[1] ZHANG M H, QI J L, LIU Y Q, et al. High energy storage capability of perovskite relaxor ferroelectrics via hierarchical optimization[J]. Rare Metals, 2022, 41(3): 730-744.
[2] ZHANG B. Mechanisms of dielectric enhancement in innovative polymeric metamaterials[M]. North Carolina State University, 2020.
[3] DONG J F, DENG X L, NIU Y J, et al. Research progress of polymer based dielectrics for high-temperature capacitor energy storage[J]. Acta Physica Sinica, 2020, 69(21): 217701.
[4] JIANG P, HUANG X. Editorial: Dielectric materials for electrical energy storage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 675-675.
[5] XIA W, ZHANG Z. PVDF-based dielectric polymers and their applications in electronic materials[J]. IET Nanodielectrics, 2018, 1(1): 17-31.
[6] RUAN L, YAO X, CHANG Y, et al. Properties and applications of the β phase poly(vinylidene fluoride)[J]. Polymers, 2018, 10(3): 228.
[7] KAWAI H. The piezoelectricity of poly(vinylidene Fluoride)[J]. Japanese Journal of Applied Physics, 1969, 8(7): 975-976.
[8] U.K. Clarivate. Web of Science[DB/OL]. London : U.K. Clarivate, 2020
[2020.12.31]. https://www.webofscience.com/wos/alldb/analyze-results/cf61be13-fa24-4d2d-9c1a-fdb885646195-6935bdca.
[9] BOHLéN M, BOLTON K. Conformational studies of poly(vinylidene fluoride), poly(trifluoroethylene) and poly(vinylidene fluoride-co-trifluoroethylene) using density functional theory[J]. Physical Chemistry Chemical Physics, 2014, 16(25): 12929-12939.
[10] THAKUR V K, LIN M F, TAN E J, et al. Green aqueous modification of fluoropolymers for energy storage applications[J]. Journal of Materials Chemistry, 2012, 22(13): 5951-5959.
[11] THAKUR V K, TAN E J, LIN M F, et al. Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): A novel material for high energy density capacitors[J]. Journal of Materials Chemistry, 2011, 21(11): 3751-3759.
[12] LIU Y, ZHANG B, XU W, et al. Chirality-induced relaxor properties in ferroelectric polymers[J]. Nature Materials, 2020, 19(11): 1169-1174.
[13] WU C, DESHMUKH A A, LI Z, et al. Flexible temperature-invariant polymer dielectrics with large bandgap[J]. Advanced Materials, 2020, 32(21): 2000499.
[14] WANG Y, YAO M G, MA R, et al. Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage[J]. Journal of Materials Chemistry A, 2020, 8(3): 884-917.
[15] FENG Y, WU Q, DENG Q, et al. High dielectric and breakdown properties obtained in a PVDF based nanocomposite with sandwich structure at high temperature via all-2D design[J]. Journal of Materials Chemistry C, 2019, 7(22): 6744-6751.
[16] MAMMERI F. Chapter 3 - Nanostructured flexible PVDF and fluoropolymer-based hybrid films[M]. France: Elsevier, 2019.
[17] LIN B, LI Z T, YANG Y, et al. Enhanced dielectric permittivity in surface-modified graphene/PVDF composites prepared by an electrospinning-hot pressing method[J]. Composites Science and Technology, 2019, 172: 58-65.
[18] PIPERTZIS A, ASADI K, FLOUDAS G. P(VDF-TrFE) copolymer dynamics as a function of temperature and pressure in the vicinity of the curie transition[J]. Macromolecules, 2022, 55(7): 2746-2757.
[19] MAO P, WANG J, ZHANG L, et al. Tunable dielectric polarization and breakdown behavior for high energy storage capability in P(VDF–TrFE–CFE)/PVDF polymer blended composite films[J]. Physical Chemistry Chemical Physics, 2020, 22(23): 13143-13153.
[20] GUO R, LUO H, ZHOU X, et al. Ultrahigh energy density of poly(vinylidene fluoride) from synergistically improved dielectric constant and withstand voltage by tuning the crystallization behavior[J]. Journal of Materials Chemistry A, 2021, 9(48): 27660-27671.
[21] YAGI T, TATEMOTO M, SAKO J. Transition behavior and dielectric properties in trifluoroethylene and vinylidene fluoride copolymers[J]. Polymer Journal, 1980, 12(4): 209-223.
[22] LIU S, XUE S, ZHANG W, et al. Significantly enhanced dielectric property in PVDF nanocomposites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes[J]. Journal of Materials Chemistry A, 2014, 2(42): 18040-18046.
[23] BO R, LIU J, WANG C, et al. Molecular dynamics simulation on structure and dielectric permittivity of BaTiO3/PVDF composites[J]. Advances in Polymer Technology, 2021, 2021: 9019580.
[24] LIU Y, AZIGULI H, ZHANG B, et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary[J]. Nature, 2018, 562(7725): 96-100.
[25] ZHOU X, CHU B, NEESE B, et al. Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene) copolymer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1133-1138.
[26] LI J, SUN Z, YAN F. Solution processable low-voltage organic thin film transistors with high-k relaxor ferroelectric polymer as gate insulator[J]. Advanced Materials, 2012, 24(1): 88-93.
[27] TAN D Q. The search for enhanced dielectric strength of polymer-based dielectrics: A focused review on polymer nanocomposites[J]. Journal of Applied Polymer Science, 2020, 137(33): 32.
[28] PRATEEK, THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects[J]. Chemical Reviews, 2016, 116(7): 4260-4317.
[29] HAO Y, WANG X, BI K, et al. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films[J]. Nano Energy, 2017, 31: 49-56.
[30] WANG Y U, TAN D Q, KRAHN J. Computational study of dielectric composites with core-shell filler particles[J]. Journal of Applied Physics, 2011, 110(4): 044103.
[31] ANAND A, BHATNAGAR M C. Role of vertically aligned and randomly placed zinc oxide (ZnO) nanorods in PVDF matrix: Used for energy harvesting[J]. Materials Today Energy, 2019, 13: 293-301.
[32] ZHANG X, SHEN Y, ZHANG Q, et al. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering[J]. Advanced Materials, 2015, 27(5): 819-824.
[33] SUN Q, MAO P, ZHANG L, et al. Significantly enhanced dielectric and energy storage performance of AlN/KNbO3/PVDF sandwich-structured composites via introducing the AlN/PVDF insulating layers[J]. Ceramics International, 2020, 46(8): 9990-9996.
[34] SHEHZAD K, ULHAQ A, AHMAD S, et al. All-organic PANI–DBSA/PVDF dielectric composites with unique electrical properties[J]. Journal of Materials Science, 2013, 48(10): 3737-3744.
[35] RAHAMAN M H, YAQOOB U, KIM H C. The effects of conductive nano fillers alignment on the dielectric properties of copolymer matrix[J]. Advanced Manufacturing: Polymer & Composites Science, 2019, 5(1): 29-36.
[36] WANG Y, CUI J, YUAN Q, et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites[J]. Advanced Materials, 2015, 27(42): 6658-6663.
[37] CUI Y, WANG X, CHI Q, et al. Sandwich structured BT-Fe3O4/PVDF composites with excellent dielectric properties and energy density[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(16): 11900-11906.
[38] KARASAWA N, GODDARD W A. Dielectric properties of poly(vinylidene fluoride) from molecular dynamics simulations[J]. Macromolecules, 1995, 28(20): 6765-6772.
[39] CHENG H P, CHEN G H, QIN R, et al. Electronic structures and optical properties of poly(vinylidene fluoride) crystals[J]. Acta Physico-Chimica Sinica, 2014, 30(2): 281-288.
[40] BARGAIN F, PANINE P, DOMINGUES DOS SANTOS F, et al. From solvent-cast to annealed and poled poly(VDF-co-TrFE) films: New insights on the defective ferroelectric phase[J]. Polymer, 2016, 105: 144-156.
[41] TOMAR R, PANDEY R, SINGH N B, et al. Electrical properties of barium titanate in presence of Sn2+ dopant[J]. SN Applied Sciences, 2020, 2(2): 226.
[42] DWIJ V, DE B K, SHARMA G, et al. Revisiting 70 years of lattice dynamics of BaTiO3: Combined first principle and experimental investigation[J]. arXiv, 2020, 2012: 12669.
[43] BOKOV A A, YE Z G. Recent progress in relaxor ferroelectrics with perovskite structure[J]. Journal of Materials Science, 2006, 41(1): 31-52.
[44] GRIFFITHS D J, SCHROETER D F. Introduction to quantum mechanics[M]. Cambridge: Cambridge University Press, 2018.
[45] CEPERLEY D, ALDER B. Quantum Monte Carlo[J]. Science, 1986, 231(4738): 555-560.
[46] BARTLETT R J, MUSIAŁ M. Coupled-cluster theory in quantum chemistry[J]. Reviews of Modern Physics, 2007, 79(1): 291-352.
[47] SCHLEGEL H B. Moeller-Plesset perturbation theory with spin projection[J]. The Journal of Physical Chemistry, 1988, 92(11): 3075-3078.
[48] TEWARY V K. Green-function method for lattice statics[J]. Advances in Physics, 1973, 22(6): 757-810.
[49] ORIO M, PANTAZIS D A, NEESE F. Density functional theory[J]. Photosynthesis Research, 2009, 102(2): 443-453.
[50] MAZUREK A H, SZELESZCZUK Ł, PISKLAK D M. Periodic DFT calculations: Review of applications in the pharmaceutical sciences[J/OL]. Pharmaceutics, 2020, 12(5):415
[2020-12-23]. https://arxiv.org/abs/2012.12669. DOI:10.3390/pharmaceutics12050415.
[51] COMBES J M, DUCLOS P, SEILER R. The Born-Oppenheimer approximation[M]. Boston, MA: Springer US, 1981.
[52] EISBERG R, RESNICK R. Quantum physics of atoms, molecules, solids, nuclei, and particles, 2nd Edition[M]. Ann Arbor, Michigan: Wiley, 1985.
[53] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871.
[54] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
[55] MARTIN R M. Determination of electronic structure: The three basic methods[M]. Cambridge: Cambridge University Press, 2004.
[56] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[57] CONSTANTIN L A, FABIANO E, DELLA SALA F. Meta-GGA exchange-correlation functional with a balanced treatment of nonlocality[J]. Journal of Chemical Theory and Computation, 2013, 9(5): 2256-2263.
[58] CORDERO E, TRAPASSO S I. Linear perturbations of the Wigner distribution and the Cohen class[J]. Analysis and Applications, 2019, 18(03): 385-422.
[59] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23(10): 5048-5079.
[60] COLE L A, PERDEW J P. Calculated electron affinities of the elements[J]. Physical Review A, 1982, 25(3): 1265-1271.
[61] VOSKO S H, WILK L, NUSAIR M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[J]. Canadian Journal of Physics, 1980, 58(8): 1200-1211.
[62] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215.
[63] PERDEW J P, BURKE K, ERNZERHOF M. Perdew, Burke, and Ernzerhof reply[J]. Physical Review Letters, 1998, 80(4): 891-891.
[64] BURKE K, PERDEW J P, WANG Y. Derivation of a generalized gradient approximation: The PW91 density functional[M]. New Orleans, LA: Springer, 1998.
[65] ZHANG T, YANG X, GE Q. Surface chemistry and reactivity of α-MoO3 toward methane: A SCAN-functional based DFT study[J]. The Journal of Chemical Physics, 2019, 151(4): 044708.
[66] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters: The PBE0 model[J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170.
[67] HEYD J, SCUSERIA G E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional[J]. The Journal of Chemical Physics, 2004, 121(3): 1187-1192.
[68] MARSMAN M, PAIER J, STROPPA A, et al. Hybrid functionals applied to extended systems[J]. Journal of Physics: Condensed Matter, 2008, 20(6): 064201.
[69] HANSSON T, OOSTENBRINK C, VAN GUNSTEREN W. Molecular dynamics simulations[J]. Current Opinion in Structural Biology, 2002, 12(2): 190-196.
[70] PECHUKAS P. Transition state theory[J]. Annual Review of Physical Chemistry, 1981, 32(1): 159-177.
[71] HOSPITAL A, GOñI J R, OROZCO M, et al. Molecular dynamics simulations: advances and applications[J]. Advances and Applications in Bioinformatics and Chemistry, 2015, 8: 37-47.
[72] ALBINA J M, KUBO A, SHIIHARA Y, et al. Coarse-grained molecular dynamics simulations of boundary lubrication on nanostructured metal surfaces[J]. Tribology Letters, 2020, 68(1): 49.
[73] CHAMOLLY A, LAUGA E. Stochastic dynamics of dissolving active particles[J]. The European Physical Journal E, 2019, 42(7): 88.
[74] MARK E T. Ab initio molecular dynamics: Basic concepts, current trends and novel applications[J]. Journal of Physics: Condensed Matter, 2002, 14(50): R1297.
[75] JINNOUCHI R, LAHNSTEINER J, KARSAI F, et al. Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with bayesian inference[J]. Physical Review Letters, 2019, 122(22): 225701.
[76] FRIEDERICH P, HäSE F, PROPPE J, et al. Machine-learned potentials for next-generation matter simulations[J]. Nature Materials, 2021, 20(6): 750-761.
[77] FEYNMAN R P. Forces in molecules[J]. Physical Review, 1939, 56(4): 340-343.
[78] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561.
[79] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials[J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502.
[80] GONZE X, AMADON B, ANGLADE P M, et al. ABINIT: First-principles approach to material and nanosystem properties[J]. Computer Physics Communications, 2009, 180(12): 2582-2615.
[81] BROOKS C L, CASE D A, PLIMPTON S, et al. Classical molecular dynamics[J]. The Journal of Chemical Physics, 2021, 154(10): 100401.
[82] THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS: A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171.
[83] SMITH W, YONG C W, RODGER P M. DL_POLY: Application to molecular simulation[J]. Molecular Simulation, 2002, 28(5): 385-471.
[84] WANG H, ZHANG L, HAN J, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Computer Physics Communications, 2018, 228: 178-184.
[85] GRIFFITHS R B. Microcanonical ensemble in quantum statistical mechanics[J]. Journal of Mathematical Physics, 1965, 6(10): 1447-1461.
[86] BRYAN G H. Elementary principles in statistical mechanics[J]. Nature, 1902, 66(1708): 291-292.
[87] DILL K, BROMBERG S. Molecular driving forces: Statistical thermodynamics in biology, chemistry, physics, and nanoscience[M]. New York, NY: Garland Science, 2010.
[88] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. The Journal of Chemical Physics, 1980, 72(4): 2384-2393.
[89] HOOVER W G, LADD A J C, MORAN B. High-strain-rate plastic flow studied via nonequilibrium molecular dynamics[J]. Physical Review Letters, 1982, 48(26): 1818-1820.
[90] NOSé S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519.
[91] MOU S, WU T, XIE J, et al. Boron phosphide nanoparticles: A nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH[J]. Advanced Materials, 2019, 31(36): 1903499.
[92] RAO D, ZHANG L, MENG Z, et al. Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(5): 2328-2338.
[93] AIERKEN Y, SEVIK C, GüLSEREN O, et al. MXenes/graphene heterostructures for Li battery applications: A first principles study[J]. Journal of Materials Chemistry A, 2018, 6(5): 2337-2345.
[94] SHEPPARD D, TERRELL R, HENKELMAN G. Optimization methods for finding minimum energy paths[J]. The Journal of Chemical Physics, 2008, 128(13): 134106.
[95] HENKELMAN G, UBERUAGA B P, JóNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904.
[96] LAIDLER K J, KING M C. Development of transition-state theory[J]. The Journal of Physical Chemistry, 1983, 87(15): 2657-2664.
[97] ZHU L, WANG Q. Novel ferroelectric polymers for high energy density and low loss dielectrics[J]. Macromolecules, 2012, 45(7): 2937-2954.
[98] GONZE X, LEE C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory[J]. Physical Review B, 1997, 55(16): 10355-10368.
[99] ZUAZUA E. Propagation, observation, and control of waves approximated by finite difference methods[J]. SIAM Review, 2005, 47(2): 197-243.
[100] YU P Y, CARDONA M. Electronic band structures[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996.
[101] SHARMA V, WANG C, LORENZINI R G, et al. Rational design of all organic polymer dielectrics[J]. Nature Communications, 2014, 5(1): 4845.
[102] PETOUSIS I, CHEN W, HAUTIER G, et al. Benchmarking density functional perturbation theory to enable high-throughput screening of materials for dielectric constant and refractive index[J]. Physical Review B, 2016, 93(11): 115151.
[103] RUUSKA H, AROLA E, KORTELAINEN T, et al. A density functional study on dielectric properties of acrylic acid grafted polypropylene[J]. The Journal of Chemical Physics, 2011, 134(13): 134904.
[104] CHOUDHARY K, GARRITY K F, SHARMA V, et al. High-throughput density functional perturbation theory and machine learning predictions of infrared, piezoelectric, and dielectric responses[J]. npj Computational Materials, 2020, 6(1): 64.
[105] KIM C, CHANDRASEKARAN A, HUAN T D, et al. Polymer genome: A data-powered polymer informatics platform for property predictions[J]. The Journal of Physical Chemistry C, 2018, 122(31): 17575-17585.
[106] KRISHNAMOORTHY A, NOMURA K I, BARADWAJ N, et al. Dielectric constant of liquid water determined with neural network quantum molecular dynamics[J]. Physical Review Letters, 2021, 126(21): 216403.
[107] WANG Y, ZHANG Z, ZHENG R, et al. Calculation method for the dielectric constant of thioglycolic acid grafted modified SBS dielectric elastomer[J]. Arabian Journal of Chemistry, 2021, 14(10): 103361.
[108] HOU W, YANG L, MO Y, et al. Static dielectric constant and dielectric loss of cellulose insulation: Molecular dynamics simulations[J]. High Voltage, 2021, 6(6): 1051-1060.
[109] MARZARI N, VANDERBILT D. Maximally localized generalized Wannier functions for composite energy bands[J]. Physical Review B, 1997, 56(20): 12847-12865.
[110] WANG V, XU N, LIU J C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033.
[111] TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. Scripta Materialia, 2015, 108: 1-5.
[112] SANVILLE E, KENNY S D, SMITH R, et al. Improved grid-based algorithm for Bader charge allocation[J]. Journal of Computational Chemistry, 2007, 28(5): 899-908.
[113] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012.
[114] MOMMA K, IZUMI F. VESTA: A three-dimensional visualization system for electronic and structural analysis[J]. Journal of Applied Crystallography, 2008, 41(3): 653-658.
[115] MEUNIER M, ROBERTSON S. Materials Studio 20th anniversary[J]. Molecular Simulation, 2021, 47(7): 537-539.
[116] SHEPPARD D, XIAO P, CHEMELEWSKI W, et al. A generalized solid-state nudged elastic band method[J]. The Journal of Chemical Physics, 2012, 136(7): 074103.
[117] JAMES F. Monte Carlo theory and practice[J]. Reports on Progress in Physics, 1980, 43(9): 1145.
[118] LOWNDES R P, MARTIN D H, BATES L F. Dielectric constants of ionic crystals and their variations with temperature and pressure[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1970, 316(1526): 351-375.
[119] LIU J, SU J, ZHAO L, et al. Influence of dielectric constant on dielectric strength by defect discharge and molecular polarization in solid insulation materials[J]. Journal of Applied Physics, 2019, 125(11): 115103.
[120] ZANG G, ZHANG J, ZHENG P, et al. Grain boundary effect on the dielectric properties of CaCu3Ti4O12 ceramics[J]. Journal of Physics D: Applied Physics, 2005, 38(11): 1824.
[121] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[122] KRISHNAMOORTHY A, NOMURA K, BARADWAJ N, et al. Dielectric constant of liquid water determined with neural network quantum molecular dynamics[J]. Physical Review Letters, 2021, 126(21): 216403.
[123] SPALDIN N A. A beginner's guide to the modern theory of polarization[J]. Journal of Solid State Chemistry, 2012, 195: 2-10.
[124] CAVENDISH H. Experiments on rathbone-place water: By the Hon. Henry Cavendish, F. R. S[J]. Philosophical Transactions, 1767, 57: 92-108.
[125] LOVINGER A J. Ferroelectric polymers[J]. Science, 1983, 220(4602): 1115-1121.
[126] ACOSTA M, NOVAK N, ROJAS V, et al. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives[J]. Applied Physics Reviews, 2017, 4(4): 041305.
[127] KITTEL C, MCEUEN P. Introduction to solid state physics[M]. John Wiley & Sons, 2018.
[128] COCHRAN W, COWLEY R A. Dielectric constants and lattice vibrations[J]. Journal of Physics and Chemistry of Solids, 1962, 23(5): 447-450.
[129] YANG Z, WANG J, HU Y, et al. Simultaneously improved dielectric constant and breakdown strength of PVDF/Nd-BaTiO3 fiber composite films via the surface modification and subtle filler content modulation[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 105675.
[130] KIM P, DOSS N M, TILLOTSON J P, et al. High energy density nanocomposites based on Surface-Modified BaTiO3 and a Ferroelectric Polymer[J]. ACS Nano, 2009, 3(9): 2581-2592.
[131] LUO H, ZHOU X, ELLINGFORD C, et al. Interface design for high energy density polymer nanocomposites[J]. Chemical Society Reviews, 2019, 48(16): 4424-4465.
[132] WANG Z, KEITH NELSON J, HILLBORG H, et al. Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models[J]. Composites Science and Technology, 2013, 76: 29-36.
[133] HUSSAIN S, YANGPING L. Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte[J]. Energy Transitions, 2020, 4(2): 113-126.
[134] JIANG M, FU C, YANG J, et al. Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al-air batteries[J]. Energy Storage Materials, 2019, 18: 34-42.
[135] CHEN J Y, HSIN C L, HUANG C W, et al. Dynamic evolution of conducting nanofilament in resistive switching memories[J]. Nano Letters, 2013, 13(8): 3671-3677.
[136] DISSADO L A, FOTHERGILL J C. Electrical degradation and breakdown in polymers[M]. leicester,Leics: IET, 1992.
[137] LAGHARI J R, SARJEANT W J. Energy-storage pulsed-power capacitor technology[J]. IEEE Transactions on Power Electronics, 1992, 7(1): 251-257.
[138] CHIU F C. A review on conduction mechanisms in dielectric films[J]. Advances in Materials Science and Engineering, 2014, 2014: 578168.
[139] SIMMONS J G. Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems[J]. Physical Review, 1967, 155(3): 657.
[140] ARYA B, SAMANTRAY N, CHOUDHARY R. Sr(Sn, Se)O3 modified Bi0.5K0.5TiO3 ferroelectric ceramics: Structural, electrical and leakage current characteristics[J]. Applied Physics A, 2023, 129(1): 55.
[141] ZHOU X, ZHAO X, SUO Z, et al. Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer[J]. Applied Physics Letters, 2009, 94(16): 162901.
[142] SHEN Z H, WANG J J, JIANG J Y, et al. Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics[J]. Nature Communications, 2019, 10(1): 1843.
修改评论