[1] WANG X L, CHEN L K, LI W, et al. Experimental ten-photon entanglement[J]. Physical Review Letters, 2016, 117(21): 210502.
[2] QIANG X, ZHOU X, WANG J, et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing[J]. Nature photonics, 2018, 12(9): 534-539.
[3] RANDALL J, WEIDT S, STANDING E, et al. Efficient preparation and detection of microwave dressed-state qubits and qutrits with trapped ions[J]. Physical Review A, 2015, 91(1): 012322.
[4] BALLANCE C, HARTY T, LINKE N, et al. High-fidelity quantum logic gates using trapped- ion hyperfine qubits[J]. Physical Review Letters, 2016, 117(6): 060504.
[5] BRANDL M, VAN MOURIK M, POSTLER L, et al. Cryogenic setup for trapped ion quantum computing[J]. Review of Scientific Instruments, 2016, 87(11): 113103.
[6] DEBNATH S, LINKE N M, FIGGATT C, et al. Demonstration of a small programmable quan- tum computer with atomic qubits[J]. Nature, 2016, 536(7614): 63-66.
[7] CHOW J M, GAMBETTA J M, CORCOLES A D, et al. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits[J]. Physical Review Letters, 2012, 109(6): 060501.
[8] CHEN Y, NEILL C, ROUSHAN P, et al. Qubit architecture with high coherence and fast tunable coupling[J]. Physical Review Letters, 2014, 113(22): 220502.
[9] WENDIN G. Quantum information processing with superconducting circuits: a review[J]. Re- ports on Progress in Physics, 2017, 80(10): 106001.
[10] SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical review A, 1995, 52(4): R2493.
[11] ROFFE J. Quantum error correction: an introductory guide[J]. Contemporary Physics, 2019, 60(3): 226-245.
[12] WOOTTON J R, LOSS D. Repetition code of 15 qubits[J]. Physical Review A, 2018, 97(5): 052313.
[13] HARPER R, FLAMMIA S T. Fault-tolerant logical gates in the IBM quantum experience[J]. Physical Review Letters, 2019, 122(8): 080504.
[14] VUILLOT C. Is error detection helpful on IBM 5Q chips[A]. 2017.
[15] LINKE N M, GUTIERREZ M, LANDSMAN K A, et al. Fault-tolerant quantum error detection [J]. Science advances, 2017, 3(10): e1701074.
[16] NICKERSON N H, BROWN B J. Analysing correlated noise on the surface code using adaptive decoding algorithms[J]. Quantum, 2019, 3: 131.
[17] MCEWEN M, FAORO L, ARYA K, et al. Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits[J]. Nature Physics, 2022, 18(1): 107-111.
[18] VEPSÄLÄINEN A P, KARAMLOU A H, ORRELL J L, et al. Impact of ionizing radiation on superconducting qubit coherence[J]. Nature, 2020, 584(7822): 551-556.
[19] WILEN C D, ABDULLAH S, KURINSKY N, et al. Correlated charge noise and relaxation errors in superconducting qubits[J]. Nature, 2021, 594(7863): 369-373.
[20] THORBECK T, EDDINS A, LAUER I, et al. TLS Dynamics in a Superconducting Qubit Due to Background Ionizing Radiation[A]. 2022.
[21] MARTINIS J M. Saving superconducting quantum processors from decay and correlated errors generated by gamma and cosmic rays[J]. npj Quantum Information, 2021, 7(1): 90.
[22] GORDON R, MURRAY C, KURTER C, et al. Environmental radiation impact on lifetimes and quasiparticle tunneling rates of fixed-frequency transmon qubits[J]. Applied Physics Letters, 2022, 120(7): 074002.
[23] XU Q, SEIF A, YAN H, et al. Distributed quantum error correction for chip-level catastrophic errors[J]. Physical Review Letters, 2022, 129(24): 240502.
[24] BELL B, MARKHAM D, HERRERA-MARTÍ D, et al. Experimental demonstration of graph- state quantum secret sharing[J]. Nature communications, 2014, 5(1): 1-12.
[25] FOWLER A G, MARTINIS J M. Quantifying the effects of local many-qubit errors and nonlocal two-qubit errors on the surface code[J]. Physical Review A, 2014, 89(3): 032316.
[26] GROUP P D, ZYLA P, BARNETT R, et al. Review of particle physics[J]. Progress of Theo- retical and Experimental Physics, 2020, 2020(8): 083C01.
[27] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super- conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[28] GRÜNHAUPT L, MALEEVA N, SKACEL S T, et al. Loss mechanisms and quasiparticle dynamics in superconducting microwave resonators made of thin-film granular aluminum[J]. Physical Review Letters, 2018, 121(11): 117001.
[29] CARDANI L, VALENTI F, CASALI N, et al. Reducing the impact of radioactivity on quantum circuits in a deep-underground facility[J]. Nature communications, 2021, 12(1): 2733.
[30] CHAO R, REICHARDT B W. Quantum error correction with only two extra qubits[J]. Physical Review Letters, 2018, 121(5): 050502.
[31] CHAMBERLAND C, BEVERLAND M E. Flag fault-tolerant error correction with arbitrary distance codes[J]. Quantum, 2018, 2: 53.
[32] KNILL E. Quantum computing with realistically noisy devices[J]. Nature, 2005, 434(7029): 39-44.
[33] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th annual symposium on foundations of computer science. Ieee, 1994: 124-134.
[34] BRUN T A. Quantum error correction[A]. 2019.
[35] WOOTTERS W K, ZUREK W H. A single quantum cannot be cloned[J]. Nature, 1982, 299: 802-803.
[36] STEANE A M. Error correcting codes in quantum theory[J]. Physical Review Letters, 1996, 77(5): 793.
[37] LAFLAMME R, MIQUEL C, PAZ J P, et al. Perfect quantum error correcting code[J]. Physical Review Letters, 1996, 77(1): 198.
[38] BENNETT C H, DIVINCENZO D P, SMOLIN J A, et al. Mixed-state entanglement and quan- tum error correction[J]. Physical Review A, 1996, 54(5): 3824.
[39] DEVITT S J, MUNRO W J, NEMOTO K. Quantum error correction for beginners[J]. Reports on Progress in Physics, 2013, 76(7): 076001.
[40] BENNETT C H, BRASSARD G, CRÉPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70 (13): 1895.
[41] DEVETAK I, HARROW A W, WINTER A J. A resource framework for quantum Shannon theory[J]. IEEE Transactions on Information Theory, 2008, 54(10): 4587-4618.
[42] BRUN T, DEVETAK I, HSIEH M H. Correcting quantum errors with entanglement[J]. science, 2006, 314(5798): 436-439.
[43] WILDE M M, BRUN T A. Optimal entanglement formulas for entanglement-assisted quantum coding[J]. Physical Review A, 2008, 77(6): 064302.
[44] GUENDA K, JITMAN S, GULLIVER T A. Constructions of good entanglement-assisted quan- tum error correcting codes[J]. Designs, Codes and Cryptography, 2018, 86: 121-136.
[45] SCHLINGEMANN D, WERNER R F. Quantum error-correcting codes associated with graphs [J]. Physical Review A, 2001, 65(1): 012308.
[46] YU S, CHEN Q, LAI C, et al. Nonadditive quantum error-correcting code[J]. Physical Review Letters, 2008, 101(9): 090501.
[47] DONG Y, DENG X, JIANG M, et al. Entanglement-enhanced quantum error-correcting codes [J]. Physical Review A, 2009, 79(4): 042342.
[48] BRAVYI S B, KITAEV A Y. Quantum codes on a lattice with boundary[A]. 1998. arXiv:quant- ph/9811052.
[49] FOWLER A G, MARIANTONI M, MARTINIS J M, et al. Surface codes: Towards practical large-scale quantum computation[J]. Physical Review A, 2012, 86(3): 032324.
[50] BRAVYI S. Doubled Color Codes[C]//APS March Meeting Abstracts: volume 2016. 2016: P44-004.
[51] KRIBS D, LAFLAMME R, POULIN D. Unified and generalized approach to quantum error correction[J]. Physical Review Letters, 2005, 94(18): 180501.
[52] HORSMAN C, FOWLER A G, DEVITT S, et al. Surface code quantum computing by lattice surgery[J]. New Journal of Physics, 2012, 14(12): 123011.
[53] HASTINGS M B, HAAH J. Dynamically generated logical qubits[J]. Quantum, 2021, 5: 564.
[54] GALLAGER R. Low-density parity-check codes[J]. IRE Transactions on information theory, 1962, 8(1): 21-28.
[55] ALY S A. A class of quantum LDPC codes constructed from finite geometries[C]//IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference. IEEE, 2008: 1-5.
[56] HSIEH M H, BRUN T A, DEVETAK I. Entanglement-assisted quantum quasicyclic low- density parity-check codes[J]. Physical Review A, 2009, 79(3): 032340.
[57] FUJIWARA Y. Quantum error correction via less noisy qubits[J]. Physical Review Letters, 2013, 110(17): 170501.
[58] FUJIWARA Y, GRUNER A, VANDENDRIESSCHE P. High-rate quantum low-density parity- check codes assisted by reliable qubits[J]. IEEE Transactions on Information Theory, 2015, 61 (4): 1860-1878.
[59] BREUCKMANN N P, EBERHARDT J N. Quantum low-density parity-check codes[J]. PRX Quantum, 2021, 2(4): 040101.
[60] KNILL E, LAFLAMME R. Concatenated quantum codes[A]. 1996.
[61] BHOUMIK D. Efficient Decoding of Surface Code Syndromes for Error Correction in Quantum Computing[J]. Bulletin of the American Physical Society, 2022, 67.
[62] TAN X, ZHANG F, CHAO R, et al. Scalable surface code decoders with parallelization in time [A]. 2022.
[63] SHOR P W. Fault-tolerant quantum computation[C]//Proceedings of 37th conference on foun- dations of computer science. IEEE, 1996: 56-65.
[64] DIVINCENZO D P, ALIFERIS P. Effective fault-tolerant quantum computation with slow measurements[J]. Physical Review Letters, 2007, 98(2): 020501.
[65] ABOBEIH M, WANG Y, RANDALL J, et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor[J]. Nature, 2022, 606(7916): 884-889.
[66] NIELSEN M A, CHUANG I. Quantum computation and quantum information[M]. American Association of Physics Teachers, 2002.
[67] 李士勇, 李盼池. 量子计算与量子优化算法[M]. 量子计算与量子优化算法, 2009.
[68] PARK J L. The concept of transition in quantum mechanics[J]. Foundations of physics, 1970,1(1): 23-33.
[69] HAMMING R W. Error detecting and error correcting codes[J]. The Bell system technical journal, 1950, 29(2): 147-160.
[70] MACKAY D J, MAC KAY D J. Information theory, inference and learning algorithms[M]. Cambridge university press, 2003.
[71] GOTTESMAN D. An introduction to quantum error correction and fault-tolerant quantum com- putation[C]//Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics: volume 68. 2010: 13-58.
[72] GOTTESMAN D. Stabilizer codes and quantum error correction[M]. California Institute of Technology, 1997.
[73] LAFIAMME R, MIQUEL C, PAZ J P, et al. Perfect quantum error correction code[J]. Physical Review Letters, 1996, 77(1): 198-201.
[74] KITAEV A Y. Fault-tolerant quantum computation by anyons[J]. Annals of physics, 2003, 303 (1): 2-30.
[75] NICKERSON N H, FITZSIMONS J F, BENJAMIN S C. Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links[J]. Physical Review X, 2014, 4(4): 041041.
[76] KELLY J, BARENDS R, FOWLER A, et al. Scalable in situ qubit calibration during repetitive error detection[J]. Physical Review A, 2016, 94(3): 032321.
[77] SETE E A, ZENG W J, RIGETTI C T. A functional architecture for scalable quantum computing [C]//2016 IEEE International Conference on Rebooting Computing (ICRC). IEEE, 2016: 1-6.
[78] O’GORMAN J, NICKERSON N H, ROSS P, et al. A silicon-based surface code quantum computer[J]. npj Quantum Information, 2016, 2(1): 1-14.
[79] TAKITA M, CROSS A W, CÓRCOLES A D, et al. Experimental demonstration of fault- tolerant state preparation with superconducting qubits[J]. Physical Review Letters, 2017, 119 (18): 180501.
[80] WEST D B, et al. Introduction to graph theory: volume 2[M]. Prentice hall Upper Saddle River, 2001.
[81] HEIN M, EISERT J, BRIEGEL H J. Multiparty entanglement in graph states[J]. Physical Review A, 2004, 69(6): 062311.
[82] 王赟赟. 量子稳定子码的图态纠缠[D]. 浙江工商大学, 2015.
[83] HEIN M, DÜR W, EISERT J, et al. Entanglement in graph states and its applications[A]. 2006.
[84] 贾恒越. 图态的远程制备及在量子密码协议中的应用[D]. 北京邮电大学, 2013.
[85] 董莹. 量子纠错码的若干理论研究[D]. 中国科学技术大学, 2011.
[86] PRESKILL J. Reliable quantum computers[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1969): 385-410.
[87] KITAEV A Y. Quantum computations: algorithms and error correction[J]. Russian Mathemat- ical Surveys, 1997, 52(6): 1191.
[88] AHARONOV D, BEN-OR M. Fault-tolerant quantum computation with constant error[C]// Proceedings of the twenty-ninth annual ACM symposium on Theory of computing. 1997: 176- 188.
[89] KNILL E, LAFLAMME R, ZUREK W H. Resilient quantum computation[J]. Science, 1998, 279(5349): 342-345.
[90] GOTTESMAN D. Theory of fault-tolerant quantum computation[J]. Physical Review A, 1998, 57(1): 127.
[91] DENNIS E, KITAEV A, LANDAHL A, et al. Topological quantum memory[J]. Journal of Mathematical Physics, 2002, 43(9): 4452-4505.
[92] CRIGER B, ASHRAF I. Multi-path summation for decoding 2D topological codes[J]. Quan- tum, 2018, 2: 102.
[93] LEHMANN E L, CASELLA G. Theory of point estimation[M]. Springer Science & Business Media, 2006.
[94] SCHERVISH M J. Theory of statistics[M]. Springer Science & Business Media, 2012.
[95] LY A, MARSMAN M, VERHAGEN J, et al. A tutorial on Fisher information[J]. Journal of Mathematical Psychology, 2017, 80: 40-55.
[96] FISHER R A. On the mathematical foundations of theoretical statistics[J]. Philosophical trans- actions of the Royal Society of London. Series A, containing papers of a mathematical or phys- ical character, 1922, 222(594-604): 309-368.
[97] CRAMÉR H. Mathematical methods of statistics: volume 26[M]. Princeton university press, 1999.
[98] BLAIS A, GRIMSMO A L, GIRVIN S M, et al. Circuit quantum electrodynamics[J]. Reviews of Modern Physics, 2021, 93(2): 025005.
[99] KWON S, TOMONAGA A, LAKSHMI BHAI G, et al. Gate-based superconducting quantum computing[J]. Journal of Applied Physics, 2021, 129(4): 041102.
[100] HUANGHL,WUD,FAND,etal.Superconductingquantumcomputing:areview[J].Science China Information Sciences, 2020, 63: 1-32.
[101] BHARTI K, CERVERA-LIERTA A, KYAW T, et al. Noisy intermediate-scale quantum (nisq) algorithms (2021)[A]. 2021.
[102] ZHONG Y, CHANG H S, SATZINGER K, et al. Violating Bell’s inequality with remotely connected superconducting qubits[J]. Nature Physics, 2019, 15(8): 741-744.
[103] KURPIERS P, MAGNARD P, WALTER T, et al. Deterministic quantum state transfer and remote entanglement using microwave photons[J]. Nature, 2018, 558(7709): 264-267.
[104] LI X, FU X, YAN F, et al. Current Status and Future Development of Quantum Computation [J]. Strategic Study of Chinese Academy of Engineering, 2022, 24(4): 133-144.
[105] MAGNARD P, STORZ S, KURPIERS P, et al. Microwave quantum link between supercon- ducting circuits housed in spatially separated cryogenic systems[J]. Physical Review Letters, 2020, 125(26): 260502.
[106] ZHONG Y, CHANG H S, BIENFAIT A, et al. Deterministic multi-qubit entanglement in a quantum network[J]. Nature, 2021, 590(7847): 571-575.
[107] NIU J, ZHANG L, LIU Y, et al. Low-loss interconnects for modular superconducting quantum processors[J]. Nature Electronics, 2023: 1-7.
修改评论