[1] XU J, ZHANG L, ZHANG D. External Prior Guided Internal Prior Learning for Real-WorldNoisy Image Denoising[J/OL]. IEEE Transactions on Image Processing, 2018, 27(6): 2996-3010. DOI: 10.1109/TIP.2018.2811546.
[2] ZHA Z, YUAN X, WEN B, et al. From Rank Estimation to Rank Approximation: Rank Residual Constraint for Image Restoration: arXiv:1807.02504[M]. arXiv, 2020.
[3] ZHANG L, ZUO W. Image Restoration: From Sparse and Low-Rank Priors to Deep Priors[Lecture Notes][J]. IEEE Signal Processing Magazine, 2017, 34(5): 172-179.
[4] TIRER T, GIRYES R. Back-Projection Based Fidelity Term for Ill-Posed Linear Inverse Problems[A/OL]. 2020. arXiv: 1906.06794.
[5] ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian Denoiser: Residual Learning of DeepCNN for Image Denoising[J/OL]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. DOI: 10.1109/TIP.2017.2662206.
[6] GUPTA D K, ARYA D, GAVVES E. Rotation Equivariant Siamese Networks for Tracking[C/OL]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville, TN, USA: IEEE, 2021: 12357-12366. DOI: 10.1109/CVPR46437.2021.01218.
[7] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs:arXiv:1606.00915[M]. arXiv, 2017.
[8] RACZKOWSKA M K, KOZIOL P, Urbaniak-Wasik S, et al. Influence of Denoising on Classification Results in the Context of Hyperspectral Data: High Definition FT-IR Imaging[J/OL]. Analytica Chimica Acta, 2019, 1085: 39-47. DOI: 10.1016/j.aca.2019.07.045.
[9] BERNSTEIN R. Adaptive Nonlinear Filters for Simultaneous Removal of Different Kinds of Noise in Images[J]. IEEE Transactions on Circuits and Systems, 1987, 34(11): 1275-1291.
[10] XU J, ZHANG L, ZUO W, et al. Patch Group Based Nonlocal Self-Similarity Prior Learning for Image Denoising[C/OL]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 244-252. DOI: 10.1109/ICCV.2015.36.
[11] DE BONET J S. Noise Reduction through Detection of Signal Redundancy[J]. Rethinking Artificial Intelligence, MIT AI Lab, Tech. Rep, 1997.
[12] BORACCHI G, FOI A, et al. Multiframe Raw-Data Denoising Based on Block-Matching and 3-D Filtering for Low-Light Imaging and Stabilization[C]//Proc. Int. Workshop on Local and Non-Local Approx. in Image Processing: volume 1. Citeseer, 2008: 277-284.
[13] HUANG T. Stability of Two-Dimensional Recursive Filters[J]. IEEE Transactions on Audio and Electroacoustics, 1972, 20(2): 158-163.
[14] ZOHAIR A A, SHAMIL A A, SULONG G. Latest Methods of Image Enhancement andRestoration for Computed Tomography: A Concise Review[J]. Applied Medical Informatics,2015, 36(1): 1-12.
[15] LINDENBAUM M, FISCHER M, BRUCKSTEIN A. On Gabor’s Contribution to Image Enhancement[J]. Pattern recognition, 1994, 27(1): 1-8.
[16] LEVADA A L. Closed-Form Bayesian Image Denoising: Improving the Adaptive WienerFilter through Pairwise Gaussian-Markov Random Fields[J]. Communications in Statistics-Simulation and Computation, 2021, 50(4): 1094-1118.
[17] BENESTY J, CHEN J, HUANG Y. Study of the Widely Linear Wiener Filter for Noise Reduction[C/OL]//2010 IEEE International Conference on Acoustics, Speech and Signal Processing.Dallas, TX, USA: IEEE, 2010: 205-208. DOI: 10.1109/ICASSP.2010.5496033.
[18] PITAS I, VENETSANOPOULOS A. Nonlinear Mean Filters in Image Processing[J]. IEEEtransactions on acoustics, speech, and signal processing, 1986, 34(3): 573-584.
[19] HONG S W, BAO P. An Edge-Preserving Subband Coding Model Based on Non-Adaptive andAdaptive Regularization[J]. Image and Vision Computing, 2000, 18(8): 573-582.
[20] PITAS I, VENETSANOPOULOS A N. Nonlinear Digital Filters: Principles and Applications:volume 84[M]. Springer Science & Business Media, 2013.
[21] LU C T, CHOU T C. Denoising of Salt-and-Pepper Noise Corrupted Image Using ModifiedDirectional-Weighted-Median Filter[J]. Pattern Recognition Letters, 2012, 33(10): 1287-1295.
[22] TOMASI C, MANDUCHI R. Bilateral Filtering for Gray and Color Images[C/OL]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). Bombay, India: Narosa Publishing House, 1998: 839-846. DOI: 10.1109/ICCV.1998.710815.
[23] BUADES A, COLL B, MOREL J M. A Review of Image Denoising Algorithms, with a New One[J/OL]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530. DOI: 10.1137/040616024.
[24] CAI T T, SILVERMAN B W. Incorporating Information on Neighbouring Coefficients intoWavelet Estimation[J]. Sankhyā: The Indian Journal of Statistics, Series B, 2001: 127-148.
[25] MOHL B, WAHLBERG M, MADSEN P. Ideal Spatial Adaptation via Wavelet Shrinkage[J]. The Journal of the Acoustical Society of America, 2003, 114: 1143-1154.
[26] MALLAT S, HWANG W L. Singularity Detection and Processing with Wavelets[J]. IEEEtransactions on information theory, 1992, 38(2): 617-643.
[27] KAUR G, GARG M, GUPTA S, et al. Denoising of Images Using Thresholding Based onWavelet Transform Technique[C]//IOP Conference Series: Materials Science and Engineering:volume 1022. IOP Publishing, 2021: 012031.
[28] LEI S, LU M, LIN J, et al. Remote Sensing Image Denoising Based on Improved Semi-Soft Threshold[J]. Signal, Image And Video Processing, 2021, 15: 73-81.
[29] MAGGIONI M, BORACCHI G, FOI A, et al. Video Denoising, Deblocking, and Enhancement Through Separable 4-D Nonlocal Spatiotemporal Transforms[J/OL]. IEEE Transactions on Image Processing, 2012, 21(9): 3952-3966. DOI: 10.1109/TIP.2012.2199324.
[30] BUADES A, COLL B, MOREL J. Denoising Image Sequences Does Not Require Motion Estimation[C/OL]//Proceedings. IEEE Conference on Advanced Video and Signal Based Surveillance,2005. Como, Italy: IEEE, 2005: 70-74. DOI: 10.1109/AVSS.2005.1577245.
[31] DABOV K, FOI A, KATKOVNIK V, et al. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering[J/OL]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. DOI: 10.1109/TIP.2007.901238.
[32] DABOV K, FOI A, EGIAZARIAN K. Video Denoising by Sparse 3D Transform-DomainCollaborative Filtering[C]//2007 15th European Signal Processing Conference. 2007: 145-149.
[33] WELCH G. An Introduction to the Kalman Filter[Z]. 1997: 16.
[34] PFLEGER S G, PLENTZ P D M, ROCHA R C O, et al. Real-Time Video Denoising on Multicores and GPUs with Kalman-Based and Bilateral Filters Fusion[J/OL]. Journal of Real-Time Image Processing, 2019, 16(5): 1629-1642. DOI: 10.1007/s11554-016-0659-y.
[35] EHMANN J, CHU L C, TSAI S F, et al. Real- Time Video Denoising on Mobile Phones[C/OL]//2018 25th IEEE International Conference on Image Processing (ICIP). Athens: IEEE, 2018:505-509. DOI: 10.1109/ICIP.2018.8451416.
[36] GU S, TIMOFTE R. A Brief Review of Image Denoising Algorithms and Beyond[J]. Inpainting and Denoising Challenges, 2019: 1-21.
[37] TASSANO M, DELON J, VEIT T. DVDnet: A Fast Network for Deep Video Denoising[C/OL]//2019 IEEE International Conference on Image Processing (ICIP). 2019: 1805-1809.DOI: 10.1109/ICIP.2019.8803136.
[38] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-Based Learning Applied to Document Recognition[J/OL]. Proceedings of the IEEE, Nov., 86(11): 2278-2324. DOI: 10.1109/5.726791.
[39] JAIN V, SEUNG S. Natural Image Denoising with Convolutional Networks[C]//Advances in Neural Information Processing Systems: volume 21. Curran Associates, Inc., 2008.
[40] BURGER H C, SCHULER C J, HARMELING S. Image Denoising: Can Plain Neural Networks Compete with BM3D?[C/OL]//2012 IEEE Conference on Computer Vision and PatternRecognition. Providence, RI: IEEE, 2012: 2392-2399. DOI: 10.1109/CVPR.2012.6247952.
[41] SCHMIDT U, ROTH S. Shrinkage Fields for Effective Image Restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 2774-2781.
[42] CHEN Y, POCK T. Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256-1272. DOI: 10.1109/TPAMI.2016.2596743.
[43] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet Classification with Deep Convolutional Neural Networks[J/OL]. Communications of the ACM, 2017, 60(6): 84-90. DOI:10.1145/3065386.
[44] MAO X, SHEN C, YANG Y B. Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections[C]//Advances in Neural Information Processing Systems: volume 29. Curran Associates, Inc., 2016.
[45] ZIV J, LEMPEL A. Compression of Individual Sequences via Variable-Rate Coding[J]. IEEE transactions on Information Theory, 1978, 24(5): 530-536.
[46] STORER J A, SZYMANSKI T G. Data Compression via Textual Substitution[J/OL]. Journal of the ACM, 1982, 29(4): 928-951. DOI: 10.1145/322344.322346.
[47] FIALA E R, GREENE D H. Data Compression with Finite Windows[J/OL]. Communications of the ACM, 1989, 32(4): 490-505. DOI: 10.1145/63334.63341.
[48] WILLIAMS R N. An Extremely Fast Ziv-Lempel Data Compression Algorithm[C]//1991 Data Compression Conference. IEEE Computer Society, 1991: 362-363.
[49] WELCH T A. A Technique for High-Performance Data Compression[J]. Computer, 1984, 17(06): 8-19.
[50] HUFFMAN D A. A Method for the Construction of Minimum-Redundancy Codes[J]. Proceedings of the IRE, 1952, 40(9): 1098-1101.
[51] CHU J, CHEN Q, YANG X. Review on Full Reference Image Quality Assessment Algorithms[J]. Application Research of Computers, 2014, 31(1): 13-22.
[52] HORE A, ZIOU D. Image Quality Metrics: PSNR vs. SSIM[C/OL]//2010 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE, 2010: 2366-2369. DOI: 10.1109/ICPR.2010.579.
[53] LIN S H, CHEN P Y, HSU C K. Modular Design of High-Efficiency Hardware Median Filter Architecture[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 65(6):1929-1940.
[54] CADENAS J O, MEGSON G M, SHERRATT R S. Median filter architecture by accumulative parallel counters[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(7): 661-665.
[55] YAO R, CHEN L, DONG P, et al. A Compact Hardware Architecture for Bilateral Filter with the Combination of Approximate Computing and Look-up Table[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(7): 3324-3328.
[56] HASINOFF S W, SHARLET D, GEISS R, et al. Burst Photography for High Dynamic Range and Low-Light Imaging on Mobile Cameras[J/OL]. ACM Transactions on Graphics, 2016, 35(6): 1-12. DOI: 10.1145/2980179.2980254.
[57] PEI Z, TONG Q, WANG L, et al. A Median Filter Method for Image Noise Variance Estimation[C/OL]//2010 Second International Conference on Information Technology and ComputerScience. 2010: 13-16. DOI: 10.1109/ITCS.2010.11.
[58] DONG P, CHEN Z, LI Z, et al. Configurable Image Rectification and Disparity Refinement for Stereo Vision[J/OL]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(10): 3973-3977. DOI: 10.1109/TCSII.2022.3191811.
[59] WILLÈME A, DESCAMPE A, LUGAN S, et al. Quality and Error Robustness Assessmentof Low-Latency Lightweight Intra-Frame Codecs for Screen Content Compression[J]. IEEEJournal on Emerging and Selected Topics in Circuits and Systems, 2016, 6(4): 471-483.
[60] ELBADRI M, PETERKIN R, GROZA V, et al. Hardware support of JPEG[C]//Canadian Conferenceon Electrical and Computer Engineering, 2005. IEEE, 2005: 812-815.
[61] SWAMINATHAN K, LAKSHMINARAYANAN G, KO S B. High speed generic network interface for network on chip using ping pong buffers[C]//2012 International Symposium on Electronic System Design (ISED). IEEE, 2012: 72-76.
[62] YUE H, CAO C, LIAO L, et al. Supervised raw video denoising with a benchmark dataset on dynamic scenes[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 2301-2310.
修改评论