中文版 | English
题名

用于改善二次电池长效安全性的隔膜制备与性能研究

其他题名
STUDY ON PREPARATION AND PERFORMANCE OF SEPARATION FOR IMPROVING THE LONG - TERM SAFETY OF SECONDARY BATTERIES
姓名
姓名拼音
HU Wenting
学号
12132006
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
祝渊
导师单位
深港微电子学院
论文答辩日期
2023-05-20
论文提交日期
2023-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

锂离子电池(lithium-ion batteries,LIB)作为新一代的二次电池体系,是目前 最先进的储能设备之一。然而由于能量密度高,电池组分易燃烧,近年来汽车自 燃事件不断发生,这引发了人们对锂离子电池储能的安全性担忧。目前关于热熔 断隔膜的研究更多局限在满足响应温度后熔融堵塞孔隙上。对于热熔断隔膜在响 应温度下,响应时间与热失控时间的匹配性问题上并未深入探究,因此本课题主要进行三方面研究:

第一方面利用 ARC 探究了不同类型不同正极材料的热失控行为,从温度、温 升速率等角度系统分析了热失控过程并结合电池自身特性确定了热熔断隔膜响应 温度与响应时间的动态热范围。

第二方面根据动态范围选择合适响应温度的材料。本文选择了熔点为115 °C 的 PBS 为响应材料和优异热稳定性的 PI 为基层材料。经过验证,PBS/PI 复合隔膜 既能够满足商业电池的主要参数要求,也能实现在合适的温度区间及时关断电池。

第三方面构建绝热环境下的热失控仿真模型,分析电池的热行为并预测电池的 发展规律。模拟过程中热行为曲线与实验曲线具有一致性,最大模拟误差仅为5.3 % 处于合理范围内,验证了创建模型的准确性。

本论文从实际应用角度出发,基于 ARC 测试探究了热熔断响应材料的选择。 并在响应温度范围内选择一种响应材料制备热熔断隔膜,探究其电化学和热性能, 而后制备叠片电池验证其商用价值。最后建立绝热热失控模型分析各组分尤其是 隔膜组分在热失控过程中的贡献,为后续热熔断隔膜的发展提供了理论依据。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935.
[2] HAYS K A, RUTHER R E, KUKAY A J, et al. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes[J]. Journal of Power Sources, 2018, 384: 136-144.
[3] YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edi tion, 2012, 51(24): 5798-5800.
[4] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature chemistry, 2015, 7(1): 19-29.
[5] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262.
[6] 王晓. 芳砜类高分子在锂离子电池隔膜中的应用与研究[D]. 青岛科技大学, 2018.
[7] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of power sources, 2012, 208: 210-224.
[8] DOUGHTY D H, ROTH E P. A general discussion of Li ion battery safety[J]. The Electro chemical Society Interface, 2012, 21(2): 37.
[9] LISBONA D, SNEE T. A review of hazards associated with primary lithium and lithium-ion batteries[J]. Process safety and environmental protection, 2011, 89(6): 434-442.
[10] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries [J]. nature, 2001, 414(6861): 359-367.
[11] 温荣严. 聚偏氟乙烯—六氟丙烯 (PVDF-HFP) 基锂离子电池隔膜的制备及性能研究[D].青岛大学, 2022.
[12] LIU Z, HU Q, GUO S, et al. Thermoregulating Separators Based on Phase-Change Materials for Safe Lithium-Ion Batteries[J]. Advanced Materials, 2021, 33(15): 2008088.
[13] LIU C, NEALE Z G, CAO G. Understanding electrochemical potentials of cathode materials in rechargeable batteries[J]. Materials Today, 2016, 19(2): 109-123.
[14] CHOI S, KANG J, RYU J, et al. Revisiting classical rocking chair lithium-ion battery[J]. Macro-molecular Research, 2020, 28: 1175-1191.
[15] REN D, FENG X, LIU L, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573.
[16] 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理, 建模与防控[D]. 北京: 清华大学,2016.
[17] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
[18] WEN J, YU Y, CHEN C. A review on lithium-ion batteries safety issues: existing problems and possible solutions[J]. Materials express, 2012, 2(3): 197-212.
[19] SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of power sources, 2003, 113(1): 81-100.
[20] REN D, FENG X, LU L, et al. An electrochemical-thermal coupled overcharge-to-thermal runaway model for lithium-ion battery[J]. Journal of power sources, 2017, 364: 328-340.
[21] LEE S Y, KIM S K, AHN S. Performances and thermal stability of LiCoO2 cathodes encapsu lated by a new gel polymer electrolyte[J]. Journal of power sources, 2007, 174(2): 480-483.
[22] MAROM R, AMALRAJ S F, LEIFER N, et al. A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21(27): 9938-9954.
[23] RICHARD M, DAHN J. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental[J]. Journal of The Electrochemical Society, 1999, 146(6): 2068.
[24] GNANARAJ J, ZINIGRAD E, ASRAF L, et al. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions[J]. Journal of Power Sources, 2003, 119: 794-798.
[25] 胡传跃, 李新海, 王志兴. 锂离子电池中电解液的热行为分析[J]. 中国稀土学报, 2004(z1):333-336.
[26] FENG X, REN D, HE X, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
[27] MOON J, JEONG J Y, KIM J I, et al. An ultrathin inorganic-organic hybrid layer on commercial polymer separators for advanced lithium-ion batteries[J]. Journal of Power Sources, 2019, 416:89-94.
[28] ZHANG Y, WANG Z, XIANG H, et al. A thin inorganic composite separator for lithium-ion batteries[J]. Journal of Membrane Science, 2016, 509: 19-26.
[29] ZHAI Y, XIAO K, YU J, et al. Closely packed x-poly (ethylene glycol diacrylate) coated polyetherimide/poly (vinylidene fluoride) fiber separators for lithium ion batteries with enhanced thermostability and improved electrolyte wettability[J]. Journal of Power Sources, 2016, 325:292-300.
[30] VERDE M, CARROLL K, WANG Z, et al. Energy Environ[M]. Sci, 2013.
[31] ARORA P, ZHANG Z. Battery separators[J]. Chemical reviews, 2004, 104(10): 4419-4462.
[32] WEI Z, GU J, ZHANG F, et al. Core–shell structured nanofibers for lithium ion battery separator with wide shutdown temperature window and stable electrochemical performance[J]. ACS Applied Polymer Materials, 2020, 2(5): 1989-1996.
[33] KIM J H, KIM J H, CHOI K H, et al. Inverse opal-inspired, nano scaffold battery separators: A new membrane opportunity for high-performance energy storage systems[J]. Nano letters, 2014, 14(8): 4438-4448.
[34] 杨私私. 陶瓷纤维隔膜锂电池安全性能的研究[D]. 河北工业大学, 2016.
[35] XIE Y, ZOU H, XIANG H, et al. Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes[J]. Journal of Membrane Science, 2016, 503: 25-30.
[36] XIAO Y, LOW B T, HOSSEINI S S, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Progress in Polymer Science, 2009, 34(6): 561-580.
[37] CAO L, AN P, XU Z, et al. Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2016, 767: 34-39.
[38] JIA S, LONG J, LI J, et al. Biomineralized zircon-coated PVDF nanofiber separator for enhancing thermo-and electro-chemical properties of lithium-ion batteries[J]. Journal of Materials Science, 2020, 55: 14907-14921.
[39] WENG B, XU F, ALCOUTLABI M, et al. Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators[J]. Cellulose, 2015, 22: 1311-1320.
[40] ZHANG B, WANG Q, ZHANG J, et al. A superior thermostable and nonflammable composite membrane towards high power battery separator[J]. Nano Energy, 2014, 10: 277-287.
[41] LEE J Y, SHIN S H, MOON S H. Flame retardant coated polyolefin separators for the safety of lithium-ion batteries[J]. Korean Journal of Chemical Engineering, 2016, 33: 285-289.
[42] LIU K, LIU W, QIU Y, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J]. Science advances, 2017, 3(1): e1601978.
[43] TRAHEY L, BRUSHETT F R, BALSARA N P, et al. Energy storage emerging: A perspective from the Joint Center for Energy Storage Research[J]. Proceedings of the National Academy of Sciences, 2020, 117(23): 12550-12557.
[44] CHEN Y, KANG Y, ZHAO Y, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99.
[45] 李惠, 吉维肖, 曹余良, 等. 锂离子电池热失控防范技术[J]. 储能科学与技术, 2018, 7(3):376-383.
[46] ZHANG C, LI H, WANG S, et al. A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 44:33-40.
[47] BAGINSKA M, BLAISZIK B J, RAJH T, et al. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres[J]. JOURNAL OF POWER SOURCES,2014, 269: 735-739.
[48] JIANG X, XIAO L, AI X, et al. A novel bifunctional thermo-sensitive poly (lactic acid)@ poly (butylene succinate) core–shell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(44): 23238-23242.
[49] WU D, SHI C, HUANG S, et al. Electrospun Nanofibers for Sandwiched Polyimide/Poly(vinylidene fluoride)/Polyimide Separators with the Thermal Shutdown Function[J/OL]. ELECTROCHIMICA ACTA, 2015, 176: 727-734.
[50] CHEN W, SHI L, WANG Z, et al. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery[J]. Carbohydrate polymers, 2016, 147: 517-524.
[51] LI J, ZHANG Y, SHANG R, et al. Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability[J]. Energy Storage Materials, 2021, 43: 143-157.
[52] SHEN J, HAN K, MARTIN E J, et al. Upper-critical solution temperature (UCST) polymer functionalized graphene oxide as thermally responsive ion permeable membrane for energy storage devices[J]. Journal of Materials Chemistry A, 2014, 2(43): 18204-18207.
[53] 杜光超. 三元锂离子电池高温热失控试验与仿真研究[D]. 青岛大学, 2020.
[54] HATCHARD T, MACNEIL D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of The Electrochemical Society, 2001, 148(7): A755.
[55] SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions[J]. Journal of Power Sources, 2012, 220: 360- 372.
[56] 姚银花. NCM 三元锂动力电池热失控研究与仿真[D]. 长安大学, 2018.
[57] MELCHER A, ZIEBERT C, ROHDE M, et al. Modeling and simulation of the thermal runaway behavior of cylindrical Li-ion cells—Computing of critical parameters[J]. Energies, 2016, 9(4): 292.
[58] 陶欢. 锂离子动力电池热失控实验与模拟研究[D]. 华中科技大学, 2017.
[59] GONG W, ZHANG Z, WEI S, et al. Thermosensitive polyacrylonitrile/polyethylene oxide/poly acrylonitrile membrane separators for prompt and safer thermal lithium-ion battery shutdown [J]. Journal of The Electrochemical Society, 2020, 167(2): 020509.
[60] HSIEH C T, LIN S C, LEE C H, et al. Designing multifunctional polyethylene-polyimide composite separators for rechargeable lithium-ion batteries[J]. Journal of The Electrochemical Society, 2019, 166(14): A3132.
[61] ZHANG X, LI N, HU Z, et al. Poly (p-phenylene terephthalamide) modified PE separators for lithium ion batteries[J]. Journal of Membrane Science, 2019, 581: 355-361.
[62] WANG Z, CHEN J, YE B, et al. A pore-controllable polyamine (PAI) layer-coated polyolefin (PE) separator for pouch lithium-ion batteries with enhanced safety[J]. Journal of Solid State Electrochemistry, 2020, 24: 843-853.
[63] PAN R, XU X, SUN R, et al. Nanocellulose modified polyethylene separators for lithium metal batteries[J]. Small, 2018, 14(21): 1704371.
[64] LI D, SHI D, YUAN Z, et al. A low cost shutdown sandwich-like composite membrane with superior thermo-stability for lithium-ion battery[J]. Journal of Membrane Science, 2017, 542: 1-7.
[65] KIM Y, LEE W Y, KIM K J, et al. Shutdown-functionalized nonwoven separator with improved thermal and electrochemical properties for lithium-ion batteries[J]. Journal of Power Sources, 2016, 305: 225-232.
[66] WANG L, DENG N, JU J, et al. A novel core-shell structured poly-m-phenyleneisophthalamide@ polyvinylidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable electrochemical performance[J]. Electrochimica Acta,2019, 300: 263-273.
[67] LI L, YU M, JIA C, et al. Cellulosic biomass-reinforced polyvinylidene fluoride separators with enhanced dielectric properties and thermal tolerance[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20885-20894.
[68] WU D, SHI C, HUANG S, et al. Electrospun nanofibers for sandwiched polyimide/poly (vinylidene fluoride)/polyimide separators with the thermal shutdown function[J]. Electrochimica Acta, 2015, 176: 727-734.
[69] GONG W, WEI S, RUAN S, et al. Electrospun coaxial PPESK/PVDF fibrous membranes with thermal shutdown property used for lithium-ion batteries[J]. Materials Letters, 2019, 244: 126- 129.
[70] ZHOU Y T, YANG J, LIANG H Q, et al. Sandwich-structured composite separators with an anisotropic pore architecture for highly safe Li-ion batteries[J]. Composites Communications, 2018, 8: 46-51.
[71] TIAN X, XIN B, LU Z, et al. Electrospun sandwich polysulfonamide/polyacrylonitrile/polysulfonamide composite nanofibrous membranes for lithium-ion batteries[J]. RSC advances, 2019, 9(20): 11220-11229.
[72] CAI H, TONG X, CHEN K, et al. Electrospun polyethylene terephthalate nonwoven reinforced polypropylene separator: scalable synthesis and its lithium ion battery performance[J]. Polymers, 2018, 10(6): 574.
[73] HE L, QIU T, XIE C, et al. A phase separation method toward PPTA–polypropylene nanocomposite separator for safe lithium-ion batteries[J]. Journal of Applied Polymer Science, 2018, 135 (39): 46697.
[74] SUN G, LIU B, NIU H, et al. In situ welding: Superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium-ion battery[J]. Journal of Membrane Science, 2020, 595: 117509.
[75] KONG L, LIU B, DING J, et al. Robust polyetherimide fibrous membrane with crosslinked topographies fabricated via in-situ micro-melting and its application as superior Lithium-ion battery separator with shutdown function[J]. Journal of Membrane Science, 2018, 549: 244-250.
[76] 王浩, 李建军, 王莉, 等. 绝热加速量热仪在锂离子电池安全性研究方面的应用[J]. 新材料产业, 2013(1): 53-58.
[77] ROTH E P. Thermal response and flammability of Li-ion cells for HEV and PHEV applications[J]. Electric and Hybrid-Electric Vehicles–Batteries, 2010: 141.
[78] KIM J K, CHERUVALLY G, LI X, et al. Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries[J]. Journal of Power Sources, 2008, 178(2): 815-820.
[79] KIM J, CHOI S, JO S, et al. Characterization and properties of (PVDF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning[J]. Journal of the Electrochemical Society, 2004, 152(2): A295.
[80] WEN C Y, JHU C Y, WANG Y W, et al. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2[J]. Journal of thermal analysis andcalorimetry, 2012, 109(3): 1297-1302.
[81] LU T Y, CHIANG C C, WU S H, et al. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter[J]. Journal of thermal analysis and calorimetry, 2013, 114: 1083-1088.
[82] CHEN G, RICHARDSON T J. Thermal instability of Olivine-type LiMnPO4 cathodes[J]. Journal of Power Sources, 2010, 195(4): 1221-1224.
[83] MIAO Y E, ZHU G N, HOU H, et al. Electrospun polyimide nanofiber-based nonwoven sepa rators for lithium-ion batteries[J]. Journal of Power Sources, 2013, 226: 82-86.
[84] KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of power sources, 2007, 170(2): 476-489.

所在学位评定分委会
材料与化工
国内图书分类号
TM912
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543858
专题创新创业学院
推荐引用方式
GB/T 7714
胡文婷. 用于改善二次电池长效安全性的隔膜制备与性能研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132006-胡文婷-创新创业学院.(12704KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[胡文婷]的文章
百度学术
百度学术中相似的文章
[胡文婷]的文章
必应学术
必应学术中相似的文章
[胡文婷]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。