[1] WONG J M, EIRIN-LOPEZ J M. Evolution of Methyltransferase-Like (METTL) Proteins in Metazoa: A Complex Gene Family Involved in Epitranscriptomic Regulation and Other Epigenetic Processes[J]. Mol Biol Evol, 2021, 38(12): 5309-5327.
[2] PETKOWSKI J J, SCHANER TOOLEY C E, ANDERSON L C, et al. Substrate specificity of mammalian N-terminal α-amino methyltransferase NRMT[J]. Biochemistry, 2012, 51(30): 5942-5950.
[3] PETROSSIAN T, CLARKE S. Bioinformatic Identification of Novel Methyltransferases[J]. Epigenomics, 2009, 1(1): 163-175.
[4] IGNATOVA V V, JANSEN P, BALTISSEN M P, et al. The interactome of a family of potential methyltransferases in HeLa cells[J]. Sci Rep, 2019, 9(1): 6584.
[5] QIN Y, LI L, LUO E, et al. Role of m6A RNA methylation in cardiovascular disease (Review)[J]. Int J Mol Med, 2020, 46(6): 1958-1972.
[6] ALI J, LIU W, DUAN W, et al. METTL7B (methyltransferase-like 7B) identification as a novel biomarker for lung adenocarcinoma[J]. Ann Transl Med, 2020, 8(18): 1130.
[7] CAMPEANU I J, JIANG Y, LIU L, et al. Multi-omics integration of methyltransferase-like protein family reveals clinical outcomes and functional signatures in human cancer[J]. Sci Rep, 2021, 11(1): 14784.
[8] BOŠKOVIĆ A, RANDO O J. Transgenerational Epigenetic Inheritance[J]. Annu Rev Genet, 2018, 52: 21-41.
[9] JIANG Z, YIN W, ZHU H, et al. METTL7B is a novel prognostic biomarker of lower-grade glioma based on pan-cancer analysis[J]. Cancer Cell Int, 2021, 21(1): 383.
[10] LIU D, LI W, ZHONG F, et al. METTL7B Is Required for Cancer Cell Proliferation and Tumorigenesis in Non-Small Cell Lung Cancer[J]. Front Pharmacol, 2020, 11: 178.
[11] LI W, XU S, PENG N, et al. Downregulation of METTL7B Inhibits Proliferation of Human Clear Cell Renal Cancer Cells In Vivo and In Vitro[J]. Front Oncol, 2021, 11: 634542.
[12] YE D, JIANG Y, SUN Y, et al. METTL7B promotes migration and invasion in thyroid cancer through epithelial-mesenchymal transition[J]. J Mol Endocrinol, 2019, 63(1): 51-61.
[13] MARCELLIN P, KUTALA B K. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening[J]. Liver Int, 2018, 38 Suppl 1: 2-6.
[14] MOKDAD A A, LOPEZ A D, SHAHRAZ S, et al. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis[J]. BMC Med, 2014, 12: 145.
[15] STEPANOVA M, DE AVILA L, AFENDY M, et al. Direct and Indirect Economic Burden of Chronic Liver Disease in the United States[J]. Clin Gastroenterol Hepatol, 2017, 15(5): 759-766.e755.
[16] KIM D, LI A A, GADIPARTHI C, et al. Changing Trends in Etiology-Based Annual Mortality From Chronic Liver Disease, From 2007 Through 2016[J]. Gastroenterology, 2018, 155(4): 1154-1163.e1153.
[17] YOUNOSSI Z M. Non-alcoholic fatty liver disease - A global public health perspective[J]. J Hepatol, 2019, 70(3): 531-544.
[18] YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84.
[19] YOUNOSSI Z, ANSTEE Q M, MARIETTI M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20.
[20] POWELL E E, WONG V W, RINELLA M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224.
[21] PAIK J M, GOLABI P, YOUNOSSI Y, et al. Changes in the Global Burden of Chronic Liver Diseases From 2012 to 2017: The Growing Impact of NAFLD[J]. Hepatology, 2020, 72(5): 1605-1616.
[22] LAZARUS J V, EKSTEDT M, MARCHESINI G, et al. A cross-sectional study of the public health response to non-alcoholic fatty liver disease in Europe[J]. J Hepatol, 2020, 72(1): 14-24.
[23] MUNDI M S, VELAPATI S, PATEL J, et al. Evolution of NAFLD and Its Management[J]. Nutr Clin Pract, 2020, 35(1): 72-84.
[24] FRIEDMAN S L, NEUSCHWANDER-TETRI B A, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922.
[25] ESLAM M, VALENTI L, ROMEO S. Genetics and epigenetics of NAFLD and NASH: Clinical impact[J]. J Hepatol, 2018, 68(2): 268-279.
[26] WONG V W, ADAMS L A, DE LéDINGHEN V, et al. Noninvasive biomarkers in NAFLD and NASH - current progress and future promise[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(8): 461-478.
[27] ALBHAISI S, SANYAL A J. Applying Non-Invasive Fibrosis Measurements in NAFLD/NASH: Progress to Date[J]. Pharmaceut Med, 2019, 33(6): 451-463.
[28] WAI J W, FU C, WONG V W. Confounding factors of non-invasive tests for nonalcoholic fatty liver disease[J]. J Gastroenterol, 2020, 55(8): 731-741.
[29] WALTHER T C, CHUNG J, FARESE R V, JR. Lipid Droplet Biogenesis[J]. Annu Rev Cell Dev Biol, 2017, 33: 491-510.
[30] BERNDT N, ECKSTEIN J, HEUCKE N, et al. Characterization of Lipid and Lipid Droplet Metabolism in Human HCC[J]. Cells, 2019, 8(5)
[31] PETRONI M L, BRODOSI L, BUGIANESI E, et al. Management of non-alcoholic fatty liver disease[J]. Bmj, 2021, 372: m4747.
[32] WELTE M A, GOULD A P. Lipid droplet functions beyond energy storage[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(10 Pt B): 1260-1272.
[33] LAU L H S, WONG S H. Microbiota, Obesity and NAFLD[J]. Adv Exp Med Biol, 2018, 1061: 111-125.
[34] SEEBACHER F, ZEIGERER A, KORY N, et al. Hepatic lipid droplet homeostasis and fatty liver disease[J]. Semin Cell Dev Biol, 2020, 108: 72-81.
[35] GLUCHOWSKI N L, BECUWE M, WALTHER T C, et al. Lipid droplets and liver disease: from basic biology to clinical implications[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(6): 343-355.
[36] CARR R M, AHIMA R S. Pathophysiology of lipid droplet proteins in liver diseases[J]. Exp Cell Res, 2016, 340(2): 187-192.
[37] COTTER T G, RINELLA M. Nonalcoholic Fatty Liver Disease 2020: The State of the Disease[J]. Gastroenterology, 2020, 158(7): 1851-1864.
[38] THIAM A R, DUGAIL I. Lipid droplet-membrane contact sites - from protein binding to function[J]. J Cell Sci, 2019, 132(12)
[39] JACKSON C L. Lipid droplet biogenesis[J]. Curr Opin Cell Biol, 2019, 59: 88-96.
[40] XU S, ZHANG X, LIU P. Lipid droplet proteins and metabolic diseases[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt B): 1968-1983.
[41] EISENBERG-BORD M, MARI M, WEILL U, et al. Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation[J]. J Cell Biol, 2018, 217(1): 269-282.
[42] TEIXEIRA V, JOHNSEN L, MARTíNEZ-MONTAñéS F, et al. Regulation of lipid droplets by metabolically controlled Ldo isoforms[J]. J Cell Biol, 2018, 217(1): 127-138.
[43] WOLINS N E, QUAYNOR B K, SKINNER J R, et al. S3-12, Adipophilin, and TIP47 package lipid in adipocytes[J]. J Biol Chem, 2005, 280(19): 19146-19155.
[44] WOLINS N E, BRASAEMLE D L, BICKEL P E. A proposed model of fat packaging by exchangeable lipid droplet proteins[J]. FEBS Lett, 2006, 580(23): 5484-5491.
[45] OLZMANN J A, CARVALHO P. Dynamics and functions of lipid droplets[J]. Nat Rev Mol Cell Biol, 2019, 20(3): 137-155.
[46] BRASAEMLE D L, DOLIOS G, SHAPIRO L, et al. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes[J]. J Biol Chem, 2004, 279(45): 46835-46842.
[47] LIU P, YING Y, ZHAO Y, et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic[J]. J Biol Chem, 2004, 279(5): 3787-3792.
[48] KRAHMER N, HILGER M, KORY N, et al. Protein correlation profiles identify lipid droplet proteins with high confidence[J]. Mol Cell Proteomics, 2013, 12(5): 1115-1126.
[49] BERSUKER K, PETERSON C W H, TO M, et al. A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes[J]. Dev Cell, 2018, 44(1): 97-112.e117.
[50] CURRIE E, GUO X, CHRISTIANO R, et al. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation[J]. J Lipid Res, 2014, 55(7): 1465-1477.
[51] THOMAS A, KLEIN M S, STEVENS A P, et al. Changes in the hepatic mitochondrial and membrane proteome in mice fed a non-alcoholic steatohepatitis inducing diet[J]. J Proteomics, 2013, 80: 107-122.
修改评论