[1] Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review [J]. J Environ Manage, 2011, 92(3): 407-18.
[2] Zhang M, Sun X, Xu J. Heavy metal pollution in the East China Sea: A review [J]. Mar Pollut Bull, 2020, 159: 111473.
[3] Wang X, Sato T, Xing B, et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish [J]. Sci Total Environ, 2005, 350(1-3): 28-37.
[4] Vareda J P, Valente A J M, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review [J]. J Environ Manage, 2019, 246: 101-18.
[5] Nasir A M, Goh P S, Abdullah M S, et al. Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges [J]. Chemosphere, 2019, 232: 96-112.
[6] Antunes I M, Neiva A M R, Albuquerque M T D, et al. Potential toxic elements in stream sediments, soils and waters in an abandoned radium mine (central Portugal) [J]. Environ Geochem Health, 2018, 40: 521-42.
[7] Fernández M R, Martín G, Corzo J, et al. Design and testing of a new diatom-based index for heavy metal pollution [J]. Arch Environ Contam Tox, 2017, 74: 170-92.
[8] Aziz F, Ouazzani N, Mandi L. Assif el mal river: Source of human water consumption and a transfer vector of heavy metals [J]. Desalin Water Treat, 2014, 52: 2863-74.
[9] Hu X F, Jiang Y, Shu Y, et al. Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields [J]. J Geochem Explor, 2014, 147.
[10] Liu G, Tao L, Liu X, et al. Heavy metal speciation and pollution of agricultural soils along jishui river in non-ferrous metal mine area in jiangxi province, China [J]. J Geochem Explor, 2013, 132: 156-63.
[11] Liao J, Chen J, Ru X, et al. Heavy metals in river surface sediments affected with multiple pollution sources, South China: Distribution, enrichment and source apportionment [J]. J Geochem Explor, 2017, 176: 9-19.
[12] Chen Z, Zhao Y, Fan L, et al. Cadmium (cd) localization in tissues of cotton (gossypium hirsutum l.), and its phytoremediation potential for cd-contaminated soils [J]. Bull Environ Contam Tox, 2015, 95: 784-9.
[13] Zhao L, Ding Z, Sima J, et al. Development of phosphate rock integrated with iron amendment for simultaneous immobilization of Zn and Cr(VI) in an electroplating contaminated soil [J]. Chemosphere, 2017, 182: 15-21.
[14] Gorospe J. Growing greens and soiled soil: Trends in heavy metal contamination in vegetable gardens of San Francisco, F, 2012 [C].
[15] Tóth G, Hermann T, da Silva M R, et al. Heavy metals in agricultural soils of the european union with implications for food safety [J]. Environ Int, 2016, 88: 299-309.
[16] Liu C, Wang Q, Jia F, et al. Adsorption of heavy metals on molybdenum disulfide in water: A critical review [J]. J Mol Liq, 2019, 292: 111390.
[17] Hashim M A, Mukhopadhyay S, Sahu J N, et al. Remediation technologies for heavy metal contaminated groundwater [J]. J Environ Manage, 2011, 92 10: 2355-88.
[18] Skyllberg U, Bloom P R, Qian J, et al. Complexation of mercury(II) in soil organic matter: Exafs evidence for linear two-coordination with reduced sulfur groups [J]. Environ Sci Technol, 2006, 40 13: 4174-80.
[19] Calero M, Hernáinz F, Blázquez G, et al. Study of Cr(III) biosorption in a fixed-bed column [J]. J Hazard Mater, 2009, 171: 886-93.
[20] Shahat A, Awual M R, Khaleque M A, et al. Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media [J]. Chem Eng J, 2015, 273: 286-95.
[21] Ayangbenro A, Babalola O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents [J]. Int J Environ Res Public Health, 2017, 14: 94.
[22] Muliwa A M, Leswifi T Y, Onyango M S, et al. Magnetic adsorption separation (mas) process: An alternative method of extracting Cr(VI) from aqueous solution using polypyrrole coated Fe3O4 nanocomposites [J]. Sep Purif Technol, 2016, 158: 250-8.
[23] Bao S, Tang L, Li K, et al. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent [J]. J Colloid Interface Sci, 2016, 462: 235-42.
[24] Renu, Agarwal M, Singh K. Heavy metal removal from wastewater using various adsorbents: A review [J]. J Water Reuse Desalin, 2016, 7(4): 387-419.
[25] Choi H J, Yu S W, Kim K H. Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions [J]. J Taiwan Inst Chem Eng, 2016, 63: 482-9.
[26] He S, Li Y, Weng L, et al. Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters [J]. Sci Total Environ, 2018, 637-638: 69-78.
[27] Khandaker S, Toyohara Y, Kamida S, et al. Effective removal of cesium from wastewater solutions using an innovative low-cost adsorbent developed from sewage sludge molten slag [J]. J Environ Manage, 2018, 222: 304-15.
[28] Inyang M I, Gao B, Yao Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal [J]. Critical Reviews in Environ Sci Technol, 2016, 46(4): 406-33.
[29] Kołodyńska D, Wnetrzak R, Leahy J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal [J]. Chem Eng J, 2012, 197: 295-305.
[30] Ihsanullah I, Al-Khaldi F A, Abu-Sharkh B, et al. Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents [J]. J Mol Liq, 2015, 204: 255-63.
[31] Hydari S, Sharififard H, Nabavinia M, et al. A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium [J]. Chem Eng J, 2012, 193: 276-82.
[32] Pyrzyńska K. Removal of cadmium from wastewaters with low-cost adsorbents [J]. J Environ Chem Eng, 2019.
[33] Lim A P, Aris A Z. A review on economically adsorbents on heavy metals removal in water and wastewater [J]. Rev Environ Sci Bio, 2014, 13(2): 163-81.
[34] Ye H, Zhu Q, Du D. Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk [J]. Bioresour Technol, 2010, 101 14: 5175-9.
[35] Javadian H, Sorkhrodi F Z, Koutenaei B B. Experimental investigation on enhancing aqueous cadmium removal via nanostructure composite of modified hexagonal type mesoporous silica with polyaniline/polypyrrole nanoparticles [J]. J Ind Eng Chem, 2014, 20(5): 3678-88.
[36] Chen J J, Ahmad A L, Ooi B S. Poly(n-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: Equilibrium isotherms, kinetic and thermodynamic studies [J]. J Environ Chem Eng, 2013, 1: 339-48.
[37] Srivastava S, Agrawal S B, Mondal M K. A review on progress of heavy metal removal using adsorbents of microbial and plant origin [J]. Environ Sci Pollut Res, 2015, 22: 15386-415.
[38] Babu A G, Kim J, Oh B T. Enhancement of heavy metal phytoremediation by alnus firma with endophytic bacillus thuringiensis gdb-1 [J]. J Hazard Mater, 2013, 250-251: 477-83.
[39] Rathinam A M M, Maharshi B, Janardhanan S K, et al. Biosorption of cadmium metal ion from simulated wastewaters using hypnea valentiae biomass: A kinetic and thermodynamic study [J]. Bioresour Technol, 2010, 101 5: 1466-70.
[40] Visa M, Duta A. TiO2/fly ash novel substrate for simultaneous removal of heavy metals and surfactants [J]. Chem Eng J, 2013, 223: 860-8.
[41] Cao C, Qu J, Yan W, et al. Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: Adsorption property and mechanism [J]. Langmuir, 2012, 28(9): 4573-9.
[42] Gusain R, Kumar N, Fosso-Kankeu E, et al. Efficient removal of Pb(II) and Cd(II) from industrial mine water by a hierarchical MoS2/SH-MWCNT nanocomposite [J]. ACS Omega, 2019, 4(9): 13922-35.
[43] He P, Zhao X, Luo F, et al. Magnetically recyclable Fe3O4 doped flower-like MoS2: Efficient removal of elemental mercury [J]. Fuel, 2020, 282: 118728.
[44] Acar Y B, Alshawabkeh A N. Principles of electrokinetic remediation [J]. Environ Sci Technol, 1993, 27: 2638-47.
[45] Cai Z-p, Doren J, Fang Z-q, et al. Improvement in electrokinetic remediation of pb-contaminated soil near lead acid battery factory [J]. T Nonferr Metal Soc, 2015, 25: 3088-95.
[46] Khalid S, Shahid M, Niazi N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils [J]. J Geochem Explor, 2017, 182: 247-68.
[47] Rovira C, Whangbo M H. Factors governing the charge density wave patterns of layered transition-metal compounds of octahedral coordination with d2 and d3 electron counts [J]. Inorg Chem, 1993, 32: 4094-7.
[48] Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides [J]. Chem Soc Rev, 2015, 44(9): 2702-12.
[49] Chou S S, Sai N, Lu P, et al. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide [J]. Nat Commun, 2015, 6.
[50] Wypych F, Schöllhorn R. 1T-MoS2, a new metallic modification of molybdenum disulfide [J]. Chem Commun, 1992, (19): 1386-8.
[51] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nat Nanotechnol, 2012, 7(11): 699-712.
[52] Fang Y, Hu X, Zhao W, et al. Structural determination and nonlinear optical properties of new 1T‴-type MoS2 compound [J]. J Am Chem Soc, 2019, 141(2): 790-3.
[53] Coleman J N, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials [J]. Science, 2011, 331(6017): 568-71.
[54] Zeng Z, Yin Z, Huang X, et al. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication [J]. Angew Chem Int Ed, 2011, 50 47: 11093-7.
[55] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2 [J]. Nano Lett, 2011, 11 12: 5111-6.
[56] Liu L, Wu J, Wu L, et al. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers [J]. Nat Mater, 2018, 17: 1108-14.
[57] He H, Lu P, Wu L, et al. Structural properties and phase transition of na adsorption on monolayer MoS2 [J]. Nanoscale Res Lett, 2016, 11(1): 330.
[58] Zheng Y, Huang Y, Shu H B, et al. The effect of lithium adsorption on the formation of 1T-MoS2 phase based on first-principles calculation [J]. Phys Lett A, 2016, 380: 1767-71.
[59] Kan M, Wang J Y, Li X W, et al. Structures and phase transition of a MoS2 monolayer [J]. J Physi Chem C, 2014, 118(3): 1515-22.
[60] Voiry D, Salehi M, Silva R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction [J]. Nano Lett, 2013, 13 12: 6222-7.
[61] Ding Q, Meng F, English C R, et al. Efficient photoelectrochemical hydrogen generation using heterostructures of si and chemically exfoliated metallic MoS2 [J]. J Am Chem Soc, 2014, 136 24: 8504-7.
[62] Sun L, Yan X, Zheng J, et al. Layer-dependent chemically induced phase transition of two-dimensional MoS2 [J]. Nano Lett, 2018, 18 6: 3435-40.
[63] Kappera R, Voiry D, Yalcin S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors [J]. Nat Mater, 2014, 13 12: 1128-34.
[64] Wang L, Xu Z, Wang W, et al. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets [J]. J Am Chem Soc, 2014, 136 18: 6693-7.
[65] Tan S J R, Abdelwahab I, Ding Z, et al. Chemical stabilization of 1T' phase transition metal dichalcogenides with giant optical kerr nonlinearity [J]. J Am Chem Soc, 2017, 139 6: 2504-11.
[66] Zhang R, Tsai I L, Chapman J, et al. Superconductivity in potassium-doped metallic polymorphs of MoS2 [J]. Nano Lett, 2015, 16 1: 629-36.
[67] Gao P, Wang L, Zhang Y Y, et al. Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2 [J]. ACS Nano, 2015, 9 11: 11296-301.
[68] Lin Z, Liu Y, Halim U, et al. Solution-processable 2d semiconductors for high-performance large-area electronics [J]. Nature, 2018, 562: 254-8.
[69] Katagiri Y, Nakamura T, Ishii A, et al. Gate-tunable atomically thin lateral MoS2 schottky junction patterned by electron beam [J]. Nano Lett, 2016, 16 6: 3788-94.
[70] Kang Y, Najmaei S, Liu Z, et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer [J]. Adv Mater, 2014, 26.
[71] Cai L, He J, Liu Q, et al. Vacancy-induced ferromagnetism of MoS2 nanosheets [J]. J Am Chem Soc, 2015, 137 7: 2622-7.
[72] Zhu L, Zhang T, Sun Z, et al. Thermal conductivity of biaxial-strained MoS2: Sensitive strain dependence and size-dependent reduction rate [J]. Nanotechnology, 2015, 26.
[73] Conley H J, Wang B, Ziegler J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2 [J]. Nano Lett, 2013, 13(8): 3626-30.
[74] Tao P, Guo H, Yang T, et al. Strain-induced magnetism in MoS2 monolayer with defects [J]. J Appl Phys, 2013, 115: 054305.
[75] Hu T, Li R, Dong J M. A new (2×1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations [J]. J Chem Phys, 2013, 139 17: 174702.
[76] Song S, Keum D H, Cho S, et al. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain [J]. Nano Lett, 2016, 16 1: 188-93.
[77] Wang S, Wang X, Warner J H. All chemical vapor deposition growth of MoS2:H-BN vertical van der waals heterostructures [J]. ACS Nano, 2015, 9 5: 5246-54.
[78] Voiry D, Yang J, Chhowalla M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction [J]. Adv Mater, 2016, 28.
[79] Acerce M, Voiry D, Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials [J]. Nat Nanotechnol, 2015, 10 4: 313-8.
[80] Zheng J, Zhang H, Dong S, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide [J]. Nat Commun, 2014, 5.
[81] Muratore C, Varshney V, Gengler J J, et al. Thermal anisotropy in nano-crystalline MoS2 thin films [J]. Phys Chem Chem Phys, 2014, 16 3: 1008-14.
[82] Martella C, Mennucci C, Cinquanta E, et al. Anisotropic MoS2 nanosheets grown on self-organized nanopatterned substrates [J]. Adv Mater, 2017, 29.
[83] Tan S M, Ambrosi A, Sofer Z, et al. Pristine basal- and edge-plane-oriented molybdenite MoS2 exhibiting highly anisotropic properties [J]. Chemistry, 2015, 21 19: 7170-8.
[84] Zhao Q, Guo Y, Zhou Y, et al. Flexible and anisotropic properties of monolayer MX2(M=Tc and Re; X=S, Se) [J]. J Phys Chem C, 2017, 121.
[85] Furlan K P, Mello J D B d, Klein A N. Self-lubricating composites containing MoS2: A review [J]. Tribol Int, 2017, 120: 280-98.
[86] Zhou Z, Cui Y, Tan P, et al. Optical and electrical properties of two-dimensional anisotropic materials [J]. J Semicond, 2019, 40.
[87] Chia X, Eng A Y S, Ambrosi A, et al. Electrochemistry of nanostructured layered transition-metal dichalcogenides [J]. Chem Rev, 2015, 115 21: 11941-66.
[88] Heiranian M, Farimani A B, Aluru N R. Water desalination with a single-layer MoS2 nanopore [J]. Nat Commun, 2015, 6(1): 8616.
[89] Liu Y, Zhao Y, Zhang X, et al. MoS2-based membranes in water treatment and purification [J]. Chem Eng J, 2021: 130082.
[90] Ran J, Zhang P, Chu C, et al. Ultrathin lamellar MoS2 membranes for organic solvent nanofiltration [J]. J Membr Sci, 2020.
[91] Hirunpinyopas W, Prestat E, Worrall S D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes [J]. ACS Nano, 2017, 11 11: 11082-90.
[92] Zhao H, Liu G, Zhang M, et al. Bioinspired modification of molybdenum disulfide nanosheets to prepare a loose nanofiltration membrane for wastewater treatment [J]. J Water Process Eng, 2020: 101759.
[93] Zhang P, Gong J L, Zeng G M, et al. Novel “loose” GO/ MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure [J]. J Membr Sci, 2018, 574.
[94] Ma J, Tang X, He Y, et al. Robust stable MoS2/GO filtration membrane for effective removal of dyes and salts from water with enhanced permeability [J]. Desalination, 2020, 480: 114328.
[95] Yang S, Zhang K. Few-layers MoS2 nanosheets modified thin film composite nanofiltration membranes with improved separation performance [J]. J Membr Sci, 2020, 595: 117526.
[96] Ma M Q, Zhang C, Zhu C Y, et al. Nanocomposite membranes embedded with functionalized MoS2 nanosheets for enhanced interfacial compatibility and nanofiltration performance [J]. J Membr Sci, 2019, 591: 117316.
[97] Zhang H, Gong X Y, Li W X, et al. Thin-film nanocomposite membranes containing tannic acid-Fe3+ modified MoS2 nanosheets with enhanced nanofiltration performance [J]. J Membr Sci, 2020, 616: 118605.
[98] Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting [J]. Chem Soc Rev, 2015, 44 15: 5148-80.
[99] Jaramillo T F, Jørgensen K P, Bonde J L, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts [J]. Science, 2007, 317: 100-2.
[100] Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction [J]. J Am Chem Soc, 2011, 133 19: 7296-9.
[101] Kibsgaard J, Chen Z, Reinecke B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis [J]. Nat Mater, 2012, 11(11): 963-9.
[102] Ye G, Gong Y, Lin J, et al. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction [J]. Nano Lett, 2016, 16 2: 1097-103.
[103] Voiry D, Fullon R, Yang J, et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen [J]. Nat Mater, 2016, 15 9: 1003-9.
[104] Lukowski M A, Daniel A S, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets [J]. J Am Chem Soc, 2013, 135 28: 10274-7.
[105] Yin Y, Han J, Zhang Y, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets [J]. J Am Chem Soc, 2016, 138 25: 7965-72.
[106] Wang L, Liu X, Luo J, et al. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution [J]. Angew Chem Int Ed, 2017, 56 26: 7610-4.
[107] Yan S, Qiao W, He X, et al. Enhancement of magnetism by structural phase transition in MoS2 [J]. Appl Phys Lett, 2015, 106: 012408.
[108] Chen K, Deng J, Ding X, et al. Ferromagnetism of 1T'- MoS2 nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width [J]. J Am Chem Soc, 2018, 140.
[109] He J, Hartmann G, Lee M, et al. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries [J]. Energy Environ Sci, 2019.
[110] Lin X, Xue D, Zhao L, et al. In-situ growth of 1T/2H-MoS2 on carbon fiber cloth and the modification of SnS2 nanoparticles: A three-dimensional heterostructure for high-performance flexible lithium-ion batteries [J]. Chem Eng J, 2018, 356.
[111] Chang K, Hai X, Pang H, et al. Targeted synthesis of 2H- and 1T- phase MoS2 monolayers for catalytic hydrogen evolution [J]. Adv Mater, 2016, 28.
[112] Liu Q, Li X, He Q, et al. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution [J]. Small, 2015, 1141: 5556-64.
[113] Jia F, Wang Q, Wu J, et al. Two-dimensional molybdenum disulfide as a superb adsorbent for removing Hg2+ from water [J]. ACS Sustainable Chem Eng, 2017, 5.
[114] Liu C, Shilin Z, Yang B, et al. Simultaneous removal of Hg2+, Pb2+ and Cd2+ from aqueous solutions on multifunctional MoS2 [J]. J Mol Liq, 2019, 296: 111987.
[115] Wang Z, Tu Q, Sim A, et al. Superselective removal of lead from water by two-dimensional MoS2 nanosheets and layer-stacked membranes [J]. Environ Sci Technol, 2020:12364.
[116] Luo J, Fu K, Sun M, et al. Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2 [J]. ACS Appl Mater Interfaces, 2019, 11(42): 38789-97.
[117] Jayadharan Salini A N, Ramachandran A, Sadasivakurup S, et al. Versatile MoS2 hollow nanoroses for a quick-witted removal of Hg(II), Pb(II) and Ag(I) from water and the mechanism: Affinity or electrochemistry? [J]. Appl Mater Today, 2020, 20: 100642.
[118] Liu Y, Ma C, Zhang X, et al. Role of structural characteristics of MoS2 nanosheets on Pb2+ removal in aqueous solution [J]. Environ Technol Innovation, 2021, 22: 101385.
[119] Kumar N, Fosso-Kankeu E, Ray S S. Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems [J]. ACS Appl Mater Interfaces, 2019, 11(21): 19141-55.
[120] Liu C, Zeng S, Yang B, et al. Simultaneous removal of Hg2+, Pb2+ and Cd2+ from aqueous solutions on multifunctional MoS2 [J]. J Mol Liq, 2019, 296: 111987.
[121] Wang J, Zhang W, Yue X, et al. One-pot synthesis of multifunctional magnetic Ferrite–MoS2–Carbon dot nanohybrid adsorbent for efficient Pb(II) removal [J]. J Mater Chem A, 2016, 4(10): 3893-900.
[122] Pytlakowska K, Kocot K, Hachuła B, et al. Determination of heavy metal ions by energy dispersive X-ray fluorescence spectrometry using reduced graphene oxide decorated with molybdenum disulfide as solid adsorbent [J]. Spectrochim Acta, Part B, 2020, 167: 105846.
[123] Zhu H, Tan X, Tan L, et al. Biochar derived from sawdust embedded with molybdenum disulfide for highly selective removal of Pb2+ [J]. ACS Appl Nano Mater, 2018, 1(6): 2689-98.
[124] Zolgharnein J, Rastgordani M. Multivariate optimization and characterization of simultaneous removal of binary mixture of Cu(II) and Pb(II) using Fe3O4@MoS2 nanoparticles [J]. J Chemom, 2018, 32(9): e3043.
[125] Wang Q, Peng L, Gong Y, et al. Mussel-inspired Fe3O4@polydopamine(PDA)-MoS2 core–shell nanosphere as a promising adsorbent for removal of Pb2+ from water [J]. J Mol Liq, 2019, 282: 598-605.
[126] Pandey S, Fosso-Kankeu E, Spiro M J, et al. Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite [J]. Mater Today Chem, 2020, 18: 100376.
[127] Wang Z, Zhang J, Wen T, et al. Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid [J]. Sci Total Environ, 2020, 699: 134341.
[128] Sun L, Ying Y, Huang H, et al. Ultrafast molecule separation through layered WS2 nanosheet membranes [J]. ACS Nano, 2014, 86: 6304-11.
[129] Keshebo D L, Hu C, Hu C C, et al. Effect of composition of few-layered transition metal dichalcogenide nanosheets on separation mechanism of hydrogen selective membranes [J]. J Membr Sci, 2021, 634: 119419.
[130] Zhao X, Li J, Mu S, et al. Efficient removal of mercury ions with MoS2-nanosheet-decorated PVDF composite adsorption membrane [J]. Environ Pollut, 2020, 268: 115705.
[131] Zhang W, Zhang X, Zhu Q, et al. High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber [J]. J Colloid Interface Sci, 2020.
[132] Niu Y, Wang R, Jiao W, et al. MoS2 graphene fiber based gas sensing devices [J]. Carbon, 2015, 95: 34-41.
[133] Fausey C L, Zucker I, Lee D, et al. Tunable molybdenum disulfide-enabled fiber mats for high-efficiency removal of mercury from water [J]. ACS Appl Mater Interfaces, 2020.
[134] Zhan W, Jia F, Yuan Y, et al. Controllable incorporation of oxygen in MoS2 for efficient adsorption of Hg2+ in aqueous solutions [J]. J Hazard Mater, 2020, 384: 121382.
[135] Krishna Kumar A S, Jiang S J, Warchoł J K. Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III) [J]. ACS Omega, 2017, 2(9): 6187-200.
[136] Wang C, Lin G, Zhao J, et al. Enhancing Au(III) adsorption capacity and selectivity via engineering mof with mercapto-1,3,4-thiadiazole [J]. Chem Eng J, 2020, 388: 124221.
[137] Dong L, Li Q, Liao Q, et al. Characterization of molybdenum disulfide nanomaterial and its excellent sorption abilities for two heavy metals in aqueous media [J]. Sep Sci Technol, 2018, 54: 847-59.
[138] Kumar N, Fosso Kankeu E, Ray S S. Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems [J]. ACS Appl Mater Interfaces, 2019, 11 21: 19141-55.
[139] Mário E, Liu C, Ezugwu C, et al. Molybdenum disulfide/montmorillonite composite as a highly efficient adsorbent for mercury removal from wastewater [J]. Appl Clay Sci, 2019, 184: 105370.
[140] Krishna Kumar A S, Jiang S J, Warchol J K. Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III) [J]. ACS Omega, 2017, 2(9): 6187-200.
[141] Qiu J, Liu F, Cheng S, et al. Recyclable nanocomposite of flowerlike MoS2@hybrid acid-doped pani immobilized on porous pan nanofibers for the efficient removal of Cr(VI) [J]. ACS Sustainable Chem Eng, 2018, 6(1): 447-56.
[142] Bai X, Du Y, Hu X, et al. Synergy removal of Cr(VI) and organic pollutants over rp-MoS2/rGO photocatalyst [J]. Appl Catal B, 2018, 239: 204-13.
[143] Sun K, Jia F, Yang B, et al. Synergistic effect in the reduction of Cr(VI) with Ag-MoS2 as photocatalyst [J]. Appl Mater Today, 2020, 18: 100453.
[144] Chen H, Zhang Z, Zhong X, et al. Constructing MoS2/lignin-derived carbon nanocomposites for highly efficient removal of Cr(VI) from aqueous environment [J]. J Hazard Mater, 2021, 408: 124847.
[145] Li Z, Fan R, Hu Z, et al. Ethanol introduced synthesis of ultrastable 1T- MoS2 for removal of Cr(VI) [J]. J Hazard Mater, 2020, 394: 122525.
[146] Wang Z, Zhang Y J, Liu M, et al. Oxidation suppression during hydrothermal phase reversion allows synthesis of monolayer semiconducting MoS2 in stable aqueous suspension [J]. Nanoscale, 2017, 9(17): 5398-403.
[147] Fan X, Xu P, Zhou D, et al. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion [J]. Nano Lett, 2015, 15(9): 5956-60.
[148] Chao Y, Zhu W, Wu X, et al. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic [J]. Chem Eng J, 2014, 243: 60-7.
[149] Geng X, Sun W, Wu W, et al. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction [J]. Nat Commun, 2016, 7: 10672.
[150] Wang D, Zhang X, Bao S, et al. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution [J]. J Mater Chem A, 2017, 5(6): 2681-8.
[151] Wang L, Liu X, Luo J, et al. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution [J]. Angew Chem Int Ed, 2017, 56(26): 7610-4.
[152] Hu L, Ren Y, Yang H, et al. Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications [J]. ACS Appl Mater Interfaces, 2014, 6(16): 14644-52.
[153] Yang L, Zhou W, Hou D, et al. Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction [J]. Nanoscale, 2015, 7(12): 5203-8.
[154] Li H, Wang Y, Chen G, et al. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property [J]. Nanoscale, 2016, 8(11): 6101-9.
[155] Liu Y, Li Y, Peng F, et al. 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution [J]. Appl Catal B, 2019, 241: 236-45.
[156] Yan Y, Xia B, Ge X, et al. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution [J]. ACS Appl Mater Interfaces, 2013, 5(24): 12794-8.
[157] Midya A, Ghorai A, Mukherjee S, et al. Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications [J]. J Mater Chem A, 2016, 4(12): 4534-43.
[158] Liu S, Jing B, Nie C, et al. Piezoelectric activation of peroxymonosulfate by MoS2 nanoflowers for the enhanced degradation of aqueous organic pollutants [J]. Environ Sci: Nano, 2021.
[159] Liu C, Kong D, Hsu P C, et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light [J]. Nat Nanotechnol, 2016, 11(12): 1098-104.
[160] Lin Y C, Dumcenco D O, Huang Y S, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 [J]. Nat Nanotechnol, 2014, 9(5): 391-6.
[161] Wang Z, Sim A, Urban J J, et al. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: Performance and mechanisms [J]. Environ Sci Technol, 2018, 52(17): 9741-8.
[162] Wang Z, von dem Bussche A, Qiu Y, et al. Chemical dissolution pathways of MoS2 nanosheets in biological and environmental media [J]. Environ Sci Technol, 2016, 50(13): 7208-17.
[163] Wang Z, Tu Q, Zheng S, et al. Understanding the aqueous stability and filtration capability of MoS2 membranes [J]. Nano Lett, 2017, 17(12): 7289-98.
[164] Cachada A, Rocha-Santos T, Duarte A C. Chapter 1-Soil and Pollution: An introduction to the main issues [M]//Duarte A C, Cachada A, Rocha-Santos T. Soil pollution. Academic Press. 2018: 1-28.
[165] Yue L, Chen F, Yu K, et al. Early development of apoplastic barriers and molecular mechanisms in juvenile maize roots in response to La2O3 nanoparticles [J]. Sci Total Environ, 2019, 653: 675-83.
[166] Chen X, Lam K F, Zhang Q, et al. Synthesis of highly selective magnetic mesoporous adsorbent [J]. J Phys Chem C, 2009, 113(22): 9804-13.
[167] Lin Y S, Haynes C L. Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles [J]. Chem Mater, 2009, 21(17): 3979-86.
[168] Chen X, Lam K F, Yeung K L. Selective removal of chromium from different aqueous systems using magnetic MCM-41 nanosorbents [J]. Chem Eng J, 2011, 172(2): 728-34.
[169] Shevchenko N, Zaitsev V, Walcarius A. Bifunctionalized mesoporous silicas for Cr(VI) reduction and concomitant Cr(III) immobilization [J]. Environ Sci Technol, 2008, 42 18: 6922-8.
[170] Tang Y, Webb S M, Estes E R, et al. Chromium(III) oxidation by biogenic manganese oxides with varying structural ripening [J]. Environ Sci Processes Impacts, 2014, 16(9): 2127-36.
[171] Richard R P, Fendorf S, Fendorf M. Reduction of hexavalent chromium by amorphous iron sulfide [J]. Environ Sci Technol, 1997, 31: 2039-44.
[172] Wittbrodt P R, Palmer C D. Reduction of Cr(VI) in the presence of excess soil fulvic acid [J]. Environ Sci Technol, 1995, 29 1: 255-63.
[173] Wang J, Wang X, Zhao G, et al. Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions [J]. Chem Eng J, 2018, 334: 569-78.
[174] Cai W, Dionysiou D D, Fu F, et al. Ctab-intercalated molybdenum disulfide nanosheets for enhanced simultaneous removal of Cr(VI) and Ni(II) from aqueous solutions [J]. J Hazard Mater, 2020, 396: 122728.
[175] Wang J, Wang P, Wang H, et al. Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI) [J]. ACS Sustainable Chem Eng, 2017, 5.
[176] Yang S, Li Q, Chen L, et al. Ultrahigh sorption and reduction of Cr(VI) by two novel core-shell composites combined with Fe3O4 and MoS2 [J]. J Hazard Mater, 2019, 379: 120797.
[177] Qiu J, Liu F, Cheng S, et al. Recyclable nanocomposite of flowerlike MoS2@hybrid acid-doped pani immobilized on porous pan nanofibers for the efficient removal of Cr(VI) [J]. ACS Sustainable Chem Eng, 2018, 6: 447-56.
[178] Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2 [J]. Nano Lett, 2011, 11(12): 5111-6.
[179] Wang J, Wang P, Wang H, et al. Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI) [J]. ACS Sustainable Chem Eng, 2017, 5(8): 7165-74
修改评论