中文版 | English
题名

METTL7B的上调通过调控肝脏脂类代谢参与非酒精性脂肪肝疾病的发生发展

其他题名
UP-REGULATION OF METTL7B DEREGULATES HEPATIC LIPID METABOLISM UNDERLYING THE PATHOGENESIS OF NAFLD
姓名
姓名拼音
FENG Rui
学号
12032626
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
陈浩
导师单位
人类细胞生物和遗传学系
论文答辩日期
2023-05-08
论文提交日期
2023-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

非酒精性脂肪肝病是目前最常见的肝脏疾病,它与代谢综合征密切相关, 其发生的最初阶段主要为脂滴过度累积,然而目前对于非酒精性脂肪肝的针对性治疗药物非常少。在小鼠非酒精性脂肪肝炎模型中,METTL7B表达量较早期脂肪变性期显著升高,但METTL7B如何参与并调控肝脏的脂类代谢疾病仍是未知。在本研究中,我们分别构建了METTL7B敲除、过表达HepG2细胞系,利用免疫荧光实验发现METTL7B与脂滴在胞质共定位,且细胞中METTL7B的表达量和脂滴的累积程度成正相关。对于野生型和METTL7B敲除HepG2细胞的全代谢质谱和脂类代谢质谱分析表明,METTL7B的缺失能够促进细胞脂滴中的TAG分解为DAG。在小鼠非酒精性脂肪肝病模型中,我们通过组织病理染色和生化代谢分析发现, Mettl7b肝脏特异性敲除可减轻小鼠肝脏脂滴累积程度,缓解肥胖小鼠非酒精性脂肪肝病进程。本研究证明了METTL7B正向调控肝脏细胞脂滴累积,并促进了非酒精性脂肪肝的发病进程,提示着METTL7B是非酒精性脂肪肝病的一个潜在治疗靶点。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-07
参考文献列表

[1] WONG J M, EIRIN-LOPEZ J M. Evolution of Methyltransferase-Like (METTL) Proteins in Metazoa: A Complex Gene Family Involved in Epitranscriptomic Regulation and Other Epigenetic Processes[J]. Mol Biol Evol, 2021, 38(12): 5309-5327.
[2] PETKOWSKI J J, SCHANER TOOLEY C E, ANDERSON L C, et al. Substrate specificity of mammalian N-terminal α-amino methyltransferase NRMT[J]. Biochemistry, 2012, 51(30): 5942-5950.
[3] PETROSSIAN T, CLARKE S. Bioinformatic Identification of Novel Methyltransferases[J]. Epigenomics, 2009, 1(1): 163-175.
[4] IGNATOVA V V, JANSEN P, BALTISSEN M P, et al. The interactome of a family of potential methyltransferases in HeLa cells[J]. Sci Rep, 2019, 9(1): 6584.
[5] QIN Y, LI L, LUO E, et al. Role of m6A RNA methylation in cardiovascular disease (Review)[J]. Int J Mol Med, 2020, 46(6): 1958-1972.
[6] ALI J, LIU W, DUAN W, et al. METTL7B (methyltransferase-like 7B) identification as a novel biomarker for lung adenocarcinoma[J]. Ann Transl Med, 2020, 8(18): 1130.
[7] CAMPEANU I J, JIANG Y, LIU L, et al. Multi-omics integration of methyltransferase-like protein family reveals clinical outcomes and functional signatures in human cancer[J]. Sci Rep, 2021, 11(1): 14784.
[8] BOŠKOVIĆ A, RANDO O J. Transgenerational Epigenetic Inheritance[J]. Annu Rev Genet, 2018, 52: 21-41.
[9] JIANG Z, YIN W, ZHU H, et al. METTL7B is a novel prognostic biomarker of lower-grade glioma based on pan-cancer analysis[J]. Cancer Cell Int, 2021, 21(1): 383.
[10] LIU D, LI W, ZHONG F, et al. METTL7B Is Required for Cancer Cell Proliferation and Tumorigenesis in Non-Small Cell Lung Cancer[J]. Front Pharmacol, 2020, 11: 178.
[11] LI W, XU S, PENG N, et al. Downregulation of METTL7B Inhibits Proliferation of Human Clear Cell Renal Cancer Cells In Vivo and In Vitro[J]. Front Oncol, 2021, 11: 634542.
[12] YE D, JIANG Y, SUN Y, et al. METTL7B promotes migration and invasion in thyroid cancer through epithelial-mesenchymal transition[J]. J Mol Endocrinol, 2019, 63(1): 51-61.
[13] MARCELLIN P, KUTALA B K. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening[J]. Liver Int, 2018, 38 Suppl 1: 2-6.
[14] MOKDAD A A, LOPEZ A D, SHAHRAZ S, et al. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis[J]. BMC Med, 2014, 12: 145.
[15] STEPANOVA M, DE AVILA L, AFENDY M, et al. Direct and Indirect Economic Burden of Chronic Liver Disease in the United States[J]. Clin Gastroenterol Hepatol, 2017, 15(5): 759-766.e755.
[16] KIM D, LI A A, GADIPARTHI C, et al. Changing Trends in Etiology-Based Annual Mortality From Chronic Liver Disease, From 2007 Through 2016[J]. Gastroenterology, 2018, 155(4): 1154-1163.e1153.
[17] YOUNOSSI Z M. Non-alcoholic fatty liver disease - A global public health perspective[J]. J Hepatol, 2019, 70(3): 531-544.
[18] YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84.
[19] YOUNOSSI Z, ANSTEE Q M, MARIETTI M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20.
[20] POWELL E E, WONG V W, RINELLA M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224.
[21] PAIK J M, GOLABI P, YOUNOSSI Y, et al. Changes in the Global Burden of Chronic Liver Diseases From 2012 to 2017: The Growing Impact of NAFLD[J]. Hepatology, 2020, 72(5): 1605-1616.
[22] LAZARUS J V, EKSTEDT M, MARCHESINI G, et al. A cross-sectional study of the public health response to non-alcoholic fatty liver disease in Europe[J]. J Hepatol, 2020, 72(1): 14-24.
[23] MUNDI M S, VELAPATI S, PATEL J, et al. Evolution of NAFLD and Its Management[J]. Nutr Clin Pract, 2020, 35(1): 72-84.
[24] FRIEDMAN S L, NEUSCHWANDER-TETRI B A, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922.
[25] ESLAM M, VALENTI L, ROMEO S. Genetics and epigenetics of NAFLD and NASH: Clinical impact[J]. J Hepatol, 2018, 68(2): 268-279.
[26] WONG V W, ADAMS L A, DE LéDINGHEN V, et al. Noninvasive biomarkers in NAFLD and NASH - current progress and future promise[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(8): 461-478.
[27] ALBHAISI S, SANYAL A J. Applying Non-Invasive Fibrosis Measurements in NAFLD/NASH: Progress to Date[J]. Pharmaceut Med, 2019, 33(6): 451-463.
[28] WAI J W, FU C, WONG V W. Confounding factors of non-invasive tests for nonalcoholic fatty liver disease[J]. J Gastroenterol, 2020, 55(8): 731-741.
[29] WALTHER T C, CHUNG J, FARESE R V, JR. Lipid Droplet Biogenesis[J]. Annu Rev Cell Dev Biol, 2017, 33: 491-510.
[30] BERNDT N, ECKSTEIN J, HEUCKE N, et al. Characterization of Lipid and Lipid Droplet Metabolism in Human HCC[J]. Cells, 2019, 8(5)
[31] PETRONI M L, BRODOSI L, BUGIANESI E, et al. Management of non-alcoholic fatty liver disease[J]. Bmj, 2021, 372: m4747.
[32] WELTE M A, GOULD A P. Lipid droplet functions beyond energy storage[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(10 Pt B): 1260-1272.
[33] LAU L H S, WONG S H. Microbiota, Obesity and NAFLD[J]. Adv Exp Med Biol, 2018, 1061: 111-125.
[34] SEEBACHER F, ZEIGERER A, KORY N, et al. Hepatic lipid droplet homeostasis and fatty liver disease[J]. Semin Cell Dev Biol, 2020, 108: 72-81.
[35] GLUCHOWSKI N L, BECUWE M, WALTHER T C, et al. Lipid droplets and liver disease: from basic biology to clinical implications[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(6): 343-355.
[36] CARR R M, AHIMA R S. Pathophysiology of lipid droplet proteins in liver diseases[J]. Exp Cell Res, 2016, 340(2): 187-192.
[37] COTTER T G, RINELLA M. Nonalcoholic Fatty Liver Disease 2020: The State of the Disease[J]. Gastroenterology, 2020, 158(7): 1851-1864.
[38] THIAM A R, DUGAIL I. Lipid droplet-membrane contact sites - from protein binding to function[J]. J Cell Sci, 2019, 132(12)
[39] JACKSON C L. Lipid droplet biogenesis[J]. Curr Opin Cell Biol, 2019, 59: 88-96.
[40] XU S, ZHANG X, LIU P. Lipid droplet proteins and metabolic diseases[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt B): 1968-1983.
[41] EISENBERG-BORD M, MARI M, WEILL U, et al. Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation[J]. J Cell Biol, 2018, 217(1): 269-282.
[42] TEIXEIRA V, JOHNSEN L, MARTíNEZ-MONTAñéS F, et al. Regulation of lipid droplets by metabolically controlled Ldo isoforms[J]. J Cell Biol, 2018, 217(1): 127-138.
[43] WOLINS N E, QUAYNOR B K, SKINNER J R, et al. S3-12, Adipophilin, and TIP47 package lipid in adipocytes[J]. J Biol Chem, 2005, 280(19): 19146-19155.
[44] WOLINS N E, BRASAEMLE D L, BICKEL P E. A proposed model of fat packaging by exchangeable lipid droplet proteins[J]. FEBS Lett, 2006, 580(23): 5484-5491.
[45] OLZMANN J A, CARVALHO P. Dynamics and functions of lipid droplets[J]. Nat Rev Mol Cell Biol, 2019, 20(3): 137-155.
[46] BRASAEMLE D L, DOLIOS G, SHAPIRO L, et al. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes[J]. J Biol Chem, 2004, 279(45): 46835-46842.
[47] LIU P, YING Y, ZHAO Y, et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic[J]. J Biol Chem, 2004, 279(5): 3787-3792.
[48] KRAHMER N, HILGER M, KORY N, et al. Protein correlation profiles identify lipid droplet proteins with high confidence[J]. Mol Cell Proteomics, 2013, 12(5): 1115-1126.
[49] BERSUKER K, PETERSON C W H, TO M, et al. A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes[J]. Dev Cell, 2018, 44(1): 97-112.e117.
[50] CURRIE E, GUO X, CHRISTIANO R, et al. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation[J]. J Lipid Res, 2014, 55(7): 1465-1477.
[51] THOMAS A, KLEIN M S, STEVENS A P, et al. Changes in the hepatic mitochondrial and membrane proteome in mice fed a non-alcoholic steatohepatitis inducing diet[J]. J Proteomics, 2013, 80: 107-122.

所在学位评定分委会
生物学
国内图书分类号
Q555
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543856
专题南方科技大学医学院
推荐引用方式
GB/T 7714
冯瑞. METTL7B的上调通过调控肝脏脂类代谢参与非酒精性脂肪肝疾病的发生发展[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032626-冯瑞-南方科技大学医学(3943KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[冯瑞]的文章
百度学术
百度学术中相似的文章
[冯瑞]的文章
必应学术
必应学术中相似的文章
[冯瑞]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。