中文版 | English
题名

亥姆霍兹共振器对环形燃烧室热声振荡的被动控制

其他题名
PASSIVE CONTROL OF THERMOACOUSTIC OSCILLATION IN ANNULAR COMBUSTORS USING HELMHOLTZ RESONATORS
姓名
姓名拼音
YIN Liming
学号
12032392
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
杨东
导师单位
力学与航空航天工程系
论文答辩日期
2023-05-10
论文提交日期
2023-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

现代航空发动机和发电用燃气轮机常采用环形燃烧室结构,并在周向方向上 安装许多燃烧器。这些燃气轮机通常在贫燃预混工况下运行,火焰非常容易受到声扰动的影响,从而引发周向或轴向方向上的热声振荡。亥姆霍兹共振器被广泛应用于抑制热声振荡现象。对于环形燃烧室结构,共振器的存在会引起系统中模态的耦合,本文主要通过低阶网络模型方法对这一问题进行深入研究。

首先,本文对简单环形管道安装单个共振器的问题展开研究。基于低阶网络模型方法,推导了适用于“无限长环管—共振器”耦合系统的解析理论模型,解释了耦合系统模态特性改变的物理机理。进一步将研究拓展至有限长的“环管—共振器”耦合系统,发现了影响模态耦合的关键参数——共振器偏置流流量,并阐述了异常点对耦合机制的影响。本文还发现共振器的引入会使耦合系统中的特征模态表现为倾斜模态,并探究了共振器位置对倾斜模态特性以及异常点性质的影响, 得到了对应的变化规律并揭示了内在的物理机理。模型的可靠性以及结论的准确性通过有限元仿真进行了对比验证。

然后,本文对实验室尺度环形燃烧室结构安装单个共振器的问题进行研究。构建了“环形燃烧室—共振器”低阶网络模型,并考虑共振器安装在增压室位置。研究了热声耦合系统中的异常点现象,详细讨论了异常点对系统参数的依赖性以及对热声模态和共振器模态耦合机制的影响,并得到了异常点性质随共振器与火焰相对位置变化的演变规律及内在物理机理。模型的可靠性通过有限元仿真进行了验证。

最后,本文拓展研究了共振器安装在燃烧室时对“环形燃烧室—共振器”耦合系统的影响。发现了不同热声模态简并为异常点的现象,揭示了异常点性质随共振器位置改变表现出的新变化规律。最终推导了适用于无平均流动的低阶网络模型声学单元的吸声系数表达式,结合声能量平衡分析阐述了共振器抑制热声振荡的机理。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] 《新时代的中国能源发展》白皮书[M]. 国务院新闻办公室, 2020.
[2] 张弛, 林宇震, 徐华胜, 等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报, 2014, 35(2): 332-350.
[3] LIEUWEN T, YANG V. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling (Progress in Astronautics and Aeronautics) [M]. 2005.
[4] CANDEL S. Combustion dynamics and control: Progress and challenges[J]. Proceedings of the combustion institute, 2002, 29(1): 1-28.
[5] DUCRUIX S, SCHULLER T, DUROX D, et al. Combustion dynamics and instabilities: Elementary coupling and driving mechanisms[J]. Journal of propulsion and power, 2003, 19(5):722-734.
[6] ARMITAGE C, BALACHANDRAN R, MASTORAKOS E, et al. Investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations[J]. Combustion and Flame, 2006, 146(3): 419-436.
[7] NOIRAY N, DUROX D, SCHULLER T, et al. A unified framework for nonlinear combustion instability analysis based on the flame describing function[J]. Journal of Fluid Mechanics, 2008 615: 139-167.
[8] VIGNAT G, DUROX D, PRIEUR K, et al. An experimental study into the effect of injector pressure loss on self-sustained combustion instabilities in a swirled spray burner[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5205-5213.
[9] WORTH N A, DAWSON J R. Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber[J]. Combustion and Flame, 2013, 160(11): 2476-2489.
[10] DAWSON J R, WORTH N A. Flame dynamics and unsteady heat release rate of self-excited azimuthal modes in an annular combustor[J]. Combustion and Flame, 2014, 161(10): 2565-2578.
[11] PRIEUR K, DUROX D, SCHULLER T, et al. A hysteresis phenomenon leading to spinning or standing azimuthal instabilities in an annular combustor[J]. Combustion and flame, 2017, 175: 283-291.
[12] WORTH N A, DAWSON J R. Effect of equivalence ratio on the modal dynamics of azimuthal combustion instabilities[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3743-3751.
[13] 马静, 郭志辉. 贫燃预混旋流火焰的模态转换燃烧不稳定特性分析[J]. 推进技术, 2020, 41(5): 1072.
[14] ROY A, SINGH S, NAIR A, et al. Flame dynamics during intermittency and secondary bifurcation to longitudinal thermoacoustic instability in a swirl-stabilized annular combustor[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6221-6230.
[15] MAZUR M, KWAH Y H, INDLEKOFER T, et al. Self-excited longitudinal and azimuthalmodes in a pressurised annular combustor[J]. Proceedings of the Combustion Institute, 2021,38(4): 5997-6004.
[16] EMMERT T, BOMBERG S, POLIFKE W. Intrinsic thermoacoustic instability of premixedflames[J]. Combustion and Flame, 2015, 162(1): 75-85.
[17] EMMERT T, BOMBERG S, JAENSCH S, et al. Acoustic and intrinsic thermoacoustic modesof a premixed combustor[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3835-3842.
[18] MENSAH G A, MAGRI L, SILVA C F, et al. Exceptional points in the thermoacoustic spectrum[J]. Journal of Sound and Vibration, 2018, 433: 124-128.
[19] JUNIPER M P, SUJITH R I. Sensitivity and nonlinearity of thermoacoustic oscillations[J].Annual Review of Fluid Mechanics, 2018, 50: 661-689.
[20] ORCHINI A, SILVA C F, MENSAH G A, et al. Thermoacoustic modes of intrinsic and acousticorigin and their interplay with exceptional points[J]. Combustion and Flame, 2020, 211: 83-95.
[21] HAKIM L, SCHMITT T, DUCRUIX S, et al. Dynamics of a transcritical coaxial flame under ahigh-frequency transverse acoustic forcing: Influence of the modulation frequency on the flameresponse[J]. Combustion and Flame, 2015, 162(10): 3482-3502.
[22] ZHAO D, XIA Y, GE H, et al. Large eddy simulation of flame propagation during the ignitionprocess in an annular multiple-injector combustor[J]. Fuel, 2020, 263: 116402.
[23] MARTIN B, DUCHAINE F, GICQUEL L, et al. Accurate Inlet Boundary Conditions to Capture Combustion Chamber and Turbine Coupling With Large-Eddy Simulation[J]. Journal ofEngineering for Gas Turbines and Power, 2022, 144(2).
[24] DOWLING A P, FFOWCS‐WILLIAMS J E, SEVIK M M. Sound and Sources of Sound[J].Journal of Vibration and Acoustics-transactions of The Asme, 1983, 106: 320-320.
[25] SAYADI T, LE CHENADEC V, SCHMID P J, et al. Thermoacoustic instability–a dynamicalsystem and time domain analysis[J]. Journal of Fluid Mechanics, 2014, 753: 448-471.
[26] NOIRAY N, BOTHIEN M, SCHUERMANS B. Investigation of azimuthal staging concepts inannular gas turbines[J]. Combustion Theory and Modelling, 2011, 15(5): 585-606.
[27] GHIRARDO G, JUNIPER M, MOECK J P. Weakly nonlinear analysis of thermoacoustic instabilities in annular combustors[J]. Journal of Fluid Mechanics, 2016, 805: 52-87.
[28] BAUERHEIM M, PARMENTIER J F, SALAS P, et al. An analytical model for azimuthalthermoacoustic modes in an annular chamber fed by an annular plenum[J]. Combustion andFlame, 2014, 161(5): 1374-1389.
[29] BAUERHEIM M, SALAS P, NICOUD F, et al. Symmetry breaking of azimuthal thermoacoustic modes in annular cavities: a theoretical study[J]. Journal of Fluid Mechanics, 2014,760: 431-465.
[30] BAUERHEIM M, CAZALENS M, POINSOT T. A theoretical study of mean azimuthal flowand asymmetry effects on thermo-acoustic modes in annular combustors[J]. Proceedings of theCombustion Institute, 2015, 35(3): 3219-3227.
[31] GHIRARDO G, JUNIPER M P. Azimuthal instabilities in annular combustors: standing andspinning modes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469(2157): 20130232.
[32] LI C, YANG D, LI S, et al. An analytical study of the effect of flame response to simultaneousaxial and transverse perturbations on azimuthal thermoacoustic modes in annular combustors[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5279-5287.
[33] STOW S R, DOWLING A P. A time-domain network model for nonlinear thermoacousticoscillations[J]. Journal of engineering for gas turbines and power, 2009, 131(3).
[34] STOW S R, DOWLING A P. Thermoacoustic oscillations in an annular combustor[C]//TurboExpo: Power for Land, Sea, and Air: volume 78514. American Society of Mechanical Engineers, 2001: V002T02A004.
[35] STOW S R, DOWLING A P. Low-order modelling of thermoacoustic limit cycles[C]//TurboExpo: Power for Land, Sea, and Air: volume 41669. 2004: 775-786.
[36] YANG D, LAERA D, MORGANS A S. A systematic study of nonlinear coupling of thermoacoustic modes in annular combustors[J]. Journal of Sound and Vibration, 2019, 456: 137-161.
[37] SOGARO F M, SCHMID P J, MORGANS A S. Thermoacoustic interplay between intrinsicthermoacoustic and acoustic modes: non-normality and high sensitivities[J]. Journal of FluidMechanics, 2019, 878: 190-220.
[38] DOWLING A P, MORGANS A S. Feedback control of combustion oscillations[J]. Annu. Rev.Fluid Mech., 2005, 37: 151-182.
[39] ZHAO D, LU Z, ZHAO H, et al. A review of active control approaches in stabilizing combustionsystems in aerospace industry[J]. Progress in Aerospace Sciences, 2018, 97: 35-60.
[40] 杨亚晶, 李晓亚. 水平 Rijke 管自激振荡特性及抑制方法研究[J]. 热能动力工程, 2023, 38(2): 48-55.
[41] 刘旺, 李敬轩, 杨立军. 隔板喷嘴对燃烧室切向声学模态作用研究[J]. 推进技术, 2019, 40(6): 1348-1353.
[42] STOW S R, DOWLING A P. Modelling of circumferential modal coupling due to Helmholtzresonators[C]//Turbo Expo: Power for Land, Sea, and Air: volume 36851. 2003: 129-137.
[43] CAMPOREALE S, FORTE A, FORTUNATO B, et al. Numerical simulation of the acousticpressure field in an annular combustion chamber with Helmholtz resonators[C]//Turbo Expo:Power for Land, Sea, and Air: volume 41669. 2004: 713-724.
[44] MENSAH G A, MOECK J P. Acoustic damper placement and tuning for annular combustors:an adjoint-based optimization study[J]. Journal of Engineering for Gas Turbines and Power,2017, 139(6).
[45] DUPERE I D, DOWLING A P. The use of Helmholtz resonators in a practical combustor[J].J. Eng. Gas Turbines Power, 2005, 127(2): 268-275.
[46] SELAMET A, LEE I. Helmholtz resonator with extended neck[J]. The Journal of the AcousticalSociety of America, 2003, 113(4): 1975-1985.
[47] SELAMET A, XU M, LEE I J, et al. Helmholtz resonator lined with absorbing material[J]. TheJournal of the Acoustical Society of America, 2005, 117(2): 725-733.
[48] WU G, LU Z, XU X, et al. Numerical investigation of aeroacoustics damping performance ofa Helmholtz resonator: Effects of geometry, grazing and bias flow[J]. Aerospace Science andTechnology, 2019, 86: 191-203.
[49] YU Z, YANG Y. Impact of Dual-Volume Helmholtz Dampers on Longitudinal and AzimuthalThermo-Acoustic Instabilities in an Annular Combustor[J]. Journal of Thermal Science, 2022,31(6): 2225-2243.
[50] LI J, MORGANS A S. Time domain simulations of nonlinear thermoacoustic behaviour in asimple combustor using a wave-based approach[J]. Journal of Sound and Vibration, 2015, 346:345-360.
[51] LI J, YANG D, MORGANS A S. The effect of an axial mean temperature gradient on communication between one-dimensional acoustic and entropy waves[J]. International Journal ofSpray and Combustion Dynamics, 2018, 10(2): 131-153.
[52] LI J, YANG D, LUZZATO C, et al. Open Source Combustion Instability Low Order Simulator(OSCILOS-Long) Technical Report[J]. Imperial College London, London, 2015: 1-48.
[53] YANG D, SOGARO F M, MORGANS A S, et al. Optimising the acoustic damping of multipleHelmholtz resonators attached to a thin annular duct[J]. Journal of Sound and Vibration, 2019,444: 69-84.
[54] DOWLING A P, STOW S R. Acoustic analysis of gas turbine combustors[J]. Journal of propulsion and power, 2003, 19(5): 751-764.
[55] RIENSTRA S W, HIRSCHBERG A. An introduction to acoustics[J]. Eindhoven University ofTechnology, 2004, 18: 19.
[56] NICOUD F, BENOIT L, SENSIAU C, et al. Acoustic modes in combustors with compleximpedances and multidimensional active flames[J]. AIAA journal, 2007, 45(2): 426-441.
[57] ANNAMALAI K, PURI I K. Combustion science and engineering[M]. CRC press, 2006.
[58] STREB H, PRADE B, HAHNER T, et al. Advanced burner development for the VX4. 3Agas turbines[C]//Turbo Expo: Power for Land, Sea, and Air: volume 78514. Citeseer, 2001:V002T02A044.
[59] MORGANS A S, STOW S R. Model-based control of combustion instabilities in annular combustors[J]. Combustion and flame, 2007, 150(4): 380-399.
[60] CHU B T, KOVSZNAY L S. Non-linear interactions in a viscous heat-conducting compressiblegas[J]. Journal of Fluid Mechanics, 1958, 3(5): 494-514.
[61] MASSEY B, WARD-SMITH J. Mechanics of fluids[M]. Taylor & Francis e-Library, 2005.
[62] LIEUWEN T. Modeling premixed combustion-acoustic wave interactions: A review[J]. Journalof propulsion and power, 2003, 19(5): 765-781.
[63] DOWLING A P. Nonlinear self-excited oscillations of a ducted flame[J]. Journal of fluidmechanics, 1997, 346: 271-290.
[64] HOWE M. On the theory of unsteady high Reynolds number flow through a circular aperture[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1979,366(1725): 205-223.
[65] STOW S R, DOWLING A P, HYNES T P. Reflection of circumferential modes in a chokednozzle[J]. Journal of Fluid Mechanics, 2002, 467: 215-239.
[66] MARBLE F, CANDEL S. Acoustic disturbance from gas non-uniformities convected througha nozzle[J]. Journal of sound and vibration, 1977, 55(2): 225-243.
[67] CAMPOREALE S, FORTUNATO B, CAMPA G. A finite element method for threedimensional analysis of thermo-acoustic combustion instability[J]. Journal of Engineering forGas Turbines and Power, 2011, 133(1).
[68] LAERA D, SCHULLER T, PRIEUR K, et al. Flame describing function analysis of spinningand standing modes in an annular combustor and comparison with experiments[J]. Combustionand Flame, 2017, 184: 136-152.
[69] LAERA D, CAMPA G, CAMPOREALE S. A finite element method for a weakly nonlineardynamic analysis and bifurcation tracking of thermo-acoustic instability in longitudinal andannular combustors[J]. Applied Energy, 2017, 187: 216-227.
[70] LEHOUCQ R B, SORENSEN D C, YANG C. ARPACK users’ guide: solution of large-scaleeigenvalue problems with implicitly restarted Arnoldi methods[M]. SIAM, 1998.
[71] BOURQUARD C, NOIRAY N. Stabilization of acoustic modes using Helmholtz and QuarterWave resonators tuned at exceptional points[J]. Journal of Sound and Vibration, 2019, 445:288-307.
[72] BOURGOUIN J F, DUROX D, MOECK J, et al. A new pattern of instability observed in anannular combustor: The slanted mode[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3237-3244.
[73] LAERA D, PRIEUR K, DUROX D, et al. Impact of Heat Release Distribution on the SpinningModes of an Annular Combustor With Multiple Matrix Burners[J]. Journal of Engineering forGas Turbines and Power-transactions of The Asme, 2016, 139: 051505.
[74] YANG D, MORGANS A S. The acoustics of short circular holes opening to confined andunconfined spaces[J]. Journal of Sound and Vibration, 2017, 393: 41-61.
[75] GAUDRON R, YANG D, MORGANS A. Acoustic energy balance during the onset, growth,and saturation of thermoacoustic instabilities[J]. Journal of engineering for gas turbines andpower, 2021, 143(4).
[76] GAUDRON R, MORGANS A S. Acoustic absorption in a subsonic mean flow at a suddencross section area change[C]//Proceedings of ICSV 26–International Congress on Sound andVibration. 2019: 1-8.
[77] CANTRELL R, HART R. Interaction between sound and flow in acoustic cavities: Mass,momentum, and energy considerations[J]. The Journal of the Acoustical Society of America,1964, 36(4): 697-706.
[78] POINSOT T, VEYNANTE D. Theoretical and numerical combustion[M]. RT Edwards, Inc.,2005.

所在学位评定分委会
力学
国内图书分类号
O351.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543870
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
尹利铭. 亥姆霍兹共振器对环形燃烧室热声振荡的被动控制[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032392-尹利铭-力学与航空航天(31428KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[尹利铭]的文章
百度学术
百度学术中相似的文章
[尹利铭]的文章
必应学术
必应学术中相似的文章
[尹利铭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。