中文版 | English
题名

背景噪声多分量多阶频散曲线的提取与应用 ——以青藏高原东北缘及其邻区为例

其他题名
THE EXTRACTION AND APPLICATION OF MULTI-COMPONENT MULTIMODAL DISPERSION CURVES OF AMBIENT NOISE ——EXAMPLE OF THE NORTHEASTERN MARGIN OF THE TIBETAN AND ITS ADJACENT AREAS
姓名
姓名拼音
ZHANG Gongheng
学号
11930912
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
陈晓非
导师单位
地球与空间科学系
论文答辩日期
2023-05-16
论文提交日期
2023-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
印度洋板块向欧亚板块的俯冲,使青藏高原主体产生了巨大的变形,而东北缘与之相邻的块体在受到了青藏高原的挤压后,岩石圈结构更加复杂多变,这些区域的块体是否受到影响以及影响的程度是值得关注的。尽管该地区已有面波成像结果,但前人的研究主要是基于基阶频散曲线反演进行的成像,结果有较大的不确定性。频率-贝塞尔变换可以从背景噪声数据中提取多阶频散曲线,进行多阶频散曲线的联合反演可以有效地降低反演多解性,得到更可靠的速度模型。
   前人基于空间自相关方法的系数公式推导了多分量频率-贝塞尔变换的公式,本文的推导表明多分量频率-贝塞尔变换公式可以统一建立在广义反透射系数方法合成理论地震图的单力源公式上。由于原始的多分量频率-贝塞尔变换存在两种不同类型的交叉伪影干扰,本文提出了多分量修正频率-贝塞尔变换公式和k滤波方法对其进行去除,增强后的频散谱可以提取更多高阶及更宽频带的频散曲线。基于斯托克斯变换和合成理论地震图的单力源公式,本文提出了一种从双台多分量互相关函数中提取基阶频散曲线的方法—斯托克斯-贝塞尔变换,由于其可以使用大台间距的台站对,可获取更低频的基阶频散曲线,可以有效地补充频率-贝塞尔变换提取的基阶频散曲线的低频部分。由于不同分量的互相关函数的信噪比不同,多分量修正频率-贝塞尔变换、斯托克斯-贝塞尔变换得到的频散谱的质量也有所不同,综合不同分量的频散谱提取频散曲线,可以得到更宽频带的多阶频散曲线。
   本文通过多阶频散曲线的联合反演获得了青藏高原东北缘及其邻区的三维速度模型,结果表明在祁连造山带、西秦岭造山带西段和松潘-甘孜块体的中下地壳存在低速层,从低速层的分布上看该低速层已经进入了陇西盆地、阿拉善块体南部,表明这些区域的中下地壳已经受到青藏高原的改造;而在扬子克拉通、西秦岭造山带东段、鄂尔多斯地块以及中亚造山带未出现低速层,表明这些区域的中下地壳尚未受到青藏高原的改造或改造很小。青藏高原东北缘普遍存在上地幔低速异常,在松潘-甘孜地块、祁连造山带和西秦岭造山带西段上地幔低速的下方没有明显的垂向低速通道,这些区域的上地幔低速与深部物质的上涌可能没有直接关系,更有可能是青藏高原中南部上地幔低速区的北向延伸;同时在青藏高原的北向扩张的推动下,祁连造山带的上地幔低速已经穿过了阿拉善块体西缘,到达了中亚造山带南部。此外鄂尔多斯块体南北两个区域均存在上地幔低速层,与青藏高原东北缘上地幔的低速相连,但鄂尔多斯块体北部的岩石圈速度较南部高,这可能是鄂尔多斯块体上地幔区域存在青藏高原向东的扩张导致鄂尔多斯块体西南部的上地幔发生了变化,导致其波速比北部区域的低。这些研究成果可以为深入理解青藏高原的构造演化及其对周边地块岩石圈的影响提供重要的参考。
关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] SHAPIRONM, RITZWOLLERMH, BENSENGD. Source location of the 26 sec microseism From cross-correlations of ambient seismic noise[J]. Geophysical research letters, 2006, 33(18).
[2] XIA J, MILLER R D, PARK C B. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 2003, 52(1): 45-57.
[3] PAN L, CHEN X, WANG J. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes[J]. Geophysical Journal International, 2019, 216(2): 1276-1303.
[4] CHMIEL M, MORDRET A, BOUÉ P. Ambient noise multimode Rayleigh and Love wave tomography to determine the shear velocity structure above the Groningen gas field[J]. Geophysical Journal International, 2019, 218(3): 1781-1795.
[5] PERTON M, SPICA Z J, CLAYTON R W. Shear wave structure of a transect of the Los Angeles basin from multimode surface waves and H/V spectral ratio analysis[J]. Geophysical Journal International, 2020, 220(1): 415-427.
[6] KHOSROANJOMF, BROWAEYSTJ, SOCCOLV. Multi modal surface-wave tomography to obtain S- and P-wave velocities applied to the recordings of unmanned aerial vehicle deployed sensors[J]. Geophysics, 2021, 86(4): R399-R412.
[7] WANG J N, WU G X, CHEN X. Frequency-bessel transform method for effective imaging of higher-mode rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708-3723.
[8] 吴华礼, 陈晓非, 潘磊. 基于频率-贝塞尔变换法的关东盆地 S 波速度成像[J]. 地球物理学报, 2019, 62(9): 3400-3407.
[9] ZHAN W, PAN L, CHEN X. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise[J]. Journal of Asian Earth Sciences, 2020, 196: 104372.
[10] WUGX,PANL,WANGJN. Shear velocity inversion using multi modal dispersion curves from ambient seismic noise data of USArray transportable array[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018213.
[11] LI Z, ZHOU J, WU G. CC-FJpy: a python package for extracting overtone surface-wave dispersion from seismic ambient-noise cross correlation[J]. Seismological Research Letters, 2021.
[12] ZHONG S J, WU J P, FANG L H. Surface wave Eikonal tomography in and around the northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics, 2017, 60(6): 2304-2314.
[13] ZHANG Z, YAO H, YANG Y. Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications[J]. Science China Earth Sciences, 2020, 63: 1278-1293.
[14] ZHAO P, CHEN J, LI Y. Growth of the northeastern Tibetan plateau driven by crustal channel flow: evidence from high-resolution ambient noise imaging[J]. Geophysical Research Letters, 2021, 48(13): e2021GL093387.
[15] 李孟洋, 刘少林, 杨顶辉, 等. 基于程函方程的远震成像方法反演青藏高原东北缘速度和径向各向异性结构[J]. SCIENTIA SINICA Terrae, 2022, 52(5): 860-881.
[16] 吴建平, 刘雅宁, 钟世军, 等. 鄂尔多斯块体及周边地区岩石圈结构的接收函数与面波联合反演研究[J]. 中国科学: 地球科学, 2022.
[17] EINSTEIN A. Zur theorie der brownschen bewegung[J]. Annalen der physik, 1906, 324(2): 371-381.
[18] SNIEDER R, LAROSE E. Extracting earth’s elastic wave response from noise measurements[J]. Annual Review of Earth and Planetary Sciences, 2013, 41(1): 183-206.
[19] GREENE R F, CALLENHB. On the formalism of thermodynamic fluctuation theory[J]. Physical Review, 1951, 83(6): 1231-1235.
[20] CALLEN H B, WELTON T A. Irreversibility and generalized noise[J]. Physical Review, 1951, 83(1): 34.
[21] GUTENBERGB. Microseisms[M] Advances in geophysics: volume5. Elsevier, 1958: 53-92.
[22] TOKSZ M N, LACOSS R T. Microseisms: Mode structure and sources[J]. Science, 1968, 159(3817): 872-873.
[23] VINNIK L P. Sources of micro seismic P waves[J]. Pure and Applied Geophysics, 1973, 103: 282-289.
[24] WANG W, GERSTOFT P, WANG B. Interference of teleseismic body waves in noise cross-correlation functions in southwest china[J]. Seismological Research Letters, 2018, 89 (5): 1817-1825.
[25] WEAVER R, LOBKIS O. On the emergence of the Green’s function in the correlations of a diffuse field: pulse-echo using thermal phonons[J]. Ultrasonics, 2002, 40(1-8): 435-439.
[26] DERODE A, LAROSE E, TANTER M. Recovering the Green’s function from field-field correlations in an open scattering medium (L)[J]. The Journal of the Acoustical Society of America, 2003, 113(6): 2973-2976.
[27] SNIEDERR. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase[J]. Physical review E, 2004, 69(4): 046610.
[28] WAPENAARK. Retrieving the elastodynamic Green’s function of an arbitrary in homogeneous medium by cross correlation[J]. Physical review letters, 2004, 93(25): 254301.
[29] LAROSE E, DERODE A, CLORENNEC D. Passive retrieval of Rayleigh waves in disordered elastic media[J]. Physical Review E, 2005, 72(4): 046607.
[30] WEAVER R L, LOBKIS O I. Fluctuations in diffuse field–field correlations and the emergence of the Green’s function in open systems[J]. The Journal of the Acoustical Society of America, 2005, 117(6): 3432-3439.
[31] LOBKIS O I, WEAVER R L. On the emergence of the Green’s function in the correlations of a diffuse field[J]. The Journal of the Acoustical Society of America, 2001, 110(6): 3011-3017.
[32] WEAVER R L, LOBKIS O I. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies[J]. Physical Review Letters, 2001, 87(13): 134301.
[33] WEAVER R L, LOBKIS O I. Elastic wave thermal fluctuations, ultrasonic waveforms by correlation of thermal phonons[J]. The Journal of the Acoustical Society of America, 2003, 113(5): 2611-2621.
[34] WAPENAAR K, FOKKEMA J. Green’s function representations for seismic interferometry [J]. Geophysics, 2006, 71(4): SI33-SI46.
[35] SáNCHEZ-SESMA F J, CAMPILLO M. Retrieval of the Green’s function from cross correlation: the canonical elastic problem[J]. Bulletin of the Seismological Society of America, 2006, 96(3): 1182-1191.
[36] CAMPILLO M, PAUL A. Long-range correlations in the diffuse seismic coda[J]. Science, 2003, 299(5606): 547-549.
[37] SHAPIRO N M, CAMPILLO M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 2004, 31(7).
[38] SABRAKG, GERSTOFTP, ROUXP. Extracting time-domain Green’s function estimates from ambient seismic noise[J]. Geophysical research letters, 2005, 32(3).
[39] ROUX P, SABRA K G, GERSTOFT P. P-waves from cross-correlation of seismic noise[J]. Geophysical Research Letters, 2005, 32(19).
[40] KIMMAN W P, TRAMPERT J. Approximations in seismic interferometry and their effects onsurface waves[J]. Geophysical Journal International, 2010, 182(1): 461-476.
[41] 徐义贤, 罗银河. 噪声地震学方法及其应用[J]. 地球物理学报, 2015, 58(8): 2618-2636.
[42] YAO H, VAN DER HILST R D. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet[J]. Geophysical JournalInternational, 2009, 179(2): 1113-1132.
[43] KSTLE E D, SOOMRO R, WEEMSTRA C. Two-receiver measurements of phase velocity: cross-validation of ambient-noise and earthquake-based observations[J]. Geophysical Journal International, 2016, 207(3): 1493-1512.
[44] GERSTOFT P, SHEARER P M, HARMON N. Global P, PP, and PKP wave microseisms observed from distant storms[J]. Geophysical Research Letters, 2008, 35(23).
[45] DUPUTELZ, FERRAZZINIV, BRENGUIERF. Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Réunion) from January 2006 to June 2007[J]. Journal of Volcanology and Geothermal Research, 2009, 184(1): 164-173.
[46] DE PLAEN R S M, LECOCQ T, CAUDRON C. Single-station monitoring of volcanoes using seismic ambient noise[J]. Geophysical Research Letters, 2016, 43(16): 8511-8518.
[47] YATES A S, SAVAGE M K, JOLLY A D. Volcanic, coseismic, and seasonal changes detected at white island (whakaari) volcano, new zealand, using seismic ambient noise[J]. Geophysical Research Letters, 2019, 46(1): 99-108.
[48] MINATO S, TSUJI T, OHMI S. Monitoring seismic velocity change caused by the 2011 Tohoku-oki earthquake using ambient noise records[J]. Geophysical Research Letters, 2012, 39(9).
[49] FROMENTB, CAMPILLOM, CHENJ. Deformation at depth associated with the12May 2008 MW 7.9 Wenchuan earthquake from seismic ambient noise monitoring[J]. Geophysical Research Letters, 2013, 40(1): 78-82.
[50] DEL GAUDIO V, MUSCILLO S, WASOWSKI J. What we can learn about slope response to earthquakes from ambient noise analysis: An overview[J]. Engineering Geology, 2014, 182: 182-200.
[51] MOSCHETTIMP,RITZWOLLERMH,SHAPIRONM. Ambient noise tomography from the first two years of the USArray Transportable Array: Group speeds in the western US [J]. Geophysics. Res. Lett, 2007.
[52] CHO K H, HERRMANN R B, AMMON C J. Imaging the upper crust of the Korean Peninsula by surface-wave tomography[J]. Bulletin of the seismological Society of America, 2007, 97(1B): 198-207.
[53] YAO H, VAN DER HILST R D, DE HOOP M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2): 732-744.
[54] LINF C, RITZWOLLER MH, TOWNENDJ. Ambient noise Rayleigh wave tomography of New Zealand[J]. Geophysical Journal International, 2007, 170(2): 649-666.
[55] YANG Y, RITZWOLLER M H, LEVSHIN A L. Ambient noise Rayleigh wave tomography across Europe[J]. Geophysical Journal International, 2007, 168(1): 259-274.
[56] NISHIDA K, MONTAGNER J P, KAWAKATSU H. Global surface wave tomography using seismic hum[J]. Science, 2009, 326(5949): 112-112.
[57] HANED A, STUTZMANN E, SCHIMMEL M. Global tomography using seismic hum [J]. Geophysical Journal International, 2016, 204(2): 1222-1236.
[58] AKI K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35: 415-456.
[59] OKADA H, SUTO K. The microtremor survey method[M]. Society of Exploration Geophysicists, 2003.
[60] APOSTOLIDIS P, RAPTAKIS D, ROUMELIOTI Z. Determination of S-wave velocity structure using microtremors and spac method applied in Thessaloniki (Greece)[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(1): 49-67.
[61] ROBERTS J, ASTEN M. Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method[J]. ASEG Extended Abstracts, 2004, 2004(1):1-4.
[62] OKADA H. Theory of efficient array observations of microtremors with special reference to the SPAC method[J]. Exploration Geophysics, 2006, 37(1): 73-85.
[63] TIAN B, XU P, LING S. Application effectiveness of the microtremor survey method in the exploration of geothermal resources[J]. Journal of Geophysics and Engineering, 2017, 14 (5): 1283-1289.
[64] LI Z, CHEN X. An effective method to extract overtones of surface wave from array seismic records of earthquake events[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018511.
[65] QIN T, LU L, DING Z. High-resolution 3d shallow s wave velocity structure of tongzhou, subcenter of beijing, inferred from multimode rayleigh waves by beamforming seismic noise at a dense array[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB023689.
[66] SHEN W, RITZWOLLER M H, KANG D. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2): 954-979.
[67] WANG K, LU L, MAUPIN V. Surface wave tomography of northeastern tibetan plateau using beam forming of seismic noise at a dense array[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB018416.
[68] WANG X, LI Y, DING Z. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(8): 6703-6720.
[69] YAO H. Lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography: Recent advances and perspectives[J]. Earthquake Science, 2012, 25(5): 371-383.
[70] YAO H, BEGHEIN C, VAN DER HILST R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure[J]. Geophysical Journal International, 2008, 173(1): 205-219.
[71] GAO H, SHEN Y. Upper mantle structure of the Cascades from full-wave ambient noise tomography: Evidence for 3D mantle upwelling in the back-arc[J]. Earth and Planetary Science Letters, 2014, 390: 222-233.
[72] EMRY E L, SHEN Y, NYBLADE AA. Upper mantle earth structure in africa from full-wave ambient noise tomography[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 120-147.
[73] YANGX, GAOH. SegmentationoftheAleutian-Alaskasubductionzonerevealedbyfull-wave ambient noise tomography: Implications for the along-strike variation of volcanism[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(11): e2020JB019677.
[74] LIN F C, MOSCHETTI M P, RITZWOLLER M H. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps[J]. Geophysical Journal International, 2008, 173(1): 281-298.
[75] BENSEN G D, RITZWOLLER M H, BARMIN M P. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3): 1239-1260.
[76] SCHIMMEL M, STUTZMANN E, GALLART J. Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale[J]. Geophysical Journal International, 2011, 184(1): 494-506.
[77] VENTOSA S, SCHIMMEL M, STUTZMANN E. Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond[J]. Geophysical Journal International, 2017, 211(1): 30-44.
[78] WEAVER R L, YORITOMO J Y. Temporally weighting a time varying noise field to improve Green function retrieval[J]. The Journal of the Acoustical Society of America, 2018, 143(6): 3706.
[79] LIX, CHENX, YANGZ. Application of high-order surface waves in shallow exploration: An example of the Suzhou River, Shanghai[J]. Chinese Journal of Geophysics, 2020, 63(1): 247-255.
[80] TROMP J, LUO Y, HANASOGE S. Noise cross-correlation sensitivity kernels[J]. Geophysical Journal International, 2010, 183(2): 791-819.
[81] CHEN M, HUANG H, YAO H. Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography[J]. Geophysical Research Letters, 2014, 41(2): 334-340.
[82] SAGER K, ERMERT L, BOEHM C. Towards full waveform ambient noise inversion[J]. Geophysical Journal International, 2018, 212(1): 566-590.
[83] LU Y, STEHLY L, BROSSIER R. Imaging Alpine crust using ambient noise wave equation tomography[J]. Geophysical Journal International, 2020, 222(1): 69-85.
[84] SAGER K, BOEHM C, ERMERT L. Global-scale full-waveform ambient noise inversion [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB018644.
[85] LIN F C, RITZWOLLER M H, SNIEDER R. Eikonal tomography: surface wave tomography by phase front tracking across a regional broad-band seismic array[J]. Geophysical Journal International, 2009, 177(3): 1091-1110.
[86] RITZWOLLERMH, LINFC, SHENW. Ambient noise tomography with a large seismic array [J]. Comptes Rendus Geoscience, 2011, 343(8): 558-570.
[87] XUH,LUOY, CHENC. 3DshallowstructuresintheBaogutuarea, Karamay, determined by eikonal tomography of short-period ambient noise surface waves[J]. Journal of Applied Geophysics, 2016, 129: 101-110.
[88] KSTLEED, MOLINARII,BOSCHIL. Azimuthal anisotropy from eikonal tomography: example from ambient-noise measurements in the Alp Array network[J]. Geophysical Journal International, 2022, 229(1): 151-170.
[89] FANG H, YAO H, ZHANG H. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application[J]. Geophysical Journal International, 2015, 201(3): 1251-1263.
[90] HUAJIANY, SONGL, CHENGL. Direct surface wave tomography for three dimensional structure based on surface wave traveltimes: Methodology review and applications[J]. 地球与行星物理论评, 2023, 54(3): 231-251.
[91] 张明辉, 武振波, 马立雪, 等. 短周期密集台阵被动源地震探测技术研究进展[J]. 地球物理学进展, 2020, 35(2): 495-511.
[92] LIU Y, YAO H, ZHANG H. The community velocity model V.1.0 of southwest china, constructed from joint body- and surface- wave travel-time tomography[J]. Seismological Research Letters, 2021, 92(5): 2972-2987.
[93] LIU C, YAO H, YANG H Y. Direct inversion for three-dimensional shear wave speed azimuthal anisotropy based on surface wave ray tracing: methodology and application to yunnan, southwest china[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11): 11394-11413.
[94] HU S, YAO H, HUANG H. Direct surface wave radial anisotropy tomography in the crust of the eastern Himalayan syntaxis[J]. Journal of Geophysical Research: Solid Earth, 2020, 125 (5): e2019JB018257.
[95] EKSTROM G, ABERS G A, WEBB S C. Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation[J]. Geophysical Research Letters, 2009, 36(18).
[96] FU Y, XIAO Z. Ambient noise tomography of Rayleigh and Love wave in Northeast Tibetan plateau and adjacent regions[J]. Chinese Journal of Geophysics, 2020, 63(3): 860-870.
[97] DZIEWONSKI A, BLOCH S, LANDISMAN M. A technique for the analysis of transient seismic signals[J]. Bulletin of the seismological Society of America, 1969, 59(1): 427-444.
[98] LEVSHIN A L, PISARENKO V F, POGREBINSKY G A. On a frequency-time analysis of oscillations[C]//Annales de geophysique: volume 28. Centre National de la Recherche Scien- tifique, 1972: 211-218.
[99] LEVSHIN A, RATNIKOVA L, BERGER J O N. Peculiarities of surface-wave propagation across central Eurasia[J]. Bulletin of the Seismological Society of America, 1992, 82(6): 2464-2493.
[100] LEVSHIN A L, RITZWOLLER M H. Automated Detection, Extraction, and Measurement of Regional Surface Waves[M]//LEVSHIN A L, RITZWOLLER M H. Pageoph Topical Volumes: Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Surface Waves. Basel: Birkhuser, 2001: 1531-1545.
[101] LEVSHIN A, SHEN W, BARMIN M. Surface wave studies of the Greenland upper lithosphere using ambient seismic noise[J]. Pure and Applied Geophysics, 2017, 174.
[102] POURPOINT M, ANANDAKRISHNAN S, AMMON C J. Lithospheric structure of Greenland from ambient noise and earthquake surface wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7850-7876.
[103] BEGHEINC, LIJ, WEIDNERE. Crustal anisotropy in the Martian Low lands from surface waves[J]. Geophysical Research Letters, 2022, 49(24): e2022GL101508.
[104] NOUIBATA, STEHLYL, PAULA. Lithospheric trans dimensional ambient-noise tomography of W-Europe: implications for crustal-scale geometry of the W-Alps[J]. Geophysical Journal International, 2022, 229(2): 862-879.
[105] KIM D, BANERDT W B, CEYLAN S. Surface waves and crustal structure on Mars[J]. Science, 2022, 378(6618): 417-421.
[106] PANNING M P, BANERDT W B, BEGHEIN C. Locating the largest event observed on mars with multi-orbit surface waves[J]. Geophysical Research Letters, 2023, 50 (1): e2022GL101270.
[107] MAGGIO G, SUBASIC S, BEAN C J. Subsurface characterization using passive seismic in the urban area of Dublin City, Ireland[J]. Geophysical Prospecting, 2022, 70(8): 1432-1454.
[108] 宁铄现, 李世林, 郭震, 等. 深圳市中生代巨型花岗岩体浅部速度结构[J]. 地球物理学报, 2022, 65(11): 4341-4353.
[109] NI H, ZHENG H, ZHAO N. Application of ambient noise tomography with a dense linear array in prospecting active faults in the Mingguang city[J]. Chinese Journal of Geophysics, 2022, 65(7): 2518-2531.
[110] YU G, ZHANG Z, XU T. The urban underground space beneath the karst basin of guilin, china, revealed by ambient seismic noise tomography[J]. SeismologicalResearchLetters,2023, 94(1): 172-188.
[111] LUOS, YAOH, ZHANGZ. High-resolution crustal and upper mantle shear-wave velocity structure beneath the central-southern Tanlu fault: Implications for its initiation and evolution[J]. Earth and Planetary Science Letters, 2022, 595: 117763.
[112] ZHENG M, XU T, Lü Q. Upper crustal structure beneath the Qin-Hang and Wuyishan metallogenic belts in Southeast China as revealed by a joint active and passive seismic experiment[J]. Geophysical Journal International, 2022, 232(1): 190-200.
[113] WANGX, WUH, WANGH. Rayleigh wave tomography of central and southern Mongolia[J]. Tectonophysics, 2022, 836: 229426.
[114] RUIGROK E, GIBBONS S, WAPENAAR K. Cross-correlation beamforming[J]. Journal of Seismology, 2017, 21(3): 495-508.
[115] NISHIDA K, KAWAKATSU H, OBARA K. Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B10).
[116] CHEN J, PAN L, LI Z. Continental reworking in the Eastern South China Block and its adjacent areas revealed by F-J multimodal ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11): e2022JB024776.
[117] HUS, LUOS, YAOH. The frequency-bessel spectrograms of multi component cross-correlation functions from seismic ambient noise[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2020JB019630.
[118] YANG Z, CHEN X, PAN L. Multi-channel analysis of Rayleigh waves based on Vector Wavenumber Tansformation Method (VWTM).[C]//Geophysical Research Abstracts: volume 21. 2019.
[119] SU Y, YANG Z, YANG B. Application research of active source Rayleigh wave multimode extraction method based on vector wavenumber transformation method in near surface stratigraphic structure detection[J]. Beijing Da Xue Xue Bao, 2020, 56(3): 427-435.
[120] GAOL, ZHANGW, ZHANGZ. Extraction of multimodal dispersion curves from ambient noise with compressed sensing[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(6): e2020JB021472.
[121] LI Z, SHI C, CHEN X. Constraints on crustal P wave structure with leaking mode dispersion curves[J]. Geophysical Research Letters, 2021, 48(20): e2020GL091782.
[122] LI Z, SHI C, REN H. Multiple leaking mode dispersion observations and applications from ambient noise cross‐correlation in oklahoma[J]. Geophysical Research Letters, 2022, 49(1).
[123] LOUIEJN. Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays[J]. Bulletin of the Seismological Society of America, 2001, 91(2): 347-364.
[124] PARK C B, MILLER R D. Roadside passive multichannel analysis of surface waves (MASW) [J]. Journal of Environmental and Engineering Geophysics, 2008, 13(1): 1-11.
[125] XI C, XIA J, MI B. Modified frequency–Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 2021, 225(2): 1271-1280.
[126] ZHANG G, LIU Q, CHEN X. Enhancing the frequency–bessel spectrogram of ambient noise cross-correlation functions[J]. Bulletin of the Seismological Society of America, 2022, 113(1):361-377.
[127] ZHOU J, CHEN X. Removal of crossed artifacts from multimodal dispersion curves with modified frequency–bessel method[J]. Bulletin of the Seismological Society of America, 2022, 112(1): 143-152.
[128] HU B Y. Kramers–Kronig in two lines[J]. American Journal of Physics, 1989, 57(9): 821-821.
[129] ZHANG P Z, SHEN Z, WANG M. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812.
[130] BAO X, SONG X, XU M. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J]. Earth and Planetary Science Letters, 2013, 369: 129-137.
[131] LI H, SHEN Y, HUANG Z. The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 1954-1970.
[132] LE PAPE F, JONES A G, VOZAR J. Penetration of crustal melt beyond the Kunlun Fault into northern Tibet[J]. Nature Geoscience, 2012, 5(5): 330-335.
[133] GAO R, WANG H, YIN A. Tectonic development of the northeastern Tibetan Plateau as constrained by high-resolution deep seismic-reflection data[J]. Lithosphere, 2013, 5(6): 555-574.
[134] YIN A, DANG Y Q, ZHANG M. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 2008, 120(7-8): 847-876.
[135] YE Z, GAO R, LI Q. Seismic evidence for the North China plate under thrusting beneath northeastern Tibet and its implications for plateau growth[J]. Earth and Planetary Science Letters, 2015, 426: 109-117.
[136] VERGNE J, WITTLINGER G, HUI Q. Seismic evidence for stepwise thickening of the crust across the NE Tibetan plateau[J]. Earth and Planetary Science Letters, 2002, 203(1):25-33.
[137] DENG Y, LI J, SONG X. Joint inversion for lithospheric structures: Implications for the growth and deformation in northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2018, 45(9): 3951-3958.
[138] LIU Z, TIAN X, GAO R. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth and Planetary Science Letters, 2017, 480: 33-41.
[139] ZHU L, HELMBERGER D V. Moho offset across the northern margin of the Tibetan Plateau[J]. Science, 1998, 281(5380): 1170-1172.
[140] LEÓN SOTO G, SANDVOL E, NI J F. Significant and vertically coherent seismic anisotropy beneath eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B5).
[141] CHANG L, DING Z, WANG C. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan plateau using GPS and shear-wave splitting data[J]. Tectonophysics, 2017, 699: 93-101.
[142] ZHANG C, GUO Z, YU Y. Distinct lithospheric structures of the ordos block and its margins from p and s receiver functions and its implications for the cenozoic lithospheric reworking[J]. Geophysical Research Letters, 2022, 49(6): e2021GL097680.
[143] LI S, GUO Z, CHEN Y J. Shear wave splitting evidence for keel-deflected mantle flow at the northern margin of the ordos block and its implications for the ongoing modification of craton lithosphere[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12):e2020JB020485.
[144] 詹望. 频率-贝塞尔变换方法在宽频带地震台网中的应用[D]. 中国科学技术大学, 2020.
[145] ZENG X, XIA Y, NI S. Persistent localized microseism source in kyushu island, north fiji basin and gulf of guniea[C]//AGU Fall Meeting Abstracts: volume 2012. 2012: S53C-2514.
[146] CHEN X. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2): 391-409.
[147] CHEN X. Seismogram synthesis in multi-layered half-space. Part I. Theoretical formulations [J][J]. Earthquake Research in China, 1999, 13(2): 149-174.
[148] THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 1950, 21(2): 89-93.
[149] HASKELL N A. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America, 1953, 43(1): 17-34.
[150] ABO-ZENAA. Dispersion function computations for unlimited frequency values[J]. Geophysical Journal International, 1979, 58(1): 91-105.
[151] KENNETT B L N, KERRY N J. Seismic waves in a stratified half space[J]. Geophysical Journal International, 1979, 57(3): 557-583.
[152] KNOPOFF L. A matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 1964, 54(1): 431-438.
[153] WATSON T H. A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half-space[J]. Bulletin of the Seismological Society of America, 1970, 60(1): 161-166.
[154] LUCO J E, APSEL R J. On the Green’s functions for a layered half-space. Part I[J]. Bulletin of the Seismological Society of America, 1983, 73(4): 909-929.
[155] HANEY M M, MIKESELL T D, VAN WIJK K. Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves: Mixed-component correlations in SPAC[J]. Geophysical Journal International, 2012, 191(1): 189-206.
[156] 李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用: 以苏州河地区为例[J]. 地球物理学报, 2020, 63(1): 247-255.
[157] 杨振涛, 陈晓非, 潘磊, 等. 基于矢量波数变换法 (VWTM) 的多道 Rayleigh 波分析方法[J]. 地球物理学报, 2019, 62(1): 298-305.
[158] 苏悦, 杨振涛, 杨博, 等. 基于矢量波数变换法的主动源瑞雷波多模式提取方法在近地表地层结构探测中的应用研究[J]. 北京大学学报: 自然科学版, 2020, 56(3): 427-435.
[159] LEI Y, YIN F, HONG H. Shallow structure imaging using higher-mode Rayleigh waves based on FJ transform in DAS observation[J]. Chinese Journal of Geophysics, 2021, 64(12):4280-4291.
[160] WANG X, FENG X, DONG X. Shallow structure imaging using multi-mode dispersion curves based on multi-window hlrt in das observation[J]. Pure and Applied Geophysics, 2023:1-16.
[161] XU Z, DYLAN MIKESELL T, XIA J. A comprehensive comparison between the refraction microtremor and seismic interferometry methods for phase-velocity estimation[J]. Geophysics, 2017, 82(6): EN99-EN108.
[162] CHENG F, XIA J, XU Z. Frequency–wavenumber (FK)-based data selection in high frequency passive surface wave survey[J]. Surveys in Geophysics, 2018, 39: 661-682.
[163] WU Q, LI Q, HU X. Multi-mode surface wave tomography of a water-rich layer of the jizhong depression using beamforming at a dense array[J]. Remote Sensing, 2023, 15(1): 40.
[164] FORBRIGERT. Inversion of shallow-seismic wavefields: I. Wave field transformation[J]. Geophysical Journal International, 2003, 153(3): 719-734.
[165] SONG W, FENG X, WU G. Convolutional neural network, res-unet++, -based dispersion curve picking from noise cross-correlations[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11): e2021JB022027.
[166] DONG S, LI Z, CHEN X. Dispernet: an effective method of extracting and classifying the dispersion curves in the frequency–bessel dispersion spectrum[J]. Bulletin of the Seismological Society of America, 2021, 111(6): 3420-3431.
[167] HANEY M M, NAKAHARA H. Surface-wave green’s tensors in the near field[J]. Bulletin of the Seismological Society of America, 2014, 104(3): 1578-1586.
[168] ALLEN J. Short term spectral analysis, synthesis, and modification by discrete Fourier transform[J]. IEEETransactionsonAcoustics,Speech,andSignalProcessing,1977,25(3): 235-238.
[169] GABOR D. Theory of communication. Part 1: The analysis of information[J]. Journal of the Institution of Electrical Engineers-part III: radio and communication engineering, 1946, 93(26): 429-441.
[170] STOCKWELL R G, MANSINHA L, LOWE R P. Localization of the complex spectrum: the S transform[J]. IEEE transactions on signal processing, 1996, 44(4): 998-1001.
[171] MEYER Y, BECK C, SCHLOEGL F. Wavelets and operators[Z]. 1994.
[172] 李正波. 频率贝塞尔变换法提取地震记录中的频散信息[D]. 中国科学技术大学, 2020.
[173] FANG L H, WU J P, WANG W L. Love wave tomography from ambient seismic noise in North-China[J]. Chinese Journal of Geophysics, 2013, 56(7): 2268-2279.
[174] RICKER N. The Form and Laws of propagation of seismic wavelets-Geophysics, 18[M]. IO, 1953.
[175] 卢占武, 高锐, 李秋生, 等. 中国青藏高原深部地球物理探测与地球动力学研究 (1958—2004)[J]. 地球物理学报, 2006, 49(3): 753-770.
[176] 许志琴, 侯立玮, 王宗. 中国松潘–甘孜造山带的造山过程[M]. 地质出版社, 1992.
[177] 蔡宏明. 松潘—甘孜褶皱带印支期花岗岩类和火山岩类成因及深部作用[D]. 中国地质大学, 2010.
[178] 徐士进, 王汝成, 沈渭洲, 等. 松潘-甘孜造山带中晋宁期花岗岩的 U-Pb 和 Rb-Sr 同位素定年及其大地构造意义[J]. 中国科学 (D 辑: 地球科学), 1996(1): 52-58.
[179] HUANG M H, BUICK I S, HOU L W. Tectonometamorphic evolution of the eastern Tibet plateau: Evidence from the central Songpan–Garzê orogenic belt, Western China[J]. Journal of Petrology, 2003, 44(2): 255-278.
[180] 张丽琪. 北祁连—阿拉善地块南缘古生代碰撞后岩浆作用及深部过程[D]. 中国地质大学,2019.
[181] WANG C Y, ZHANG Q, QIAN Q. Geochemistry of the early paleozoic baiyin volcanic rocks (nw china): implications for the tectonic evolution of the north qilian orogenic belt[J]. The Journal of Geology, 2005, 113(1): 83-94.
[182] TSENG C Y, YANG H J, YANG H Y. Continuity of the north qilian and north qinling orogenic belts, central orogenic system of china: evidence from newly discovered paleozoic adakitic rocks[J]. Gondwana Research, 2009, 16(2): 285-293.
[183] 吴才来, 徐学义, 高前明, 等. 北祁连早古生代花岗质岩浆作用及构造演化[J]. 岩石学报, 2010, 26(4): 1027-1044.
[184] 耿元生, 杨崇辉, 万渝生. 吕梁地区古元古代花岗岩浆作用——来自同位素年代学的证据[J]. 岩石学报, 2006, 22(2): 305-314.
[185] 李蒙, 李文厚, 赵红格, 等. 贺兰山地区三叠纪沉积特征及其地质意义[J]. 西北大学学报:自然科学版, 2019, 49(5): 745-754.
[186] WILHEM C, WINDLEY B F, STAMPFLI G M. The Altaids of Central Asia: A tectonic and evolutionary innovative review[J]. Earth-Science Reviews, 2012, 113(3-4): 303-341.
[187] XIA X, SUN M, ZHAO G. U–Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton[J]. Earth and Planetary Science Letters, 2006, 241(3): 581-593.
[188] SHEN X, LIU M, GAO Y. Lithospheric structure across the northeastern margin of the Tibetan Plateau: Implications for the plateau’s lateral growth[J]. Earth and Planetary Science Letters, 2017, 459: 80-92.
[189] 贾萌, 王显光, 李世林. 鄂尔多斯块体及周边区域地壳结构的接收函数研究[J]. 地球物理学进展, 2015, 30(06): 2474-2481.
[190] LI Q, YOU X, YANG S. A precise velocity field of tectonic deformation in China as inferred from intensive GPS observations[J]. Science China. Earth Sciences, 2012, 55(5): 695.
[191] WANG M, SHEN Z K. Present-day crustal deformation of continental china derived from gps and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774.
[192] ENGLAND P, HOUSEMAN G. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B3): 3664-3676.
[193] TAPPONNIER P, ZHIQIN X, ROGER F. Oblique stepwise rise and growth of the Tibet Plateau[J]. science, 2001, 294(5547): 1671-1677.
[194] CLARKMK, ROYDENLH. Topographicooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8): 703-706.
[195] LI Y, PAN J, WU Q. Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino-Korea Craton revealed by Rayleigh wave tomography[J]. Geophysical Journal International, 2017, 210(2): 570-584.
[196] BEYREUTHERM, BARSCHR, KRISCHERL. ObsPy: A Python tool box for seismology [J]. Seismological Research Letters, 2010, 81(3): 530-533.
[197] KRISCHER L, MEGIES T, BARSCH R. ObsPy: A bridge for seismology into the scientific Python ecosystem[J]. Computational Science & Discovery, 2015, 8(1): 014003.
[198] RAWLINSON N, SAMBRIDGE M. The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media[J]. Exploration Geophysics, 2005, 36(4): 341-350.
[199] LUOS,YAOH,LIQ. High-resolution 3D crustal S-wave velocity structure of the Middle- Lower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting[J]. Science China Earth Sciences, 2019, 62(9): 1361-1378.
[200] CHENG F, XIA J, AJO-FRANKLIN J B. High-resolution ambient noise imaging of geothermal reservoir using 3C dense seismic nodal array and ultra-short observation[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8): e2021JB021827.
[201] SILVEIRA G, DIAS N A, KISELEV S. Imaging the crust and uppermost mantle structure of Portugal (West Iberia) with seismic ambient noise[J]. Geophysical Journal International, 2022, 230(2): 1106-1120.
[202] ZHANG W, CHEN X. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophysical Journal International, 2006, 167(1): 337-353.
[203] ZHANG W, ZHANG Z, CHEN X. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophysical Journal International, 2012, 190(1): 358-378.
[204] LU Y, BEN-ZION Y. Validation of seismic velocity models in southern California with full waveform simulations[J]. Geophysical Journal International, 2022, 229(2): 1232-1254.
[205] 付媛媛, 肖卓. 青藏高原东北缘及邻区 Rayleigh 和 Love 波背景噪声层析成像[J]. 地球物理学报, 2020, 63(3): 860-870.
[206] LIU Q Y, VAN DER HILST R D, LI Y. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 2014, 7(5): 361-365.
[207] LEI J, ZHAO D. Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(5): 1861-1884.
[208] CEYLANS, NIJ, CHENJY. Fragmented Indian plate and vertically coherent deformation beneath eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B11).
[209] LIANG X, SANDVOL E, CHEN Y J. A complex Tibetan upper mantle: A fragmented Indian slab and no south-verging subduction of Eurasian lithosphere[J]. Earth and Planetary Science Letters, 2012, 333-334: 101-111.

所在学位评定分委会
力学
国内图书分类号
O343.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543863
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
张功恒. 背景噪声多分量多阶频散曲线的提取与应用 ——以青藏高原东北缘及其邻区为例[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930912-张功恒-地球与空间科学(85880KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张功恒]的文章
百度学术
百度学术中相似的文章
[张功恒]的文章
必应学术
必应学术中相似的文章
[张功恒]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。