sensitive strain dependence and size-dependent reduction rate [J]. Nanotechnology, 2015, 26.
[73] Conley H J, Wang B, Ziegler J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2 [J]. Nano Lett, 2013, 13(8): 3626-30.
[74] Tao P, Guo H, Yang T, et al. Strain-induced magnetism in MoS2 monolayer with defects [J]. J Appl Phys, 2013, 115: 054305.
[75] Hu T, Li R, Dong J M. A new (2×1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations [J]. J Chem Phys, 2013, 139 17: 174702.
[76] Song S, Keum D H, Cho S, et al. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain [J]. Nano Lett, 2016, 16 1: 188-93.
[77] Wang S, Wang X, Warner J H. All chemical vapor deposition growth of MoS2:H-BN vertical van der waals heterostructures [J]. ACS Nano, 2015, 9 5: 5246-54.
[78] Voiry D, Yang J, Chhowalla M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction [J]. Adv Mater, 2016, 28.
[79] Acerce M, Voiry D, Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials [J]. Nat Nanotechnol, 2015, 10 4: 313-8.
[80] Zheng J, Zhang H, Dong S, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide [J]. Nat Commun, 2014, 5.
[81] Muratore C, Varshney V, Gengler J J, et al. Thermal anisotropy in nano-crystalline MoS2 thin films [J]. Phys Chem Chem Phys, 2014, 16 3: 1008-14.
[82] Martella C, Mennucci C, Cinquanta E, et al. Anisotropic MoS2 nanosheets grown on self-organized nanopatterned substrates [J]. Adv Mater, 2017, 29.
[83] Tan S M, Ambrosi A, Sofer Z, et al. Pristine basal- and edge-plane-oriented molybdenite MoS2 exhibiting highly anisotropic properties [J]. Chemistry, 2015, 21 19: 7170-8.
[84] Zhao Q, Guo Y, Zhou Y, et al. Flexible and anisotropic properties of monolayer MX2(M=Tc and Re; X=S, Se) [J]. J Phys Chem C, 2017, 121.
[85] Furlan K P, Mello J D B d, Klein A N. Self-lubricating composites containing MoS2: A review [J]. Tribol Int, 2017, 120: 280-98.
[86] Zhou Z, Cui Y, Tan P, et al. Optical and electrical properties of two-dimensional anisotropic materials [J]. J Semicond, 2019, 40.
[87] Chia X, Eng A Y S, Ambrosi A, et al. Electrochemistry of nanostructured layered transition-metal dichalcogenides [J]. Chem Rev, 2015, 115 21: 11941-66.
[88] Heiranian M, Farimani A B, Aluru N R. Water desalination with a single-layer MoS2 nanopore [J]. Nat Commun, 2015, 6(1): 8616.
[89] Liu Y, Zhao Y, Zhang X, et al. MoS2-based membranes in water treatment and purification [J]. Chem Eng J, 2021: 130082.
[90] Ran J, Zhang P, Chu C, et al. Ultrathin lamellar MoS2 membranes for organic solvent nanofiltration [J]. J Membr Sci, 2020.
[91] Hirunpinyopas W, Prestat E, Worrall S D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes [J]. ACS Nano, 2017, 11 11: 11082-90.
[92] Zhao H, Liu G, Zhang M, et al. Bioinspired modification of molybdenum disulfide nanosheets to prepare a loose nanofiltration membrane for wastewater treatment [J]. J Water Process Eng, 2020: 101759.
[93] Zhang P, Gong J L, Zeng G M, et al. Novel “loose” GO/ MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure [J]. J Membr Sci, 2018, 574.
[94] Ma J, Tang X, He Y, et al. Robust stable MoS2/GO filtration membrane for effective removal of dyes and salts from water with enhanced permeability [J]. Desalination, 2020, 480: 114328.
[95] Yang S, Zhang K. Few-layers MoS2 nanosheets modified thin film composite nanofiltration membranes with improved separation performance [J]. J Membr Sci, 2020, 595: 117526.
[96] Ma M Q, Zhang C, Zhu C Y, et al. Nanocomposite membranes embedded with functionalized MoS2 nanosheets for enhanced interfacial compatibility and nanofiltration performance [J]. J Membr Sci, 2019, 591: 117316.
[97] Zhang H, Gong X Y, Li W X, et al. Thin-film nanocomposite membranes containing tannic acid-Fe3+ modified MoS2 nanosheets with enhanced nanofiltration performance [J]. J Membr Sci, 2020, 616: 118605.
[98] Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting [J]. Chem Soc Rev, 2015, 44 15: 5148-80.
[99] Jaramillo T F, Jørgensen K P, Bonde J L, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts [J]. Science, 2007, 317: 100-2.
[100] Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction [J]. J Am Chem Soc, 2011, 133 19: 7296-9.
[101] Kibsgaard J, Chen Z, Reinecke B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis [J]. Nat Mater, 2012, 11(11): 963-9.
[102] Ye G, Gong Y, Lin J, et al. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction [J]. Nano Lett, 2016, 16 2: 1097-103.
[103] Voiry D, Fullon R, Yang J, et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen [J]. Nat Mater, 2016, 15 9: 1003-9.
[104] Lukowski M A, Daniel A S, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets [J]. J Am Chem Soc, 2013, 135 28: 10274-7.
[105] Yin Y, Han J, Zhang Y, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets [J]. J Am Chem Soc, 2016, 138 25: 7965-72.
[106] Wang L, Liu X, Luo J, et al. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution [J]. Angew Chem Int Ed, 2017, 56 26: 7610-4.
[107] Yan S, Qiao W, He X, et al. Enhancement of magnetism by structural phase transition in MoS2 [J]. Appl Phys Lett, 2015, 106: 012408.
[108] Chen K, Deng J, Ding X, et al. Ferromagnetism of 1T'- MoS2 nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width [J]. J Am Chem Soc, 2018, 140.
[109] He J, Hartmann G, Lee M, et al. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries [J]. Energy Environ Sci, 2019.
[110] Lin X, Xue D, Zhao L, et al. In-situ growth of 1T/2H-MoS2 on carbon fiber cloth and the modification of SnS2 nanoparticles: A three-dimensional heterostructure for high-performance flexible lithium-ion batteries [J]. Chem Eng J, 2018, 356.
[111] Chang K, Hai X, Pang H, et al. Targeted synthesis of 2H- and 1T- phase MoS2 monolayers for catalytic hydrogen evolution [J]. Adv Mater, 2016, 28.
[112] Liu Q, Li X, He Q, et al. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution [J]. Small, 2015, 1141: 5556-64.
[113] Jia F, Wang Q, Wu J, et al. Two-dimensional molybdenum disulfide as a superb adsorbent for removing Hg2+ from water [J]. ACS Sustainable Chem Eng, 2017, 5.
[114] Liu C, Shilin Z, Yang B, et al. Simultaneous removal of Hg2+, Pb2+ and Cd2+ from aqueous solutions on multifunctional MoS2 [J]. J Mol Liq, 2019, 296: 111987.
[115] Wang Z, Tu Q, Sim A, et al. Superselective removal of lead from water by two-dimensional MoS2 nanosheets and layer-stacked membranes [J]. Environ Sci Technol, 2020:12364.
[116] Luo J, Fu K, Sun M, et al. Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2 [J]. ACS Appl Mater Interfaces, 2019, 11(42): 38789-97.
[117] Jayadharan Salini A N, Ramachandran A, Sadasivakurup S, et al. Versatile MoS2 hollow nanoroses for a quick-witted removal of Hg(II), Pb(II) and Ag(I) from water and the mechanism: Affinity or electrochemistry? [J]. Appl Mater Today, 2020, 20: 100642.
[118] Liu Y, Ma C, Zhang X, et al. Role of structural characteristics of MoS2 nanosheets on Pb2+ removal in aqueous solution [J]. Environ Technol Innovation, 2021, 22: 101385.
[119] Kumar N, Fosso-Kankeu E, Ray S S. Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems [J]. ACS Appl Mater Interfaces, 2019, 11(21): 19141-55.
[120] Liu C, Zeng S, Yang B, et al. Simultaneous removal of Hg2+, Pb2+ and Cd2+ from aqueous solutions on multifunctional MoS2 [J]. J Mol Liq, 2019, 296: 111987.
[121] Wang J, Zhang W, Yue X, et al. One-pot synthesis of multifunctional magnetic Ferrite–MoS2–Carbon dot nanohybrid adsorbent for efficient Pb(II) removal [J]. J Mater Chem A, 2016, 4(10): 3893-900.
[122] Pytlakowska K, Kocot K, Hachuła B, et al. Determination of heavy metal ions by energy dispersive X-ray fluorescence spectrometry using reduced graphene oxide decorated with molybdenum disulfide as solid adsorbent [J]. Spectrochim Acta, Part B, 2020, 167: 105846.
[123] Zhu H, Tan X, Tan L, et al. Biochar derived from sawdust embedded with molybdenum disulfide for highly selective removal of Pb2+ [J]. ACS Appl Nano Mater, 2018, 1(6): 2689-98.
[124] Zolgharnein J, Rastgordani M. Multivariate optimization and characterization of simultaneous removal of binary mixture of Cu(II) and Pb(II) using Fe3O4@MoS2 nanoparticles [J]. J Chemom, 2018, 32(9): e3043.
[125] Wang Q, Peng L, Gong Y, et al. Mussel-inspired Fe3O4@polydopamine(PDA)-MoS2 core–shell nanosphere as a promising adsorbent for removal of Pb2+ from water [J]. J Mol Liq, 2019, 282: 598-605.
[126] Pandey S, Fosso-Kankeu E, Spiro M J, et al. Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite [J]. Mater Today Chem, 2020, 18: 100376.
[127] Wang Z, Zhang J, Wen T, et al. Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid [J]. Sci Total Environ, 2020, 699: 134341.
[128] Sun L, Ying Y, Huang H, et al. Ultrafast molecule separation through layered WS2 nanosheet membranes [J]. ACS Nano, 2014, 86: 6304-11.
[129] Keshebo D L, Hu C, Hu C C, et al. Effect of composition of few-layered transition metal dichalcogenide nanosheets on separation mechanism of hydrogen selective membranes [J]. J Membr Sci, 2021, 634: 119419.
[130] Zhao X, Li J, Mu S, et al. Efficient removal of mercury ions with MoS2-nanosheet-decorated PVDF composite adsorption membrane [J]. Environ Pollut, 2020, 268: 115705.
[131] Zhang W, Zhang X, Zhu Q, et al. High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber [J]. J Colloid Interface Sci, 2020.
[132] Niu Y, Wang R, Jiao W, et al. MoS2 graphene fiber based gas sensing devices [J]. Carbon, 2015, 95: 34-41.
[133] Fausey C L, Zucker I, Lee D, et al. Tunable molybdenum disulfide-enabled fiber mats for high-efficiency removal of mercury from water [J]. ACS Appl Mater Interfaces, 2020.
[134] Zhan W, Jia F, Yuan Y, et al. Controllable incorporation of oxygen in MoS2 for efficient adsorption of Hg2+ in aqueous solutions [J]. J Hazard Mater, 2020, 384: 121382.
[135] Krishna Kumar A S, Jiang S J, Warchoł J K. Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III) [J]. ACS Omega, 2017, 2(9): 6187-200.
[136] Wang C, Lin G, Zhao J, et al. Enhancing Au(III) adsorption capacity and selectivity via engineering mof with mercapto-1,3,4-thiadiazole [J]. Chem Eng J, 2020, 388: 124221.
[137] Dong L, Li Q, Liao Q, et al. Characterization of molybdenum disulfide nanomaterial and its excellent sorption abilities for two heavy metals in aqueous media [J]. Sep Sci Technol, 2018, 54: 847-59.
[138] Kumar N, Fosso Kankeu E, Ray S S. Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems [J]. ACS Appl Mater Interfaces, 2019, 11 21: 19141-55.
[139] Mário E, Liu C, Ezugwu C, et al. Molybdenum disulfide/montmorillonite composite as a highly efficient adsorbent for mercury removal from wastewater [J]. Appl Clay Sci, 2019, 184: 105370.
[140] Krishna Kumar A S, Jiang S J, Warchol J K. Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III) [J]. ACS Omega, 2017, 2(9): 6187-200.
[141] Qiu J, Liu F, Cheng S, et al. Recyclable nanocomposite of flowerlike MoS2@hybrid acid-doped pani immobilized on porous pan nanofibers for the efficient removal of Cr(VI) [J]. ACS Sustainable Chem Eng, 2018, 6(1): 447-56.
[142] Bai X, Du Y, Hu X, et al. Synergy removal of Cr(VI) and organic pollutants over rp-MoS2/rGO photocatalyst [J]. Appl Catal B, 2018, 239: 204-13.
[143] Sun K, Jia F, Yang B, et al. Synergistic effect in the reduction of Cr(VI) with Ag-MoS2 as photocatalyst [J]. Appl Mater Today, 2020, 18: 100453.
[144] Chen H, Zhang Z, Zhong X, et al. Constructing MoS2/lignin-derived carbon nanocomposites for highly efficient removal of Cr(VI) from aqueous environment [J]. J Hazard Mater, 2021, 408: 124847.
[145] Li Z, Fan R, Hu Z, et al. Ethanol introduced synthesis of ultrastable 1T- MoS2 for removal of Cr(VI) [J]. J Hazard Mater, 2020, 394: 122525.
[146] Wang Z, Zhang Y J, Liu M, et al. Oxidation suppression during hydrothermal phase reversion allows synthesis of monolayer semiconducting MoS2 in stable aqueous suspension [J]. Nanoscale, 2017, 9(17): 5398-403.
[147] Fan X, Xu P, Zhou D, et al. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion [J]. Nano Lett, 2015, 15(9): 5956-60.
[148] Chao Y, Zhu W, Wu X, et al. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic [J]. Chem Eng J, 2014, 243: 60-7.
[149] Geng X, Sun W, Wu W, et al. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction [J]. Nat Commun, 2016, 7: 10672.
[150] Wang D, Zhang X, Bao S, et al. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution [J]. J Mater Chem A, 2017, 5(6): 2681-8.
[151] Wang L, Liu X, Luo J, et al. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution [J]. Angew Chem Int Ed, 2017, 56(26): 7610-4.
[152] Hu L, Ren Y, Yang H, et al. Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications [J]. ACS Appl Mater Interfaces, 2014, 6(16): 14644-52.
[153] Yang L, Zhou W, Hou D, et al. Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction [J]. Nanoscale, 2015, 7(12): 5203-8.
[154] Li H, Wang Y, Chen G, et al. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property [J]. Nanoscale, 2016, 8(11): 6101-9.
[155] Liu Y, Li Y, Peng F, et al. 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution [J]. Appl Catal B, 2019, 241: 236-45.
[156] Yan Y, Xia B, Ge X, et al. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution [J]. ACS Appl Mater Interfaces, 2013, 5(24): 12794-8.
[157] Midya A, Ghorai A, Mukherjee S, et al. Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications [J]. J Mater Chem A, 2016, 4(12): 4534-43.
[158] Liu S, Jing B, Nie C, et al. Piezoelectric activation of peroxymonosulfate by MoS2 nanoflowers for the enhanced degradation of aqueous organic pollutants [J]. Environ Sci: Nano, 2021.
[159] Liu C, Kong D, Hsu P C, et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light [J]. Nat Nanotechnol, 2016, 11(12): 1098-104.
[160] Lin Y C, Dumcenco D O, Huang Y S, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 [J]. Nat Nanotechnol, 2014, 9(5): 391-6.
[161] Wang Z, Sim A, Urban J J, et al. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: Performance and mechanisms [J]. Environ Sci Technol, 2018, 52(17): 9741-8.
[162] Wang Z, von dem Bussche A, Qiu Y, et al. Chemical dissolution pathways of MoS2 nanosheets in biological and environmental media [J]. Environ Sci Technol, 2016, 50(13): 7208-17.
[163] Wang Z, Tu Q, Zheng S, et al. Understanding the aqueous stability and filtration capability of MoS2 membranes [J]. Nano Lett, 2017, 17(12): 7289-98.
[164] Cachada A, Rocha-Santos T, Duarte A C. Chapter 1-Soil and Pollution: An introduction to the main issues [M]//Duarte A C, Cachada A, Rocha-Santos T. Soil pollution. Academic Press. 2018: 1-28.
[165] Yue L, Chen F, Yu K, et al. Early development of apoplastic barriers and molecular mechanisms in juvenile maize roots in response to La2O3 nanoparticles [J]. Sci Total Environ, 2019, 653: 675-83.
[166] Chen X, Lam K F, Zhang Q, et al. Synthesis of highly selective magnetic mesoporous adsorbent [J]. J Phys Chem C, 2009, 113(22): 9804-13.
[167] Lin Y S, Haynes C L. Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles [J]. Chem Mater, 2009, 21(17): 3979-86.
[168] Chen X, Lam K F, Yeung K L. Selective removal of chromium from different aqueous systems using magnetic MCM-41 nanosorbents [J]. Chem Eng J, 2011, 172(2): 728-34.
[169] Shevchenko N, Zaitsev V, Walcarius A. Bifunctionalized mesoporous silicas for Cr(VI) reduction and concomitant Cr(III) immobilization [J]. Environ Sci Technol, 2008, 42 18: 6922-8.
[170] Tang Y, Webb S M, Estes E R, et al. Chromium(III) oxidation by biogenic manganese oxides with varying structural ripening [J]. Environ Sci Processes Impacts, 2014, 16(9): 2127-36.
[171] Richard R P, Fendorf S, Fendorf M. Reduction of hexavalent chromium by amorphous iron sulfide [J]. Environ Sci Technol, 1997, 31: 2039-44.
[172] Wittbrodt P R, Palmer C D. Reduction of Cr(VI) in the presence of excess soil fulvic acid [J]. Environ Sci Technol, 1995, 29 1: 255-63.
[173] Wang J, Wang X, Zhao G, et al. Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions [J]. Chem Eng J, 2018, 334: 569-78.
[174] Cai W, Dionysiou D D, Fu F, et al. Ctab-intercalated molybdenum disulfide nanosheets for enhanced simultaneous removal of Cr(VI) and Ni(II) from aqueous solutions [J]. J Hazard Mater, 2020, 396: 122728.
[175] Wang J, Wang P, Wang H, et al. Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI) [J]. ACS Sustainable Chem Eng, 2017, 5.
[176] Yang S, Li Q, Chen L, et al. Ultrahigh sorption and reduction of Cr(VI) by two novel core-shell composites combined with Fe3O4 and MoS2 [J]. J Hazard Mater, 2019, 379: 120797.
[177] Qiu J, Liu F, Cheng S, et al. Recyclable nanocomposite of flowerlike MoS2@hybrid acid-doped pani immobilized on porous pan nanofibers for the efficient removal of Cr(VI) [J]. ACS Sustainable Chem Eng, 2018, 6: 447-56.
[178] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2 [J]. Nano Lett, 2011, 11(12): 5111-6.
[179] Wang J, Wang P, Wang H, et al. Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI) [J]. ACS Sustainable Chem Eng, 2017, 5(8): 7165-74

所在学位评定分委会
物理学
国内图书分类号
X52
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543845
专题工学院_环境科学与工程学院
推荐引用方式
GB/T 7714
韩琦. 二硫化钼物相调控优化重金属去除效率和去除机理研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930735-韩琦-环境科学与工程学(16024KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[韩琦]的文章
百度学术
百度学术中相似的文章
[韩琦]的文章
必应学术
必应学术中相似的文章
[韩琦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。