[1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935.
[2] HAYS K A, RUTHER R E, KUKAY A J, et al. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes[J]. Journal of Power Sources, 2018, 384: 136-144.
[3] YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edi tion, 2012, 51(24): 5798-5800.
[4] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature chemistry, 2015, 7(1): 19-29.
[5] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262.
[6] 王晓. 芳砜类高分子在锂离子电池隔膜中的应用与研究[D]. 青岛科技大学, 2018.
[7] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of power sources, 2012, 208: 210-224.
[8] DOUGHTY D H, ROTH E P. A general discussion of Li ion battery safety[J]. The Electro chemical Society Interface, 2012, 21(2): 37.
[9] LISBONA D, SNEE T. A review of hazards associated with primary lithium and lithium-ion batteries[J]. Process safety and environmental protection, 2011, 89(6): 434-442.
[10] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries [J]. nature, 2001, 414(6861): 359-367.
[11] 温荣严. 聚偏氟乙烯—六氟丙烯 (PVDF-HFP) 基锂离子电池隔膜的制备及性能研究[D].青岛大学, 2022.
[12] LIU Z, HU Q, GUO S, et al. Thermoregulating Separators Based on Phase-Change Materials for Safe Lithium-Ion Batteries[J]. Advanced Materials, 2021, 33(15): 2008088.
[13] LIU C, NEALE Z G, CAO G. Understanding electrochemical potentials of cathode materials in rechargeable batteries[J]. Materials Today, 2016, 19(2): 109-123.
[14] CHOI S, KANG J, RYU J, et al. Revisiting classical rocking chair lithium-ion battery[J]. Macro-molecular Research, 2020, 28: 1175-1191.
[15] REN D, FENG X, LIU L, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573.
[16] 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理, 建模与防控[D]. 北京: 清华大学,2016.
[17] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
[18] WEN J, YU Y, CHEN C. A review on lithium-ion batteries safety issues: existing problems and possible solutions[J]. Materials express, 2012, 2(3): 197-212.
[19] SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of power sources, 2003, 113(1): 81-100.
[20] REN D, FENG X, LU L, et al. An electrochemical-thermal coupled overcharge-to-thermal runaway model for lithium-ion battery[J]. Journal of power sources, 2017, 364: 328-340.
[21] LEE S Y, KIM S K, AHN S. Performances and thermal stability of LiCoO2 cathodes encapsu lated by a new gel polymer electrolyte[J]. Journal of power sources, 2007, 174(2): 480-483.
[22] MAROM R, AMALRAJ S F, LEIFER N, et al. A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21(27): 9938-9954.
[23] RICHARD M, DAHN J. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental[J]. Journal of The Electrochemical Society, 1999, 146(6): 2068.
[24] GNANARAJ J, ZINIGRAD E, ASRAF L, et al. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions[J]. Journal of Power Sources, 2003, 119: 794-798.
[25] 胡传跃, 李新海, 王志兴. 锂离子电池中电解液的热行为分析[J]. 中国稀土学报, 2004(z1):333-336.
[26] FENG X, REN D, HE X, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
[27] MOON J, JEONG J Y, KIM J I, et al. An ultrathin inorganic-organic hybrid layer on commercial polymer separators for advanced lithium-ion batteries[J]. Journal of Power Sources, 2019, 416:89-94.
[28] ZHANG Y, WANG Z, XIANG H, et al. A thin inorganic composite separator for lithium-ion batteries[J]. Journal of Membrane Science, 2016, 509: 19-26.
[29] ZHAI Y, XIAO K, YU J, et al. Closely packed x-poly (ethylene glycol diacrylate) coated polyetherimide/poly (vinylidene fluoride) fiber separators for lithium ion batteries with enhanced thermostability and improved electrolyte wettability[J]. Journal of Power Sources, 2016, 325:292-300.
[30] VERDE M, CARROLL K, WANG Z, et al. Energy Environ[M]. Sci, 2013.
[31] ARORA P, ZHANG Z. Battery separators[J]. Chemical reviews, 2004, 104(10): 4419-4462.
[32] WEI Z, GU J, ZHANG F, et al. Core–shell structured nanofibers for lithium ion battery separator with wide shutdown temperature window and stable electrochemical performance[J]. ACS Applied Polymer Materials, 2020, 2(5): 1989-1996.
[33] KIM J H, KIM J H, CHOI K H, et al. Inverse opal-inspired, nano scaffold battery separators: A new membrane opportunity for high-performance energy storage systems[J]. Nano letters, 2014, 14(8): 4438-4448.
[34] 杨私私. 陶瓷纤维隔膜锂电池安全性能的研究[D]. 河北工业大学, 2016.
[35] XIE Y, ZOU H, XIANG H, et al. Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes[J]. Journal of Membrane Science, 2016, 503: 25-30.
[36] XIAO Y, LOW B T, HOSSEINI S S, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Progress in Polymer Science, 2009, 34(6): 561-580.
[37] CAO L, AN P, XU Z, et al. Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2016, 767: 34-39.
[38] JIA S, LONG J, LI J, et al. Biomineralized zircon-coated PVDF nanofiber separator for enhancing thermo-and electro-chemical properties of lithium-ion batteries[J]. Journal of Materials Science, 2020, 55: 14907-14921.
[39] WENG B, XU F, ALCOUTLABI M, et al. Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators[J]. Cellulose, 2015, 22: 1311-1320.
[40] ZHANG B, WANG Q, ZHANG J, et al. A superior thermostable and nonflammable composite membrane towards high power battery separator[J]. Nano Energy, 2014, 10: 277-287.
[41] LEE J Y, SHIN S H, MOON S H. Flame retardant coated polyolefin separators for the safety of lithium-ion batteries[J]. Korean Journal of Chemical Engineering, 2016, 33: 285-289.
[42] LIU K, LIU W, QIU Y, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J]. Science advances, 2017, 3(1): e1601978.
[43] TRAHEY L, BRUSHETT F R, BALSARA N P, et al. Energy storage emerging: A perspective from the Joint Center for Energy Storage Research[J]. Proceedings of the National Academy of Sciences, 2020, 117(23): 12550-12557.
[44] CHEN Y, KANG Y, ZHAO Y, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99.
[45] 李惠, 吉维肖, 曹余良, 等. 锂离子电池热失控防范技术[J]. 储能科学与技术, 2018, 7(3):376-383.
[46] ZHANG C, LI H, WANG S, et al. A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 44:33-40.
[47] BAGINSKA M, BLAISZIK B J, RAJH T, et al. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres[J]. JOURNAL OF POWER SOURCES,2014, 269: 735-739.
[48] JIANG X, XIAO L, AI X, et al. A novel bifunctional thermo-sensitive poly (lactic acid)@ poly (butylene succinate) core–shell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(44): 23238-23242.
[49] WU D, SHI C, HUANG S, et al. Electrospun Nanofibers for Sandwiched Polyimide/Poly(vinylidene fluoride)/Polyimide Separators with the Thermal Shutdown Function[J/OL]. ELECTROCHIMICA ACTA, 2015, 176: 727-734.
[50] CHEN W, SHI L, WANG Z, et al. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery[J]. Carbohydrate polymers, 2016, 147: 517-524.
[51] LI J, ZHANG Y, SHANG R, et al. Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability[J]. Energy Storage Materials, 2021, 43: 143-157.
[52] SHEN J, HAN K, MARTIN E J, et al. Upper-critical solution temperature (UCST) polymer functionalized graphene oxide as thermally responsive ion permeable membrane for energy storage devices[J]. Journal of Materials Chemistry A, 2014, 2(43): 18204-18207.
[53] 杜光超. 三元锂离子电池高温热失控试验与仿真研究[D]. 青岛大学, 2020.
[54] HATCHARD T, MACNEIL D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of The Electrochemical Society, 2001, 148(7): A755.
[55] SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions[J]. Journal of Power Sources, 2012, 220: 360- 372.
[56] 姚银花. NCM 三元锂动力电池热失控研究与仿真[D]. 长安大学, 2018.
[57] MELCHER A, ZIEBERT C, ROHDE M, et al. Modeling and simulation of the thermal runaway behavior of cylindrical Li-ion cells—Computing of critical parameters[J]. Energies, 2016, 9(4): 292.
[58] 陶欢. 锂离子动力电池热失控实验与模拟研究[D]. 华中科技大学, 2017.
[59] GONG W, ZHANG Z, WEI S, et al. Thermosensitive polyacrylonitrile/polyethylene oxide/poly acrylonitrile membrane separators for prompt and safer thermal lithium-ion battery shutdown [J]. Journal of The Electrochemical Society, 2020, 167(2): 020509.
[60] HSIEH C T, LIN S C, LEE C H, et al. Designing multifunctional polyethylene-polyimide composite separators for rechargeable lithium-ion batteries[J]. Journal of The Electrochemical Society, 2019, 166(14): A3132.
[61] ZHANG X, LI N, HU Z, et al. Poly (p-phenylene terephthalamide) modified PE separators for lithium ion batteries[J]. Journal of Membrane Science, 2019, 581: 355-361.
[62] WANG Z, CHEN J, YE B, et al. A pore-controllable polyamine (PAI) layer-coated polyolefin (PE) separator for pouch lithium-ion batteries with enhanced safety[J]. Journal of Solid State Electrochemistry, 2020, 24: 843-853.
[63] PAN R, XU X, SUN R, et al. Nanocellulose modified polyethylene separators for lithium metal batteries[J]. Small, 2018, 14(21): 1704371.
[64] LI D, SHI D, YUAN Z, et al. A low cost shutdown sandwich-like composite membrane with superior thermo-stability for lithium-ion battery[J]. Journal of Membrane Science, 2017, 542: 1-7.
[65] KIM Y, LEE W Y, KIM K J, et al. Shutdown-functionalized nonwoven separator with improved thermal and electrochemical properties for lithium-ion batteries[J]. Journal of Power Sources, 2016, 305: 225-232.
[66] WANG L, DENG N, JU J, et al. A novel core-shell structured poly-m-phenyleneisophthalamide@ polyvinylidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable electrochemical performance[J]. Electrochimica Acta,2019, 300: 263-273.
[67] LI L, YU M, JIA C, et al. Cellulosic biomass-reinforced polyvinylidene fluoride separators with enhanced dielectric properties and thermal tolerance[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20885-20894.
[68] WU D, SHI C, HUANG S, et al. Electrospun nanofibers for sandwiched polyimide/poly (vinylidene fluoride)/polyimide separators with the thermal shutdown function[J]. Electrochimica Acta, 2015, 176: 727-734.
[69] GONG W, WEI S, RUAN S, et al. Electrospun coaxial PPESK/PVDF fibrous membranes with thermal shutdown property used for lithium-ion batteries[J]. Materials Letters, 2019, 244: 126- 129.
[70] ZHOU Y T, YANG J, LIANG H Q, et al. Sandwich-structured composite separators with an anisotropic pore architecture for highly safe Li-ion batteries[J]. Composites Communications, 2018, 8: 46-51.
[71] TIAN X, XIN B, LU Z, et al. Electrospun sandwich polysulfonamide/polyacrylonitrile/polysulfonamide composite nanofibrous membranes for lithium-ion batteries[J]. RSC advances, 2019, 9(20): 11220-11229.
[72] CAI H, TONG X, CHEN K, et al. Electrospun polyethylene terephthalate nonwoven reinforced polypropylene separator: scalable synthesis and its lithium ion battery performance[J]. Polymers, 2018, 10(6): 574.
[73] HE L, QIU T, XIE C, et al. A phase separation method toward PPTA–polypropylene nanocomposite separator for safe lithium-ion batteries[J]. Journal of Applied Polymer Science, 2018, 135 (39): 46697.
[74] SUN G, LIU B, NIU H, et al. In situ welding: Superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium-ion battery[J]. Journal of Membrane Science, 2020, 595: 117509.
[75] KONG L, LIU B, DING J, et al. Robust polyetherimide fibrous membrane with crosslinked topographies fabricated via in-situ micro-melting and its application as superior Lithium-ion battery separator with shutdown function[J]. Journal of Membrane Science, 2018, 549: 244-250.
[76] 王浩, 李建军, 王莉, 等. 绝热加速量热仪在锂离子电池安全性研究方面的应用[J]. 新材料产业, 2013(1): 53-58.
[77] ROTH E P. Thermal response and flammability of Li-ion cells for HEV and PHEV applications[J]. Electric and Hybrid-Electric Vehicles–Batteries, 2010: 141.
[78] KIM J K, CHERUVALLY G, LI X, et al. Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries[J]. Journal of Power Sources, 2008, 178(2): 815-820.
[79] KIM J, CHOI S, JO S, et al. Characterization and properties of (PVDF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning[J]. Journal of the Electrochemical Society, 2004, 152(2): A295.
[80] WEN C Y, JHU C Y, WANG Y W, et al. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2[J]. Journal of thermal analysis andcalorimetry, 2012, 109(3): 1297-1302.
[81] LU T Y, CHIANG C C, WU S H, et al. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter[J]. Journal of thermal analysis and calorimetry, 2013, 114: 1083-1088.
[82] CHEN G, RICHARDSON T J. Thermal instability of Olivine-type LiMnPO4 cathodes[J]. Journal of Power Sources, 2010, 195(4): 1221-1224.
[83] MIAO Y E, ZHU G N, HOU H, et al. Electrospun polyimide nanofiber-based nonwoven sepa rators for lithium-ion batteries[J]. Journal of Power Sources, 2013, 226: 82-86.
[84] KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of power sources, 2007, 170(2): 476-489.
修改评论