[1]GAO W, HOWDEN B P, STINEAR T P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen[J]. Current Opinion in Microbiology, 2018, 41: 76-82.
[2]HODILLE E, ROSE W, DIEP B A, et al. The Role of Antibiotics in Modulating Virulence in Staphylococcus aureus[J]. Clinical Microbiology Reviews, 2017, 30(4): 887-917.
[3]KOULENTI D, XU E, MOK I Y S, et al. Novel Antibiotics for Multidrug-Resistant Gram-Positive Microorganisms[J]. Microorganisms, 2019, 7(8): 270.
[4]SARKAR P, YARLAGADDA V, GHOSH C, et al. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics[J]. Medchemcomm, 2017, 8(3): 516-533.
[5]PASQUINA-LEMONCHE L, BURNS J, TURNER R D, et al. The architecture of the Gram-positive bacterial cell wall[J]. Nature, 2020, 582(7811): 294-297.
[6]CLAESSEN D, ERRINGTON J. Cell Wall Deficiency as a Coping Strategy for Stress[J]. Trends in Microbiology, 2019, 27(12): 1025-1033.
[7]BUGG T D, BRADDICK D, DOWSON C G, et al. Bacterial cell wall assembly: still an attractive antibacterial target[J]. Trends in Biotechnology, 2011, 29(4): 167-173.
[8]YUAN Z, VERKLEY G J M. Pezicula neosporulosa sp. nov. (Helotiales, Ascomycota), an endophytic fungus associated with Abies spp. in China and Europe[J]. Mycoscience, 2015, 56(2): 205-213.
[9]CHEN C, VERKLEY G J, SUN G, et al. Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera[J]. Fungal Biology, 2016, 120(11): 1291-1322.
[10]DAS K, LEE S Y, CHOI H W, et al. Taxonomy of Arthrinium minutisporum sp. nov., Pezicula neosporulosa, and Acrocalymma pterocarpi: New Records from Soil in Korea[J]. Mycobiology, 2020, 48(6): 450-463.
[11]FRANCOLINI I, NORRIS P, PIOZZI A, et al. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces[J]. Antimicrobial agents and chemotherapy, 2004, 48(11): 4360-4365.
[12]LAUTERWEIN M, OETHINGER M, BELSNER K, et al. In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid, and (-)-usnic acid against aerobic and anaerobic microorganisms[J]. Antimicrobial agents and chemotherapy, 1995, 39(11): 2541-2543.
[13]MILLOT M, DIEU A, TOMASI S. Dibenzofurans and derivatives from lichens and ascomycetes[J]. Natural Product Reports, 2016, 33(6): 801-811.
[14]王文仲.应用微生物学:现代生物技术[M].应用微生物学:现代生物技术, 1996.
[15]SIZAR O, UNAKAL C G. Gram Positive Bacteria[M]. StatPearls. Treasure Island (FL); StatPearls Publishing LLC. 2022.
[16]LIN S, LI H, TAO Y, et al. In Vitro and in Vivo Evaluation of Membrane-Active Flavone Amphiphiles: Semisynthetic Kaempferol-Derived Antimicrobials against Drug-Resistant Gram-Positive Bacteria[J]. Journal of Medicinal Chemistry, 2020, 63(11): 5797-5815.
[17]RICE L B. Antimicrobial resistance in gram-positive bacteria[J]. The American journal of medicine, 2006, 119(6 Suppl 1): S11-S70.
[18]ASOKAN G V, RAMADHAN T, AHMED E, et al. WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain[J]. Oman Medical Journal, 2019, 34(3): 184-193.
[19]KARAMAN R, JUBEH B, BREIJYEH Z. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches[J]. Molecules, 2020, 25(12): 2888.
[20]World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed[EB/OL].(2017-02-17)
[2023-02-16].https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
[21]MATONO T, NAGASHIMA M, MEZAKI K, et al. Molecular epidemiology of beta-lactamase production in penicillin-susceptible Staphylococcus aureus under high-susceptibility conditions[J]. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy, 2018, 24(2): 153-155.
[22]FISHER J F, MOBASHERY S. beta-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis[J]. Cold Spring Harbor Perspectives in Medicine, 2016, 6(5): a025221.
[23]MICEK S T. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections[J]. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2007, 45 Suppl 3: S184-S190.
[24]SUJATHA S, PRAHARAJ I. Glycopeptide resistance in gram-positive cocci: a review[J]. Interdisciplinary Perspectives on Infectious Diseases, 2012, 2012: 781679.
[25]ALDRED K J, KERNS R J, OSHEROFF N. Mechanism of quinolone action and resistance[J]. Biochemistry, 2014, 53(10): 1565-1574.
[26]KRAUSE K M, SERIO A W, KANE T R, et al. Aminoglycosides: An Overview[J]. Cold Spring Harbor Perspectives in Medicine, 2016, 6(6): a027029.
[27]FOSTER T J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects[J]. FEMS Microbiology Letters, 2017, 41(3): 430-449.
[28]PECHèRE J. Macrolide resistance mechanisms in Gram-positive cocci[J]. International Journal of Antimicrobial Agents, 2001, 18(supp-S1): 25-28.
[29]GUO Y, SONG G, SUN M, et al. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 107.
[30]HASHEMIAN S M R, FARHADI T, GANJPARVAR M. Linezolid: a review of its properties, function, and use in critical care[J]. Drug Design, Development and Therapy, 2018, 12: 1759-1767.
[31]ROHDE M. The Gram-Positive Bacterial Cell Wall[J]. Microbiology Spectrum, 2019, 7(3)
[32]SOBRAL R, TOMASZ A. The Staphylococcal Cell Wall[J]. Microbiology Spectrum, 2019, 7(4)
[33]Basic Biology. Bacteria[EB/OL].(2016-3-18)
[2023-02-16].https://basicbiology.net/micro/microorganisms/bacteria
[34]龙云霞.临床检验实践与诊疗指南[M].临床检验实践与诊疗指南, 2013.
[35]LOWY F D. Staphylococcus aureus infections[J]. New England Journal of Medicine, 1998, 339(8): 520-532.
[36]WANG Z, ZHU J, LI W, et al. Antibacterial mechanism of the polysaccharide produced by Chaetomium globosum CGMCC 6882 against Staphylococcus aureus[J]. International Journal of Biological Macromolecules, 2020, 159: 231-235.
[37]YE J, YANG X, MA C. Ligand-Based Drug Design of Novel Antimicrobials against Staphylococcus aureus by Targeting Bacterial Transcription[J]. International Journal of Molecular Sciences, 2022, 24(1): 339.
[38]TUON F F, SUSS P H, TELLES J P, et al. Antimicrobial Treatment of Staphylococcus aureus Biofilms[J]. Antibiotics (Basel, Switzerland), 2023, 12(1): 87.
[39]TONG S Y, DAVIS J S, EICHENBERGER E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management[J]. Clinical Microbiology Reviews, 2015, 28(3): 603-661.
[40]FOSTER T J. The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus[J]. European journal of clinical microbiology and infectious diseases : official publication of the European Society of Clinical Microbiology, 2016, 35(12): 1923-1931.
[41]LOFFLER B, TUCHSCHERR L. Staphylococcus aureus Toxins: Promoter or Handicap during Infection?[J]. Toxins (Basel), 2021, 13(4): 287.
[42]TUCHSCHERR L, LOFFLER B, PROCTOR R A. Persistence of Staphylococcus aureus: Multiple Metabolic Pathways Impact the Expression of Virulence Factors in Small-Colony Variants (SCVs)[J]. Frontiers in Microbiology, 2020, 11: 1028.
[43]PANTOSTI A, SANCHINI A, MONACO M. Mechanisms of antibiotic resistance in Staphylococcus aureus[J]. Future Microbiology, 2007, 2(3): 323-334.
[44]HODILLE E R W, DIEP BA, GOUTELLE S, LINA G, DUMITRESCU O. The Role of Antibiotics in Modulating Virulence in Staphylococcus aureus[J]. Clinical Microbiology Reviews, 2017, Oct;30(4):887-917: 887-917.
[45]ANUJ S A, GAJERA H P, HIRPARA D G, et al. Interruption in membrane permeability of drug-resistant Staphylococcus aureus with cationic particles of nano‑silver[J]. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2019, 127: 208-216.
[46]LEKSHMI M, AMMINI P, ADJEI J, et al. Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus[J]. AIMS microbiology, 2018, 4(1): 1-18.
[47]COSTA S S, SOBKOWIAK B, PARREIRA R, et al. Genetic Diversity of norA, Coding for a Main Efflux Pump of Staphylococcus aureus[J]. Frontiers in Genetics, 2018, 9: 710.
[48]MATANO L M, MORRIS H G, HESSER A R, et al. Antibiotic That Inhibits the ATPase Activity of an ATP-Binding Cassette Transporter by Binding to a Remote Extracellular Site[J]. Journal of the American Chemical Society, 2017, 139(31): 10597-10600.
[49]LEE Y D, PARK J H. Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods[J]. Journal of Microbiology and Biotechnology, 2016, 26(2): 263-269.
[50]HARADA Y, CHONG Y, SHIMONO N, et al. Nosocomial spread of meticillin-resistant Staphylococcus aureus with β-lactam-inducible arbekacin resistance[J]. Journal of Medical Microbiology, 2014, 63(Pt 5): 710-714.
[51]YANG J J, CHENG A, TAI H M, et al. Selected Mutations by Nemonoxacin and Fluoroquinolone Exposure Among Relevant Gram-Positive Bacterial Strains in Taiwan[J]. Microbial Drug Resistance (Larchmont, NY), 2020, 26(2): 110-117.
[52]CRAFT K M, NGUYEN J M, BERG L J, et al. Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype[J]. Medchemcomm, 2019, 10(8): 1231-1241.
[53]KANWAR I, SAH A K, SURESH P K. Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies[J]. Current Pharmaceutical Design, 2017, 23(14): 2084-2095.
[54]FISHER R A, GOLLAN B, HELAINE S. Persistent bacterial infections and persister cells[J]. Nature Reviews Microbiology, 2017, 15(8): 453-464.
[55]KESTER J C, FORTUNE S M. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria[J]. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49(2): 91-101.
[56]MICHIELS J E, VAN DEN BERGH B, VERSTRAETEN N, et al. Molecular mechanisms and clinical implications of bacterial persistence[J]. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 2016, 29: 76-89.
[57]LEWIS K. Multidrug tolerance of biofilms and persister cells[J]. Current Topics in Microbiology and Immunology, 2008, 322: 107-131.
[58]OTTO M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus[J]. Annual review of microbiology, 2010, 64: 143-162.
[59]VENUGOPALAN A, SRIVASTAVA S. Endophytes as in vitro production platforms of high value plant secondary metabolites[J]. Biotechnology Advances, 2015, 33(6 Pt 1): 873-887.
[60]STROBEL G, DAISY B, CASTILLO U, et al. Natural products from endophytic microorganisms[J]. Journal of Natural Products, 2004, 67(2): 257-268.
[61]MARTINEZ-KLIMOVA E, RODRIGUEZ-PENA K, SANCHEZ S. Endophytes as sources of antibiotics[J]. Biochemical Pharmacology, 2017, 134: 1-17.
[62]LIU J, LIU G. Analysis of Secondary Metabolites from Plant Endophytic Fungi[J]. Methods in Molecular Biology (Clifton, NJ), 2018, 1848: 25-38.
[63]WANG Z, WANG L, PAN Y, et al. Research advances on endophytic fungi and their bioactive metabolites[J]. Bioprocess and Biosystems Engineering, 2023, 46(2): 165-170.
[64]GRAF T N, KAO D, RIVERA-CHAVEZ J, et al. Drug Leads from Endophytic Fungi: Lessons Learned via Scaled Production[J]. Planta Medica, 2020, 86(13-14): 988-996.
[65]VERKLEY G J M. A monograph of the genus Pezicula and its anamorphs, F, 1999 [C].
[66]EKANAYAKA A, DARANAGAMA D, ARIYAWANSA H, et al. Pezicula chiangraiensis sp. nov. from Thailand[J]. Mycotaxon, 2016, 131(4): 739-748.
[67]DESHMUKH S K, VEREKAR S A, BHAVE S V. Endophytic fungi: a reservoir of antibacterials[J]. Frontiers in Microbiology, 2014, 5: 715.
[68]SUGIE Y, DEKKER K A, INAGAKI T, et al. A novel antibiotic CJ-17,572 from a fungus, Pezicula sp[J]. The Journal of Antibiotics, 2002, 55(1): 19-24.
[69]WANG J, WANG G, ZHANG Y, et al. Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites[J]. World Journal of Microbiology and Biotechnology, 2014, 30(10): 2639-2644.
[70]严冬,曾为林,陈肖学,等.樟叶越桔嫩枝内生真菌的植物病原菌拮抗活性[J]. 中南林业科技大学学报, 2021: 64-71.
[71]胡永志,杨鑫凤,周雅琴,等.两面针内生真菌遗传多样性分析及其抗菌活性研究[J]. 中国中药杂志, 2021: 3349-3355.
[72]刘悦,张爽,李佳宾,等.刺五加内生真菌分离鉴定及抗菌活性研究[J]. 天然产物研究与开发, 2019, 31(1): 8.
[73]张健,姜素平,蒋继宏,等.毛泡桐内生真菌的分离、拮抗细菌菌株的筛选和鉴定[J]. 微生物学杂志, 2018, 38(5): 6.
[74]王永刚,杨光瑞,陈凯,等.内生真菌链格孢菌醋酸乙酯提取物对金黄色葡萄球菌抑菌机制的研究[J]. 中草药, 2018, 49(3): 619-625.
[75]孟素香,曹健,张慧茹,等.绞股蓝内生真菌对金黄色葡萄球菌的抗菌机制[J]. 中国抗生素杂志, 2015, 40(4): 6.
[76]LUZINA O A, SALAKHUTDINOV N F. Usnic acid and its derivatives for pharmaceutical use: a patent review (2000-2017)[J]. Expert Opinion on Therapeutic Patents, 2018, 28(6): 477-491.
[77]贾妍,邓雁如,王莉宁.松萝酸的结构修饰与生物活性研究进展[J]. 天然产物研究与开发, 2020, 32(6): 13.
[78]沙娜,吾肯,焦顺刚,等.松萝酸及其类似物的化学成分和药理活性研究进展[J]. 中国中药杂志, 2018, 43(19): 11.
[79]CANSARAN D, KAHYA D, YURDAKULOLA E, et al. Identification and quantitation of usnic acid from the lichen Usnea species of Anatolia and antimicrobial activity[J]. Zeitschrift fur Naturforschung C, Journal of Biosciences, 2006, 61(11-12): 773-776.
[80]CROCE N, PITARO M, GALLO V, et al. Toxicity of Usnic Acid: A Narrative Review[J]. Journal of Toxicology, 2022, 2022: 8244340.
[81]HOFFMAN A M, MAYER S G, STROBEL G A, et al. Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species[J]. Phytochemistry, 2008, 69(4): 1049-1056.
[82]MOLNáR K, FARKAS E. Current results on biological activities of lichen secondary metabolites: a review[J]. Zeitschrift fur Naturforschung C, Journal of Biosciences, 2010, 65(3-4): 157-173.
[83]MACIAG-DORSZYNSKA M, WEGRZYN G, GUZOW-KRZEMINSKA B. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis[J]. FEMS Microbiology Letters, 2014, 353(1): 57-62.
[84]ARAUJO A A, DE MELO M G, RABELO T K, et al. Review of the biological properties and toxicity of usnic acid[J]. Natural Product Reports, 2015, 29(23): 2167-2180.
[85]GUO L, SHI Q, FANG J L, et al. Review of usnic acid and Usnea barbata toxicity[J]. Journal of environmental science and health Part C, Environmental carcinogenesis and ecotoxicology reviews, 2008, 26(4): 317-338.
[86]FRANCOLINI I, PIOZZI A, DONELLI G. Usnic Acid: Potential Role in Management of Wound Infections[J]. Advances in experimental medicine and biology, 2019, 1214: 31-41.
[87]刘樹勳,沈丽君,李良泉,等.我国地衣中得到的抗菌物質—地衣酸[J]. 科学通报, 1959(16): 527-529.
[88]VICTOR K, BORIS L, ATHINA G, et al. Design, synthesis and antimicrobial activity of usnic acid derivatives[J]. Medchemcomm, 2018, 9(5): 870-882.
[89]NOEL A, GARNIER A, CLEMENT M, et al. Lichen-associated bacteria transform antibacterial usnic acid to products of lower antibiotic activity[J]. Phytochemistry, 2021, 181: 1125-1135.
[90]KIM S, GREENLEAF R, MILLER M C, et al. Mechanical effects, antimicrobial efficacy and cytotoxicity of usnic acid as a biofilm prophylaxis in PMMA[J]. Journal of Materials Science Materials in Medicine, 2011, 22(12): 2773-2780.
[91]POMPILIO A, POMPONIO S, DI VINCENZO V, et al. Antimicrobial and antibiofilm activity of secondary metabolites of lichens against methicillin-resistant Staphylococcus aureus strains from cystic fibrosis patients[J]. Future Microbiology, 2013, 8(2): 281-292.
[92]POMPILIO A, RIVIELLO A, CROCETTA V, et al. Evaluation of antibacterial and antibiofilm mechanisms by usnic acid against methicillin-resistant Staphylococcus aureus[J]. Future Microbiology, 2016, 11: 1315-1338.
[93]BAZIN M A, LE LAMER A C, DELCROS J G, et al. Synthesis and cytotoxic activities of usnic acid derivatives[J]. Bioorganic and Medicinal Chemistry, 2008, 16(14): 6860-6866.
[94]LUZINA O A, SOKOLOV D N, POKROVSKII M A, et al. Synthesis and Biological Activity of Usnic Acid Enamine Derivatives[J]. Chemistry of Natural Compounds, 2015, 51(4): 646-651.
[95]TOMASI S, PICARD S, LAINé C, et al. Solid-phase synthesis of polyfunctionalized natural products: application to usnic acid, a bioactive lichen compound[J]. Journal of Combinatorial Chemistry, 2006, 8(1): 11-14.
[96]BELJANSKI V, ANDELKOVIĆ K, POLETI D, et al. Copper(II) Complexes of Usnic Acid Condensation Products and Their Antibacterial Activities[J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 2008, 28(10): 1607-1617.
[97]CONOVER M A, MIERZWA R, KING A, et al. Usnic acid amide, a phytotoxin and antifungal agent from Cercosporidium henningsii[J]. Phytochemistry, 1992, 31(9): 2999-3001.
[98]SEO C, SOHN J H, PARK S M, et al. Usimines A-C, bioactive usnic acid derivatives from the Antarctic lichen Stereocaulon alpinum[J]. Journal of Natural Products, 2008, 71(4): 710-712.
[99]SASSA T, IGARASHI M. Structures of (−)-Mycousnine, (+)-Isomycousnine and (+)-Oxymycousnine, New Usnic Acid Derivatives from Phytopathogenic Mycosphaerella nawae[J]. Agricultural and Biological Chemistry, 2014, 54(9): 2231-2237.
[100]LEE J, LEE J, KIM G J, et al. Mycousfurans A and B, Antibacterial Usnic Acid Congeners from the Fungus Mycosphaerella sp., Isolated from a Marine Sediment[J]. Marine Drugs, 2019, 17(7): 422.
[101]LUZINA O A, SALAKHUTDINOV N F. Biological activity of usnic acid and its derivatives: Part 1. Activity against unicellular organisms[J]. Russian Journal of Bioorganic Chemistry, 2016, 42(2): 115-132.
[102]LI X, XU L, LV Z, et al. Antifungal Mechanism of MTE-1, a Novel Oligosaccharide Ester, against Ustilaginoidea virens[J]. Journal of Agricultural and Food Chemistry, 2022, 70(24): 7441-7446.
[103]谭才邓,朱美娟,杜淑霞,等.抑菌试验中抑菌圈法的比较研究[J]. 食品工业, 2016(11): 4.
[104]LI M, ZHANG C, CHEN G, et al. Headspace gas chromatographic method for antimicrobial screening: Minimum inhibitory concentration determination[J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 181: 113122.
[105]DRAGOSITS M, MATTANOVICH D. Adaptive laboratory evolution -- principles and applications for biotechnology[J]. Microbial Cell Factories, 2013, 12: 64.
[106]FITZGERALD J R, HOLDEN M T. Genomics of Natural Populations of Staphylococcus aureus[J]. Annual review of microbiology, 2016, 70: 459-478.
[107]FU T, CAI Z, YUE Z, et al. Evolution of Resistance to Phenazine Antibiotics in Staphylococcus aureus and Its Role During Coinfection with Pseudomonas aeruginosa[J]. ACS infectious diseases, 2021, 7(3): 636-649.
[108]CAIN A K, BARQUIST L, GOODMAN A L, et al. A decade of advances in transposon-insertion sequencing[J]. Nature Reviews Genetics, 2020, 21(9): 526-540.
[109]WANG T, GUAN C, GUO J, et al. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance[J]. Nature Communications, 2018, 9(1): 2475.
[110]DE WET T J, WINKLER K R, MHLANGA M, et al. Arrayed CRISPRi and quantitative imaging describe the morphotypic landscape of essential mycobacterial genes[J]. Elife, 2020, 9: e60083.
[111]DE WET T, GOBE I, MHLANGA M, et al. CRISPRi-Seq for the Identification and Characterisation of Essential Mycobacterial Genes and Transcriptional Units[Z]. bioRxiv. 2018.10.1101/358275
[112]DE BAKKER V, LIU X, BRAVO A M, et al. CRISPRi-seq for genome-wide fitness quantification in bacteria[J]. Nature Protocols, 2022, 17(2): 252-281.
[113]STAMSAS G A, MYRBRATEN I S, STRAUME D, et al. CozEa and CozEb play overlapping and essential roles in controlling cell division in Staphylococcus aureus[J]. Molecular Microbiology, 2018, 109(5): 615-632.
[114]BLUMENSTEIN K, TERHONEN E, SUN H, et al. Chapter 3 - Methods for studying the forest tree microbiome[M]//ASIEGBU F O, KOVALCHUK A. Forest Microbiology. Academic Press. 2021: 35-58.
[115]JAYAKUMAR J, KUMAR V A, BISWAS L, et al. Therapeutic applications of lysostaphin against Staphylococcus aureus[J]. Journal of Applied Microbiology, 2021, 131(3): 1072-1082.
[116]KURU E, TEKKAM S, HALL E, et al. Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ[J]. Nature Protocols, 2015, 10(1): 33-52.
[117]万古霉素临床应用中国专家共识(2011版)[J].中国新药与临床杂志, 2011, 30(08): 561-573.
[118]FLEMMING H C, WINGENDER J, SZEWZYK U, et al. Biofilms: an emergent form of bacterial life[J]. Nature Reviews Microbiology, 2016, 14(9): 563-575.
修改评论